
Declarative Design of Spoken Dialogue Systems
with Probabilistic Rules

Pierre Lison
Department of Informatics
University of Oslo, Norway
plison@ifi.uio.no

Abstract

Spoken dialogue systems are instantiated in
complex architectures comprising multiple in-
terconnected components. These architectures
often take the form of pipelines whose com-
ponents are essentially black-boxes developed
and optimised separately, using ad-hoc spec-
ification formats for their inputs and outputs,
domain models and parameters.

We present in this paper an alternative mod-
elling approach, in which the dialogue pro-
cessing steps (from understanding to manage-
ment and to generation) are all declaratively
specified using the same underlying formal-
ism. The formalism is based on probabilistic
rules operating on a shared belief state. These
rules are expressed as structured mapping be-
tween state variables and provide a compact,
probabilistic encoding for the dialogue pro-
cessing models. We argue that this declarative
approach yields several advantages in terms
of transparency, domain-portability and adap-
tivity over traditional black-box architectures.
We also describe the implementation and vali-
dation of this approach in an integrated archi-
tecture for human-robot interaction.

1 Introduction

Spoken dialogue systems typically rely on complex
pipeline architectures, including components such
as speech recognition, semantic parsing, dialogue
act classification, dialogue management, sentence
planning, surface realisation and speech synthesis,
in addition to extra-linguistic modules for e.g. situa-
tion awareness or the execution of physical actions,
see e.g. (Bos et al., 2003; Bohus et al., 2007; Krui-
jff et al., 2007). In many cases, these components

are developed separately and rely on dedicated rep-
resentation formats for their inputs and output vari-
ables, internal models and parameters.

For instance, a dialogue act classifier might take
as input a N-Best list of recognition hypotheses, and
outputs the corresponding dialogue act(s), using a
set of shallow patterns as internal model to relate the
input to the output. Similarly, a dialogue manager
takes a given dialogue state as input, and outputs the
optimal action (if any) to perform in such state based
on a specific planning procedure.

These representation formats are unfortunately
rarely compatible with one another, which makes it
difficult to derive a semantic interpretation for the di-
alogue state as a whole (in terms e.g. of a joint prob-
ability distribution). Moreover, much of the task
knowledge is typically encoded in procedural form
within the component workflow, reducing the sys-
tem portability to other domains due to the necessity
of reprogramming some of the modules.

We present in this paper an alternative approach
to the specification and optimisation of the various
models used in a dialogue system architecture. The
key idea is to declaratively specify the task-specific
models using a shared, generic representation for-
malism, and strip down the system architecture to
a small set of core algorithms for updating the di-
alogue state based on these models. The represen-
tation formalism we describe in this paper is based
on the concept of a probabilistic rule. These rules
are expressive enough to capture the structure for
most processing tasks, from dialogue understanding
to management and to generation. Moreover, they
can be either manually designed or have their pa-
rameters estimated from data.

This declarative approach to the design of spo-

ken dialogue systems has several advantages. The
first one pertains to domain portability. Given that
the dialogue architecture is essentially reduced to a
generic platform for rule instantiation and inference,
porting the system to a new domain only requires
a rewrite or extension of the domain-specific rules,
without having to reprogram a single component. It
also provides a more transparent semantics for the
system as a whole, since all state variables are de-
scribed and related to each other in a unified and the-
oretically sound framework, grounded in probabilis-
tic inference. Finally, the use of probabilistic rules
enables the construction of very flexible processing
pipelines, by allowing state variables to depend or
influence each other in any order and direction. The
system designer is thus free to combine in the same
architecture both deep and shallow semantic parsers
for dialogue understanding, or both reactive and de-
liberative policies for dialogue management.

The architecture revolves around a shared dia-
logue state, encoded as a Bayesian Network includ-
ing all variables relevant for the interaction. The use
of a Bayesian Network allows us to account for the
various kinds of uncertainties arising in spoken dia-
logue (speech recognition errors, unknown user in-
tentions, etc.) as well as the conditional dependen-
cies between state variables. At runtime, this dia-
logue state is continuously updated via probabilistic
rules. As we shall see, these rules are instantiated by
extending the Bayesian network with new nodes and
conditional dependencies.

We showed in our previous work how to esti-
mate the parameters of these models given lim-
ited amounts of Wizard-of-Oz training data (Lison,
2012). The present paper builds upon this approach,
but concentrates on the design and specification of
these probabilistic rules for various processing tasks,
leaving out the question of parameter estimation.
Hence, we will simply assume through this paper
that the parameters have been already assigned, ei-
ther from training data or expert knowledge.

The rest of the paper is as follows. We first pro-
vide generalities about Bayesian Networks and di-
alogue models. We then describe our approach by
defining the probabilistic rules and their use in the
dialogue processing workflow. We also detail a sys-
tem implemented for a human-robot interaction do-
main, which exploits probabilistic rules to perform

A

C

B

D

E

Value for B: P(B)

T 0.6

F 0.4

Value for A: P(A)

T 0.3

F 0.7

Value for C P(C)

T
 1.0 if (A=T ∧ B=T)
 0.0 otherwise

F
 0.0 if (A=T ∧ B=T)
 1.0 otherwise

Value
for D:

P(D|C)P(D|C)Value
for D: C=T C=F

T 0.2 0.99

F 0.8 0.01

Value
for E:

P(E|C)P(E|C)Value
for E: C=T C=F

T 0.5 0.4

F 0.5 0.6

Figure 1: Bayesian network with 5 nodes. An example of
query on this network is P (A=T|D=T) ≈ 0.18.

tasks related to dialogue understanding, manage-
ment and generation. Finally, we discuss and relate
our approach to previous work, and conclude.

2 Background

2.1 Bayesian Networks

The probabilistic models used in this paper are ex-
pressed as directed graphical models, also known as
Bayesian Networks. Let X1...Xn denote a set of
random variables. Each variable Xi is associated
with a range of mutually exclusive values. In dia-
logue models, this range is often discrete and can be
explicitly enumerated: V al(Xi) = {x1i , ..., xmi }.

A Bayesian Network defines the conditional de-
pendencies between variables using a directed graph
where each node corresponds to a variable Xi. Each
edge Xi → Xj denotes a conditional dependence
between the two nodes, in which case Xi is said to
be a parent of Xj . A conditional probability distri-
bution P (Xi|Par(Xi)) is associated with each node
Xi, where Par(Xi) denotes the parents of Xi.

Conditional probability distributions (CPDs) can
be defined in various ways, from look-up tables
to more advanced distributions (Koller and Fried-
man, 2009). Together with the directed graph, the
CPDs determine the joint probability distribution
P (X1...Xn) . The network can then be used for in-
ference by querying the distribution of a subset of
variables, often given some additional evidence, as
illustrated by the example in Figure 1.

2.2 Dialogue models
The dialogue state s can generally be decomposed
into a set of state variables s = {s1, ...sn} (Williams
and Young, 2007). Each state variable represents
a relevant feature of the interaction and its context.
For instance, the state variables for a human-robot
interaction scenario might be composed of tasks to
accomplish, the interaction history, past events, as
well as objects, spatial locations and agents in the
environment. A minimal dialogue state can be de-
fined as s = 〈uu, au, iu, am, um, c〉, where uu is the
last user utterance, au the last dialogue act, iu the
current user intention, am the last system act, um
the last system utterance, and c the context.

Due to uncertainty, many variables are only par-
tially observable. We thus encode our knowledge of
the current dialogue state in a distribution b(s) =
P (s1, ..., sn) called the belief state, conveniently
expressed as a Bayesian Network (Thomson and
Young, 2010). This belief state b is regularly up-
dated with new information. The workflow illus-
trated in Figure 2 can then be formalised in terms
of inference steps over this belief state:

1. Upon detection of a new speech signal, the
speech recogniser generates the N-best list of
recognition hypotheses ũu = P (uu|o);

2. Speech understanding then estimates the most
likely dialogue act(s) realised in the utterance:
ãu = P (au|b);

3. The user intention is updated with the new in-
terpreted dialogue act: ĩu = P (iu|b);

4. Based on the updated belief state, the action se-
lection searches for the optimal system action
to perform: a∗m = arg maxam Q(am|b);

5. The system action is then realised in an utter-
ance um, which is again framed as a search for
u∗m = arg maxum

Q(um|b);
The models defined above use P (x|b) as a nota-

tional convenience for
∑

si∈V al(s) P (x|s=si)b(si).
The sequence above might be adapted in various
ways depending on the domain. A basic reactive
system might for instance ignore the user intention
and directly select its actions based on the last dia-
logue act. Similarly, user-adaptivity might be cap-
tured via additional processing steps to estimate and
exploit features related to the user model.

Speech
recognition

Speech
understanding

Generation

Speech
synthesis

Extra-linguistic environment

input speech signal
(user utterance)

output speech signal
(machine utterance)

Dialogue
 act ãu

Recognition
hypotheses uu ~

Shared belief
state b

User

Dialogue
Interpretation

Action
selection

User
intention iu

~

Intended
response am

*

Utterance to
synthesise um

*

Perceived
context c~

Figure 2: Dialogue system architecture schema.

3 Approach

The starting point of our approach is to express the
probabilistic dialogue models described above using
a compact encoding which takes advantage of the
internal structure present in most processing tasks.
This structure can take several forms:

• The probability (or utility) of a given output
variable typically depends on only a small sub-
set of input variables, although the number and
identity of these variables might naturally dif-
fer. The state variable encoding the physical lo-
cation of a mobile robot is for instance relevant
for answering a user requesting its location, but
not for responding to a greeting act.

• Moreover, the values for the dependent vari-
ables can often be grouped into a small num-
ber of partitions yielding similar outcomes,
thereby reducing the dimensionality of the
problem. The partitions can be expressed via
logical conditions on the variable values.

Probabilistic rules provide a general framework
for expressing this internal structure. The rules ex-
press the model distribution in terms of structured
mappings between input and output variables. At
runtime, these rules are then applied on the belief
state, thereby extending the Bayesian Network with
new nodes and conditional dependencies. This up-
dated Bayesian Network can then be directly used

for inference, e.g. to compute the marginal distribu-
tion of a particular variable or to search for the op-
timal action to perform. The probabilistic rules thus
function as high-level templates for the incremental
construction of a classical probabilistic model.

3.1 Definitions

Rules can be of two possible types:

1. probability rules, which define probability
models of the form P (X|Y), where X and Y
both denote arbitrary sets of state variables;

2. utility rules, defining utility models of the form
Q(X,A), where X represent a set of state vari-
ables, and A a set of action variables. The rule
defines here the utility of a particular action se-
quence in A given the state defined by X.

A rule is essentially defined as a condition-effect
mapping, where each condition is mapped to a set
of alternative effects. Depending on the type of rule,
each effect will be assigned to either a probability
or a utility value. The list of conditions is ordered
and takes the form of a “if ... then ... else” case
expressing the probability/utility distribution of the
output variables depending on the inputs.

Probability rule
Formally, a probability rule r is defined as an or-

dered list of cases, where each case is associated
with a condition ci as well as a distribution over
stochastic effects {(e1i , p1i), ..., (eki , pki)}. For each
stochastic effect eji , we have that pji = P (eji |ci),
where p1...mi satisfy the usual probability axioms.
The rule reads as such:

if (c1) then

{P (e11) = p11, ... P (ek1) = pk1}
...

else if (cn) then
{P (e1n) = p1n, ... P (emn) = pmn }

A final else case is implicitly added to the bottom of
the list, and holds if no other condition applies. If
not overridden, the default effect associated to this
last case is void – i.e. it causes no changes to the
distribution over the output variables.

Utility rule
Utility rules are defined similarly. Each case

specified in the rule is associated to a condition ci
and a utility distribution over possible action se-
quences {(a1i , q1i), ..., (aki , q

k
i)}, where aji is a value

assignment for a set of action variables, and qji =

Q(ci, a
j
i). The rule reads as:

if (c1) then

{Q(a11) = q11, ... Q(ak1) = qk1}
...

else if (cn) then
{Q(a1n) = q1n, ... Q(amn) = qmn }

The default utility value of an action is set to 0.
When several rules define a utility value for the same
action, these utilities are summed.

Conditions
For both rule types, the conditions are expressed

as logical formulae grounded in the input variables.
They can be arbitrarily complex formulae connected
by conjunctive, disjunctive and negation operators.
The conditions on the input variables can be seen
as providing a compact partition of the state space
to mitigate the dimensionality curse. Without this
partitioning in alternative conditions, a rule ranging
over m variables each of size n would need to enu-
merate nm possible assignments. The partitioning
with conditions reduces this number to p mutually
exclusive partitions, where p is usually small.

A wide range of conditional tests can be de-
vised. In our implementation, the rule conditions for
speech understanding were for instance expressed in
terms of regular expressions matches on the user ut-
terance uu. Generally speaking, a condition is sim-
ply defined as a function mapping state variable as-
signments to a boolean value.

Effects
The rule effects are defined similarly: given a con-

dition holding on a set of input variables, the associ-
ated effects define specific value assignments for the
output variables. The effects can be limited to a sin-
gle variable or range over several output variables.
The effect can also be void, i.e. trigger no change to
the distribution over output values.

Each effect is assigned to a scalar value defin-
ing its probability or utility, and several alternative
stochastic effects can be defined for the same case.
If a unique effect is specified, it is then implicitly as-
sumed to hold with probability 1. These values are
parameters which can be either hand-coded or esti-
mated from data.

Example
Assume an action selection model structured with

probabilistic rules, which operates on a belief state
b containing the last user act au as well as a col-
lection of objects perceived in the environment. The
response to a polar question such as “is the object
red?” can be captured by the following rules:

r1 : if (au= VerifyColour(o, c)

∧ o.colour=c) then
{Q(am= Confirm) = 5}

else {Q(am= Confirm) = −4}

r2 : if (au= VerifyColour(o, c)

∧ o.colour 6=c) then
{Q(am= Disconfirm) = 5}

else {Q(am= Disconfirm) = −4}

r3 : if (au= VerifyColour(o, c)) then
{Q(am= SayDontKnow) = 1}

else {Q(am= SayDontKnow) = −2}

The rule specifies the following behaviour: if
there is a reasonable certainty that the object is (resp.
is not) of the correct colour, the system should con-
firm (resp. disconfirm). In case of uncertainty, it
should utter “I don’t know”. The trade-offs between
these actions are encoded by the utility parameters.

To illustrate the rules, assume that the dialogue
state contains the two independent variables au and
o1.colour, with the respective distributions:

P (au=VerifyColour(o1, blue)) = 0.8)

P (au=VerifyColour(o1, black)) = 0.2)

P (o1.colour=blue) = 0.75)

P (o1.colour=green) = 0.25)

It is then trivial to calculate that, in this setting,
the best action to perform is Confirm, which has a

utility Q = 1.4, while Q(SayDontKnow) = 1 and
Q(Disconfirm) = −0.4.

3.2 Processing workflow

To ease the design of the architecture, the probabilis-
tic rules are grouped into models. A model consists
of a set of rules and the specification of a “trigger”
variable which causes the activation of the model.
For instance, the trigger for the speech understand-
ing model P (au|uu) is the user utterance uu.

The dialogue system is integrated in an event-
driven, blackboard architecture (Buckley and
Benzmüller, 2007) revolving around the shared be-
lief state b represented as a Bayesian Network. This
belief state is read and written by all the dialogue
models. Once a change occurs on a state vari-
able, the algorithm checks whether there are models
triggered by this update. Then, for each triggered
model, the rules are applied as follows:

1. For every rule r in the model, we create a rule
node φr and include the conditional dependen-
cies with its input variables. If the rule is a
probability rule, the rule node will be a chance
node describing the distribution of effects given
the input assignment. If the rule is a utility rule,
the node will be a utility node describing the
utility of action variables.

2. The nodes corresponding to the output vari-
ables are created (if they do not already ex-
ist). For probability rules, these nodes will be
chance nodes with a conditional dependence on
the rule node φr. For utility rules, they will be
action nodes, with an outward dependence re-
lation to the rule node φr.

Once no more models can be triggered, the
Bayesian Network is modified to replace the updated
variables. Finally, if the network contains action
variables, the algorithm searches for their optimal
action value and selects them. This selection might
trigger other inference steps, and the process is re-
peated until stability is reached. The procedure is
described in Algorithms 1 and 2. Figure 3 illustrates
the application of four rules on a belief state.

Once the Bayesian network is updated with the
new rules, queries can be evaluated using any stan-
dard algorithm for exact or approximate inference.

Algorithm 1 : BELIEFUPDATE (b,M)

Require: b: Current belief state
Require: M: Set of rule-based models

1: loop
2: repeat
3: for all model m ∈M do
4: if m is triggered then
5: for all rule r ∈ m do
6: b← ADDRULE(b, r)
7: end for
8: end if
9: end for

10: until no model is triggered
11: for all node x′ ∈ b do
12: Prune x from b
13: Relabel x′ into x
14: end for
15: for all node a : action variable do
16: Find a∗ = arg maxv∈V al(a)Q(a=v|b)
17: Set a← a∗

18: end for
19: end loop

Algorithm 2 : ADDRULE (b, r)

Require: b: Current belief state
Require: r: Rule to add

1: Ir ← INPUTVARIABLES(r)
2: Create node φr ← RULENODE(r)
3: Add φr and dependencies Ir → φr to b

4: if r is a probability rule then
5: Or ← OUTPUTVARIABLES(r)
6: for all output variable o ∈ Or do
7: Create node o′ if not already in b
8: Add o′ and dependency φr → o′ to b
9: end for

10: else if r is a utility rule then
11: Ar ← ACTIONVARIABLES(r)
12: for all action variable a ∈ Ar do
13: Create node a′ if not already in b
14: Add a′ and dependency a′ → φr to b
15: end for
16: end if
17: return b

B

C
ϕrx B’

I’

E’ϕryD

ϕrzI

...

In
pu

t
fo

r
r x

O
ut

pu
t

fo
r

r x

...
rule nodes

Initial belief state

J

K

A’ϕrz

Figure 3: Bayesian Network expanded with the rules rw,
rx, ry , rz on a set of state variables. Diamond nodes
represent value nodes, and square action nodes.

It is worth nothing that the outlined procedure is
an instance of ground inference (Getoor and Taskar,
2007), since the rule structure is grounded in a stan-
dard Bayesian Network.

4 Implementation

The framework outlined in the previous section has
been implemented in a system architecture, and ap-
plied to a human-robot interaction scenario. The
scenario involved a human user and a Nao robot1

(see Figure 4). The user was instructed to teach the
robot a sequence of basic movements (lift the left
arm, step forward, kneel down, etc.) using spoken
commands. The interaction included various dia-
logue acts such as clarification requests, feedbacks,
acknowledgements, corrections, etc.

The models for speech understanding, action se-
lection and generation were all encoded with proba-
bilistic rules, for a total of 68 rules. The expressivity
of the formalism allows us to capture complex prob-
ability or utility models in just a handful of rules.

1A programmable humanoid robot developed by Aldebaran
Robotics, http://www.aldebaran-robotics.com.

Figure 4: Human user interacting with the Nao robot to
teach a sequence of movements via verbal instructions.

The structure of these rules is designed by hand, but
their parameters can be learned from data. In our ex-
periments, the utility parameters of the action selec-
tion module were estimated from limited amounts
of Wizard-of-Oz training data, while the understand-
ing and generation models were hand-crafted – these
rules encoding simple, deterministic pattern match-
ing techniques.

In addition, the dialogue also included a speech
recognizer (Vocon 3200 from Nuance) connected to
the robot microphones, a text-to-speech module, as
well as components for planning the robot move-
ments and controlling its motors in real-time. In
our experiments, the posteriors for the updated state
variables were calculated via importance sampling
(Koller and Friedman, 2009), but other inference al-
gorithms such as variable elimination (Zhang and
Poole, 1996) are also available.

Both the rule-based models and the external mod-
ules are connected to the shared belief state, and
read/write to it as they process their data flow. The
models and external modules listen for changes oc-
curring in the belief state and become activated
when one of these changes relates to their triggering
variable. It is worth noting that external modules
such as the ASR engine exhibit the same process-
ing behaviour as probabilistic rules, i.e. they extend
the belief state with additional rule nodes that them-
selves lead to updated variables.

4.1 Example of rules

We describe below five examples of rules: two used
for shallow dialogue act recognition, two used for

action selection, and one for generation.

1. Rule r1 below lists three regular expression pat-
terns for a particular case of dialogue act classi-
fication. If the value for the user utterance vari-
able uu matches at least one of the patterns, the
dialogue act au is classified as LeftArmDown,
else au is left unchanged:

r1 : if (uu matches “left arm down”)

∨ (uu matches “lower * left arm”)

∨ (uu matches “down * left arm”) then
{P (a′u= LeftArmDown) = 1.0}

2. Due to high levels of noise in speech recogni-
tion, it is often useful to dynamically “prime”
the results given expectations from the con-
text. Rule r2 is another rule for dialogue act
recognition triggered if the last system act is
AskRepeat. In this case, the rule r2 will prime
the probability that the new user act (a′u) is
identical to the previous one (au):

r2 : if (am = AskRepeat) then
{P (a′u=au) = 0.9}

Rule r2 specifies that, if requested to repeat his
last dialogue act, the user will do so with prob-
ability 0.9. The rule provides a prediction of
the next user act given the context, before the
observation of the user utterance. In combina-
tion with classification rules such as r1, the rule
determines the posterior distribution over the
most likely dialogue acts uttered by the user.

3. Rule r3 is an action selection rule which speci-
fies the utility of performing the action am =
DoMovement(X) if the user intention iu is
equal to RequestMovement(X), where X is
an argument corresponding to the actual move-
ment (lifting the arm up or down, etc.):

r3 : if (iu = RequestMovement(X)) then
{Q(a′m= DoMovement(X)) = 3.0}

Note the use of the unbounded variable X,
which is unified at runtime with the actual ar-
gument value for iu.

4. Rule r4 specifies the utility of the clarification
request am = AskRepeat. The rule r4 has no
condition, which means that the utility of the
clarification request will be conditionally inde-
pendent of the value of iu:

r4 : if (true) then
{Q(a′m= AskRepeat) = 1.2}

Put together, rules r3 and r4 determine the
relative utility of requesting a clarification on
the user intention vs. performing the ac-
tion. In this particular case, the system will
select DoMovement(X) if the user intention
RequestMovement(X) has a probability >
0.4, and will ask for a clarification otherwise.

5. Finally, rule r5 determines the system utter-
ance to synthesise um given the system act
am = Ack (for ”acknowledgement”). In this
case, the system is free to select one of the three
alternatives, with equal utility:

r5 : if (am = Ack) then
{Q(u′m = “ok”) = 1.0 ∧
Q(u′m = “great”) = 1.0 ∧
Q(u′m = “thanks”) = 1.0}

For the sake of simplicity, the probability and util-
ity values shown above were hand-coded. Of course,
dialogue systems deployed in real domains need
to estimate these parameters from interaction data
(coming from e.g. Wizard-of-Oz experiments). Pre-
vious work has demonstrated how to perform such
parameter estimation using a Bayesian learning ap-
proach (Lison, 2012). One major benefit is that the
rule structure is described in exponentially fewer pa-
rameters than its plain counterpart, and is thus much
easier to learn and to generalise to unseen data.

It should be theoretically possible to also learn
the rule structure from data, as evidenced by work
done in Statistical Relational Learning (Pasula et al.,
2007). Such endeavour would however require sig-
nificantly larger amounts of training data, and re-
mains therefore impractical for most dialogue do-
mains. Furthermore, the rule structure can be seen as
a way for the system designer to enforce design con-
straints or business rules into the system (Williams,

2008), and such ability would be lost if the rule
structure was to be learned from scratch.

5 Discussion and related work

The development of generic, domain-independent
dialogue systems has a long history (Allen et al.,
2000; Bohus et al., 2007), and there is a clear
trend towards creating platforms with generic or
reusable components. There is however no agree-
ment on common modelling formats or processing
techniques. In this respect, it is interesting to draw
a parallel between dialogue systems and other fields
of NLP such as syntactic parsing. Before the 60’s,
most parsers relied on procedural routines buried in
the code. One of the major advances has come from
the decision to separate the domain knowledge (in
this case, the lexicon and grammar) on one hand,
and the parsing algorithms on the other hand. We be-
lieve that dialogue systems would also benefit from
a cleaner distinction between declarative knowledge
(i.e. task- and domain-specific models) and generic
processing functionalities (i.e. algorithms for rea-
soning, learning and planning under uncertainty.)

Most current dialogue systems are however re-
lying on numerous blackbox components in their
pipeline. An unfortunate consequence of this het-
erogeneity is that, while speech recognition results
often include explicit measures of uncertainty (in
the form of e.g. confidence scores), this uncertainty
is often lost at higher stages of reasoning, such as
semantic interpretation and dialogue management.
Recent papers have shown that confidence scores
can be exploited in dialogue management (Williams
et al., 2008), but their approach has not yet been
widely adopted. Thanks to the unified description
framework provided by probabilistic rules, our ap-
proach is able to provide a principled account for
this uncertainty at all processing stages.

Information-state approaches to dialogue man-
agement (Larsson and Traum, 2000; Bos et al.,
2003) are closely related to this work, since they
also rely on a shared state updated according to a
rich repository of rules, but contrary to the approach
presented here, these rules are generally determin-
istic and do not include learnable parameters. The
idea of state space partitioning, implemented here
via rule conditions, has also been explored in recent

papers (Williams, 2010; Crook and Lemon, 2010).
The work presented in this paper can be seen as

an attempt to bridge the gap between “symbolic”
approaches to dialogue, which usually concentrate
on capturing rich interaction patterns, and “prob-
abilistic” approaches, more focused on aspects re-
lated to noise, uncertainty, and learnability. There
has been some initial work on hybrid approaches
to dialogue processing and management where both
statistically learned and designed policies are com-
bined (Williams, 2008; Lee et al., 2010), but they
generally use the designed policies as a mere filter-
ing mechanism for the stochastic policy. Our ap-
proach however directly incorporates the prior do-
main knowledge into the statistical model.

Structural knowledge in probabilistic models
has been explored in many directions, both
in decision-theoretic planning and reinforcement
learning (Hauskrecht et al., 1998; Pineau, 2004;
Lang and Toussaint, 2010; Otterlo, 2012) and in
statistical relational learning (Jaeger, 2001; Richard-
son and Domingos, 2006; Getoor and Taskar, 2007).
The introduced structure may be hierarchical, rela-
tional, or both. As in our approach, most of these
frameworks rely on expressive representations as
templates for grounded probabilistic models.

An important side benefit of structured repre-
sentations in probabilistic models is their improved
readability for the human designers, which are able
to use these powerful abstractions to encode their
prior knowledge of the dialogue domain in the form
of pragmatic rules, generic background knowledge,
or task-specific constraints. Moreover, the grouping
of related rules into models allows the system de-
veloper to specify dialogue domains in a modular
fashion, by clustering rules into various sets of mod-
els. Some models might be highly domain-specific
while others encode generic interaction behaviours
that can be easily ported to other applications.

6 Conclusion

We have described in this paper a new approach
to the development of dialogue systems, based on
the declarative specification of probabilistic rules.
These rules are defined as structured mappings
over variables of the dialogue state, specified us-
ing high-level conditions and effects. The rules are

parametrised with effect probabilities or action util-
ities. Probabilistic rules allow the system designer
to exploit powerful generalisations in the dialogue
domain specification without sacrificing the proba-
bilistic nature of the model.

The architecture revolves around a shared belief
state expressed as a Bayesian Network. This belief
state is continuously updated and extended based on
a set of probabilistic rules for speech understanding,
management and generation. This architecture has
been implemented and integrated in a spoken dia-
logue system for human-robot interaction. We are
currently in the process of refactoring our imple-
mentation to make it available as a generic, open
source dialogue toolkit called openDial.

We are currently working on extending this archi-
tecture in several directions. Our first line of work is
to extend the parameter estimation outlined in (Li-
son, 2012) to Bayesian model-based reinforcement
learning. The parameter estimation currently oper-
ates in a supervised learning mode, which requires
expert data. Alternatively, one could estimate the
model parameters in a fully online fashion, without
any supervisory input, by incorporating model un-
certainty into the inference and continuously adapt-
ing the parameter distribution from real or simulated
interaction experience (Ross et al., 2011).

Another research direction relates to the exten-
sion of the belief update algorithms towards incre-
mentality (Schlangen et al., 2010). We believe that
the framework presented in this paper is particularly
well suited to perform incremental processing, since
the chain of related hypotheses is explicitly captured
in the conditional dependencies of the Bayesian Net-
work. A probability change in one initial hypothesis
(e.g. the user utterance) will therefore be directly
reflected in all hypotheses depending on it (e.g. the
corresponding user intention). Extending the belief
update algorithm to run incrementally while remain-
ing tractable is however a non-trivial task.

References

J. Allen, D. Byron, M. Dzikovska, G. Ferguson,
L. Galescu, and A. Stent. 2000. An architecture for
a generic dialogue shell. Natural Language Engineer-
ing, 6:213–228.

D. Bohus, A. Raux, T. K. Harris, M. Eskenazi, and A. I.

Rudnicky. 2007. Olympus: an open-source frame-
work for conversational spoken language interface re-
search. In Proceedings of the Workshop on Bridging
the Gap: Academic and Industrial Research in Dialog
Technologies, NAACL-HLT-Dialog ’07, pages 32–39,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

J. Bos, E. Klein, O. Lemon, and T. Oka. 2003. DIPPER:
Description and formalisation of an information-state
update dialogue system architecture. In 4th SIGdial
Workshop on Discourse and Dialogue, pages 115–124.

M. Buckley and C. Benzmüller. 2007. An agent-based
architecture for dialogue systems. In Proceedings of
the 6th international Andrei Ershov memorial confer-
ence on Perspectives of systems informatics, PSI’06,
pages 135–147, Berlin, Heidelberg. Springer-Verlag.

P. A. Crook and O. Lemon. 2010. Representing uncer-
tainty about complex user goals in statistical dialogue
systems. In Proceedings of the 11th SIGDIAL meeting
on Discourse and Dialogue, pages 209–212.

L. Getoor and B. Taskar. 2007. Introduction to Statistical
Relational Learning. The MIT Press.

M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean, and
C. Boutilier. 1998. Hierarchical solution of markov
decision processes using macro-actions. In Proceed-
ings of the 14th Conference on Uncertainty in Artifi-
cial Intelligence (UAI), pages 220–229.

M. Jaeger. 2001. Complex probabilistic modeling with
recursive relational bayesian networks. Annals of
Mathematics and Artificial Intelligence, 32(1-4):179–
220.

D. Koller and N. Friedman. 2009. Probabilistic Graphi-
cal Models: Principles and Techniques. MIT Press.

G.-J. Kruijff, P. Lison, T. Benjamin, H. Jacobsson, and
N. Hawes. 2007. Incremental, multi-level processing
for comprehending situated dialogue in human-robot
interaction. In Language and Robots: Proceedings
from the Symposium, Aveiro, Portugal, 12.

T. Lang and M. Toussaint. 2010. Planning with noisy
probabilistic relational rules. Journal of Artificial In-
telligence Research, 39:1–49.

S. Larsson and D. R. Traum. 2000. Information state and
dialogue management in the TRINDI dialogue move
engine toolkit. Natuarl Language Engineering, 6(3-
4):323–340, September.

C. Lee, S. Jung, K. Kim, and G. Geunbae Lee. 2010.
Hybrid approach to robust dialog management using
agenda and dialog examples. Computer Speech &
Language, 24(4):609 – 631.

P. Lison. 2012. Probabilistic dialogue models with prior
domain knowledge. In Proceedings of the SIGDIAL
2012 Conference, pages 179–188, Seoul, South Korea,
July.

M. Otterlo. 2012. Solving relational and first-order log-
ical markov decision processes: A survey. In Rein-
forcement Learning, volume 12 of Adaptation, Learn-
ing, and Optimization, pages 253–292. Springer Berlin
Heidelberg.

H. M. Pasula, L. S. Zettlemoyer, and L.P. Kaelbling.
2007. Learning symbolic models of stochastic do-
mains. Journal of Artificial Intelligence Research
(JAIR), 29(1):309–352, July.

J. Pineau. 2004. Tractable Planning Under Uncertainty:
Exploiting Structure. Ph.D. thesis, Robotics Institute,
Carnegie Mellon University, Pittsburgh, USA.

M. Richardson and P. Domingos. 2006. Markov logic
networks. Machine Learning, 62:107–136.

S. Ross, J. Pineau, B. Chaib-draa, and P. Kreitmann.
2011. A Bayesian Approach for Learning and Plan-
ning in Partially Observable Markov Decision Pro-
cesses. Journal of Machine Learning Research,
12:1729–1770.

D. Schlangen, T. Baumann, H. Buschmeier, O. Buß,
S. Kopp, G. Skantze, and R. Yaghoubzadeh. 2010.
Middleware for Incremental Processing in Conversa-
tional Agents. In Proceedings of the 11th SIGDIAL
meeting on Discourse and Dialogue.

V. Thomson and S. Young. 2010. Bayesian update
of dialogue state: A POMDP framework for spoken
dialogue systems. Computer Speech & Language,
24:562–588, October.

J. D. Williams and S. Young. 2007. Partially observable
markov decision processes for spoken dialog systems.
Computer Speech & Language, 21:393–422.

J. D. Williams, P. Poupart, and S. Young. 2008. Partially
observable markov decision processes with continuous
observations for dialogue management. In Laila Dy-
bkjr and Wolfgang Minker, editors, Recent Trends in
Discourse and Dialogue, volume 39 of Text, Speech
and Language Technology, pages 191–217. Springer
Netherlands.

J. D. Williams. 2008. The best of both worlds: Unify-
ing conventional dialog systems and POMDPs. In In-
ternational Conference on Speech and Language Pro-
cessing (ICSLP 2008), Brisbane, Australia.

J. D. Williams. 2010. Incremental partition recombi-
nation for efficient tracking of multiple dialog states.
In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pages 5382–5385.

N. Lianwen Zhang and D. Poole. 1996. Exploiting
causal independence in bayesian network inference.
Journal of Artificial Intelligence Research (JAIR),
5:301–328.

