A Method to Improve the Efficiency of Deep Parsers
with Incremental Chart Pruning

Pierre Lison
Language Technology Lab,
DFKI GmbH,
Saarbriicken, Germany

Abstract

The use of deep parsers in spoken dialogue
systems is usually subject to strong perfor-
mance requirements. Real-time dialogue
applications must be capable of respond-
ing quickly to any given utterance, even in
the presence of noisy, ambiguous or dis-
torted input. The parser must therefore en-
sure that the number of analyses remains
bounded at every processing step.

The paper presents a practical approach
to address this issue in the context of
deep parsers designed for spoken dia-
logue. The approach is based on a word
lattice parser for Combinatory Categorial
Grammar combined with a discriminative
model for parse selection. Each word
lattice is parsed incrementally, word by
word, and a discriminative model is ap-
plied at each incremental step to prune
the set of resulting partial analyses. The
model incorporates a wide range of lin-
guistic and contextual features and can be
trained with a simple perceptron. The
approach is fully implemented as part
of a spoken dialogue system for human-
robot interaction. Evaluation results on a
Wizard-of-Oz test suite demonstrate sig-
nificant improvements in parsing time.

1 Introduction

Developing robust and efficient parsers for spoken
dialogue is a difficult and demanding enterprise.
This is due to several interconnected reasons.

The first reason is the pervasiveness of speech
recognition errors in natural (i.e. noisy) environ-
ments, especially for open, non-trivial discourse
domains. Automatic speech recognition (ASR) is
indeed a highly error-prone task, and parsers de-
signed to process spoken input must therefore find

ways to accomodate the various ASR errors that
may (and will) arise.

Next to speech recognition, the second issue we
need to address is the relaxed grammaticality of
spoken language. Dialogue utterances are often
incomplete or ungrammatical, and may contain
numerous disfluencies like fillers (err, uh, mm),
repetitions, self-corrections, etc.

Finally, the vast majority of spoken dialogue
systems are designed to operate in real-time. This
has two important consequences. First, the parser
should not wait for the utterance to be complete
to start processing it — instead, the set of possi-
ble semantic interpretations should be gradually
built and extended as the utterance unfolds. Sec-
ond, each incremental parsing step should operate
under strict time constraints. The main obstacle
here is the high level of ambiguity arising in nat-
ural language, which can lead to a combinatorial
explosion in the number of possible readings.

The remaining of this paper is devoted to ad-
dressing this last issue, building on an integrated
approach to situated spoken dialogue processing
previously outlined in (Lison, 2008; Lison and
Kruijff, 2009). The approach we present here is
similar to (Collins and Roark, 2004), with some
notable differences concerning the parser (our
parser being specifically tailored for robust spoken
dialogue processing), and the features included in
the discriminative model.

An overview of the paper is as follows. We first
describe in Section 2 the cognitive architecture in
which our system has been integrated. We then
discuss the approach in detail in Section 3. Fi-
nally, we present in Section 4 the quantitative eval-
uations on a WOZ test suite, and conclude.

2 Architecture

The approach we present in this paper is fully
implemented and integrated into a cognitive ar-
chitecture for autonomous robots (Hawes et al.,

2007). It is capable of building up visuo-spatial
models of a dynamic local scene, and continuously
plan and execute manipulation actions on objects
within that scene. The robot can discuss objects
and their material- and spatial properties for the
purpose of visual learning and manipulation tasks.
Figure 1 illustrates the architecture schema for the
communication subsystem.
Mediation

{ toother P
modalities

<" Communication
subsystem

CroSs-i moda disc. referent bindings
bmqus dialogue move(s)

Speech signal
e

word

Speech lattice

even t structure
Working Dialogue
Memory Interpretation
logical form
Incrememal
Parslng

Figure 1: Architecture schema of the communica-
tion subsystem (only for comprehension).

Starting with ASR, we process the audio signal
to establish a word lattice containing statistically
ranked hypotheses about word sequences. Subse-
quently, parsing constructs grammatical analyses
for the given (partial) word lattice. A grammatical
analysis constructs both a syntactic analysis of the
utterance, and a representation of its meaning. The
analysis is based on an incremental chart parser!
for Combinatory Categorial Grammar (Steedman
and Baldridge, 2009). These meaning represen-
tations are ontologically richly sorted, relational
structures, formulated in a (propositional) descrip-
tion logic — more precisely in the HLDS formalism
(Baldridge and Kruijff, 2002). The incremental
build of derivational structures is realised within
the parser via type-raising and composition rules.

Once all the possible (partial) parses for a given
(partial) utterance are computed, they are filtered
in order to retain only the most likely interpreta-
tion(s). This ensures that the number of parses at
each incremental step remains bounded and avoid
a combinatorial explosion of the search space. The
task of selecting the most likely parse(s) among a
set of possible ones is called parse selection. We
describe it in detail in the next section.

At the level of dialogue interpretation, the logi-
cal forms are resolved against a dialogue model to
establish co-reference and dialogue moves.

Finally, linguistic interpretations must be as-

'Built using the OpenCCG API: http://openccg.sf.net

sociated with extra-linguistic knowledge about
the environment — dialogue comprehension hence
needs to connect with other subarchitectures like
vision, spatial reasoning or planning.

3 Approach

3.1 Parse selection

As we just explained, the parse selection module is
responsible for selecting at each incremental step
a subset of ”good” parses. Once the selection is
made, the best analyses are kept in the (CKY-like)
parse chart, while the others are discarded and
pruned from the chart.

To achieve this selection, we need a mechanism
to discriminate among the possible parses. This is
done via a (discriminative) statistical model cov-
ering a large number of features.

Formally, the task is defined as a function F' :
X —)Y where the domain X is the set of possible
inputs (in our case, X is the set of possible word
lattices), and Y the set of parses. We assume:

1. A function GEN(z) which enumerates all
possible parses for an input x. In our case,
the function represents the admissibles parses
according to the CCG grammar.

2. A d-dimensional feature vector f(x,y) €
R4, representing specific features of the pair
(x,y). It can include various acoustic, syn-
tactic, semantic or contextual features.

3. A parameter vector w € R¢.

The function F', mapping a word lattice to its
most likely parse, is then defined as:

F(x) = argmax w’ -f(z,7) (1)
yEGEN(z)

Given the parameters w, the optimal parse of a
given word lattice = can be therefore easily deter-
mined by enumerating all the parses generated by
the grammar, extracting their features, computing
the inner product w’ - f(x,v), and selecting the
parse with the highest score.

3.2 Learning

3.2.1 Training data

To estimate the parameters w, we need a set of
training examples. Since no corpus of situated di-
alogue adapted to our task domain is available to
this day — let alone semantically annotated — we

followed the approach advocated in (Weilhammer
et al., 2006) and generated a corpus from a hand-
written task grammar.

We first designed a small grammar covering our
task domain, each rule being associated to a HLDS
representation and a weight. Once specified, the
grammar is then randomly traversed a large num-
ber of times, resulting in a large set of utterances
along with their semantic representations.

3.2.2 Perceptron learning

The algorithm we use to estimate the parameters w
using the training data is a perceptron. The algo-
rithm is fully online - it visits each example in turn,
in an incremental fashion, and updates w if neces-
sary. Albeit simple, the algorithm has proven to be
very efficient and accurate for the task of parse se-
lection (Collins and Roark, 2004; Zettlemoyer and
Collins, 2007).

The pseudo-code for the online learning algo-
rithm is detailed in [Algorithm 1].

3.3 Features

As we have seen, the parse selection operates by
enumerating the possible parses and selecting the
one with the highest score according to the linear
model parametrised by w.

The accuracy of our method crucially relies on
the selection of “good” features f(z,y) for our
model - that is, features which help discriminating
the parses. In our model, the features are of four
types: semantic features, syntactic features, con-
textual features, and speech recognition features.

3.3.1 Semantic features

What are the substructures of a logical form which
may be relevant to discriminate the parses? We de-
fine features on the following information sources:
the nominals, the ontological sorts of the nom-
inals, and the dependency relations (following
(Clark and Curran, 2003)).

These features therefore help us handle various
forms of lexical and syntactic ambiguities.

3.3.2 Syntactic features

Syntactic features are features associated to the
derivational history of a specific parse. Along-
side the usual CCG rules (application, composi-
tion and type raising), our parser also uses a set
of non-standard (type-changing) rules designed to
handle disfluencies, speech recognition errors, and
combinations of discourse units by selectively re-
laxing the grammatical constraints (see (Lison and

Algorithm 1 Online perceptron learning

Require: - Set of n training examples {(x;,2;) : 4 = 1...n}

- For each incremental step j with 0 < j < |z;
we define the partially parsed word lattice z
and its gold standard semantics z;

- T": number of iterations over the training set

- GEN(z): function enumerating possible parses
for an input x, according to the CCG grammar.

- GEN(z, 2): function enumerating possible parses
for an input « and which have semantics z,
according to the CCG grammar.

- L(y) maps a parse tree y to its logical form.

- Initial parameter vector wo

s

% Initialise
W <— Wo

% Loop T times on the training examples
fort=1...T do
fori =1..ndo

9% Loop on the incremental parsing steps
for j = 0...|z;| and if z; not already updated do
% Compute best parse according to model
Lety = ATEMAX, N (at) w’ - f(zl,y)
% If the decoded parse # expected parse, update
the parameters of the model
if L(y') # =] then
% Search the best parse for the partial word
lattice x] with semantics z]
Lety™ = argmax

o T, J
yEGEN(zf ,z{) w f(zl ’ y)

% Update parameter vector w
Setw = w + £(al, ") — £(z].)
end if
end for

end for
end for

return parameter vector w

want

{wantl 1:cognition}

Mood:ind
& Tense:pres

{il1_1:person}

Num:sg

N
Patient
4 mug
{mugl_1:thing} you
1 1:
Delimitation:unique fyoul 1:person}
& Num:sg Num:sg
&Quantiﬁcatiun:speciﬁc/ N~

Figure 2: graphical representation of the HLDS
logical form for “I want you to take the mug”.

Kruijff, 2009) for details). In order to "penalise”
to a correct extent the application of these non-
standard rules, we include in the feature vector
f(z,y) new features counting the number of times
these rules are applied in the parse. In the deriva-
tion shown in the Figure 3, the rule corr (correc-
tion of a speech recognition error) is for instance
applied once.

cup
pick up O _the a1
s/particle/np particle S np/nnipn >
s/np

>

S

Figure 3: CCG derivation of “pick cup the ball”.

In the usual case, the perceptron will learn to as-
sign negative weights to the syntactic features dur-
ing the training process. In other words, these fea-
tures can be seen as a penalty given to the parses
using these non-standard rules, thereby giving a
preference to the “normal” parses over them. This
ensures that the grammar relaxation is only ap-
plied “as a last resort” when the usual grammatical
analysis fails to provide a parse.

3.3.3 Contextual features

One striking characteristic of spoken dialogue is
the importance of confext. Understanding the vi-
sual and discourse contexts is crucial to resolve
potential ambiguities and compute the most likely
interpretation(s) of a given utterance.

The feature vector f(x,y) therefore includes
various contextual features. Our dialogue system
notably maintains in its working memory a list of
contextually activated words (Lison and Kruijff,
2008). This list is continuously updated as the
dialogue and the environment evolves. For each
context-dependent word, we include one feature
counting its occurrence in the utterance.

3.3.4 Speech recognition features

Finally, the feature vector f(x,y) also includes
features related to the speech recognition. The
ASR module outputs a set of (partial) recognition
hypotheses, packed in a word lattice (Figure 4).

mug, P=0.95

now, P=0.6 inside, P=0.7

)/_ '\ put, P=1

no, P=0.4

this, P=0.6

site, P=0.2

mugs, P=0.05

in, P=0.3
O—%gs‘, P=1 :

these, P=0.4 Side, P=1

Figure 4: Example of word lattice

We want to favour the hypotheses with high
confidence scores, which are, according to the
statistical models incorporated in the ASR, more
likely to reflect what was uttered. To this end, we
introduce in the feature vector several acoustic fea-
tures measuring the likelihood of each recognition
hypothesis.

3.4 Incremental chart pruning

In the previous subsections, we explained how the
parse selection was performed, and on basis of
which features. We now briefly describe how it
can be used for incremental chart pruning.

The main idea is to specify a beam width pa-
rameter in the parser. This beam width defines the
maximal number of analyses which can be kept in
the chart at each incremental step. If the number
of possible readings exceeds the beam width, the
analyses with a lower parse selection score are re-
moved from the chart. Practically, this is realised
by removing the top signs associated in the chart
with the set of analyses to prune, as well as all the
intermediate signs which are included in these top
signs and are not used in any of the analyses re-
tained by the parse selection module.

The combination of incremental parsing and in-
cremental chart pruning provides two decisive ad-
vantages over classical, non-incremental parsers:
first, we can start processing the spoken inputs
as soon as a partial analysis can be outputted by
the ASR. Second, the pruning mechanism ensures
that each parsing step remains time-bounded. It
is therefore ideally suited for spoken dialogue sys-
tems used in human-robot interaction.

4 Experimental evaluation

We performed a quantitative evaluation of our ap-
proach, using its implementation in a fully inte-
grated system (cf. Section 2). To set up the
experiments, we gathered a Wizard-of-Oz cor-
pus of human-robot spoken dialogue for our task-
domain, segmented and annotated manually with
their expected semantic interpretation. The data
set contains 195 individual utterances 2 along with
their complete logical forms.

The results are shown in the Table 1. We tested
our approach for five different values of the beam
width parameter. The results are compared against
a baseline, which is the performance of our parser

“More precisely, word lattices provided by the ASR, con-
taining up to 10 alternative recognition hypotheses.

Average parsing

Exact-match Partial-match

Beam width time (in s.) Precision ‘ Recall [F-value || Precision ‘ Recall [F;-value
(Baseline) (none) 10.1 404 ; 100.0 57.5 81.4 ; 100.0 89.8
120 5.78 40.9 ;969 57.5 81.9 ; 98.0 89.2
60 4.82 41.1 925 56.9 81.7 941 87.4
40 4.66 39.9 I 88.1 54.9 79.6 1 91.9 85.3
30 4.21 41.0 I 83.0 54.9 80.2 I 88.6 84.2
20 4.30 40.1 l 80.3 53.5 78.9 l 86.5 82.5

Table 1: Evaluation results (in seconds for the parsing time, in % for the exact- and partial-match).

without chart pruning. For each configuration, we
give the average parsing time, as well as the exact-
match and partial-match results (in order to verify
that the performance increase is not cancelled by
a drop in accuracy). We observe that the choice
of the beam width parameter is crucial. Above
30, the chart pruning mechanism works very ef-
ficiently — we observe a notable decrease in the
parsing time without significantly affecting the ac-
curacy performance. Below 30, the beam width is
too small to retain all the necessary information in
the chart, and the recall quickly drops.

5 Conclusions

In this paper, we presented an original method to
improve the efficiency of deep parsers (in partic-
ular, parsers for categorial grammars) with an in-
cremental chart pruning mechanism used to limit
at every processing step the number of analyses
retained in the parse chart.

The incremental chart pruning mechanism is
based on a discriminative model exploring a set of
relevant semantic, syntactic, contextual and acous-
tic features extracted for each parse. At each in-
cremental step, the discriminative model yields a
score for each resulting parse. The parser then
only retains in its chart the set of parses associated
with a high score, the others being pruned.

As forthcoming work, we shall examine the ex-
tension of our approach in new directions, such
as the introduction of more refined contextual fea-
tures or the use of more sophisticated learning al-
gorithms such as Support Vector Machines.

6 Acknowledgements

This work was supported by the EU FP7 ICT In-
tegrated Project “CogX” (FP7-ICT- 215181).

References

J. Baldridge and G.-J. M. Kruijff. 2002. Coupling
CCG and hybrid logic dependency semantics. In

ACL’02: Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics,
pages 319-326, Philadelphia, PA. Association for
Computational Linguistics.

S. Clark and J. R. Curran. 2003. Log-linear models
for wide-coverage ccg parsing. In Proceedings of
the 2003 conference on Empirical methods in nat-
ural language processing, pages 97-104, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

M. Collins and B. Roark. 2004. Incremental parsing
with the perceptron algorithm. In ACL ’04: Pro-
ceedings of the 42nd Annual Meeting of the Associ-
ation for Computational Linguistics, page 111, Mor-
ristown, NJ, USA. Association for Computational
Linguistics.

N. A. Hawes, A. Sloman, J. Wyatt, M. Zillich, H. Ja-
cobsson, G.-J. M. Kruijff, M. Brenner, G. Berginc,
and D. Skocaj. 2007. Towards an integrated
robot with multiple cognitive functions. In Proc.
AAAI’07, pages 1548—-1553. AAAI Press.

P. Lison and G.-J. M. Kruijff. 2008. Salience-driven
contextual priming of speech recognition for human-
robot interaction. In Proceedings of the 18th Eu-

ropean Conference on Artificial Intelligence, Patras
(Greece).

P. Lison and G.-J. M. Kruijff. 2009. An integrated
approach to robust processing of situated spoken di-
alogue. In Proceedings of the International Work-
shop on Semantic Representation of Spoken Lan-
guage (SRSL’09), Athens, Greece. (to appear).

P. Lison. 2008. Robust processing of situated spo-
ken dialogue. Master’s thesis, Universitdt des
Saarlandes, Saarbriicken. http://www.dfki.de/~
plison/pubs/thesis/main.thesis.plison2008.pdf.

M. Steedman and J. Baldridge. 2009. Combinatory
categorial grammar. In Robert Borsley and Ker-
sti Borjars, editors, Nontransformational Syntax: A
Guide to Current Models. Blackwell, Oxford.

K. Weilhammer, M. N. Stuttle, and S. Young. 2006.
Bootstrapping language models for dialogue sys-
tems. In Proceedings of INTERSPEECH 2006,
Pittsburgh, PA.

L. S. Zettlemoyer and M. Collins. 2007. Online learn-
ing of relaxed CCG grammars for parsing to logi-
cal form. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 678—687.

