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Abstract

The paper presents work in progress on an implemented
model of situated dialogue processing. The underlying as-
sumption is that to understand situated dialogue, communi-
cated meaning needs to be related to situation(s) it refers to.
The model couples incremental processing to a notion of bidi-
rectional connectivity, inspired by how humans process visu-
ally situated language. Analyzing an utterance in a ”word-
by-word” fashion, a representation of possible utterance in-
terpretations is gradually built up. In a top-down fashion,
the model tries to ground these interpretations in situation
awareness, through which they can prime what is focused
on in a situation. In a bottom-up fashion, the (im)possibility
to ground certain interpretations primes how the analysis of
the utterance further unfolds. The paper discusses the imple-
mentation of the model in a distributed, cognitive architecture
for human-robot interaction, and presents an evaluation on a
test suite. The evaluation shows (and quantifies) the effects
linguistic interpretation have on priming incremental utter-
ance processing, and discusses how such evaluation can be
extended to include situation-relative interpretation.

Introduction
The environments in which we deploy our robots provide
them with rich, perceptual experiences. And language pro-
vides a combinatoric system that enables us to talk about
those environments in a rich variety of ways. The problem
is of course then how we can figure out, what an utterance
really is supposed to mean in a given context. From psy-
cholinguistics and cognitive science we know that humans
use context information to do this. Humans do not wait
with processing an utterance until they have heard the end
of it. On the contrary. While processing an utterance, they
link unfolding interpretations to the dialogue- and situated-
context to filter out unlikely interpretations. They use their
understanding of the situational context to disambiguate and
refine how they comprehend an utterance, and at the same
time use what is being talked about to selectively refine their
situation awareness. Using context, they pick those mean-
ings out of the myriad of possible meanings, to focus on
just those that seem most appropriate in the given context
(Altmann and Steedman, 1988; Altmann and Kamide, 2004;
Knoeferle and Crocker, 2006).

In this paper, we discuss an implemented model that en-
ables a robot to understand situated dialogue in a similar
way. The model relies on explicitly grounding dialogue in
the situated context. The main idea is to use anincremental
model for dialogue analysis, and connect step-by-step the
unfolding possiblelinguistic interpretations of an utterance
to information about the visually situated context. From this
interconnection we can then derive what visual objects are
being talked about, and whether the way these referents are
referred to, and put into relation, can be grounded in the
situated context. We use insights from psycholinguistics
in postulating what factors in the visually situated context
might play a role (Altmann and Steedman, 1988; Altmann
and Kamide, 2004; Knoeferle and Crocker, 2006), and how
they affect priming of utterance processing.

Our approach is related to other recent work on incremen-
tal language processing for dialogue systems (Allen et al.,
1996; Mori et al., 2001; Rosé et al., 2002), and for human-
robot interaction (Brick and Scheutz, 2007) (B&S). Like
B&S we analyze an utterance for its meaning, not just for
syntactic structure (Allen et al., 1996; Mori et al., 2001;
Rośe et al., 2002). We make several advances, though. The
model incrementally analyzes utterance meaning not only at
the grammatical level, but also at dialogue level. B&S only
consider the former (parsing). By interpreting an utterance
also relative to the dialogue context, the model allows dif-
ferent levels of linguistic description to constrain possible
interpretations (Altmann and Steedman, 1988; Stone and
Doran, 1997). This presents several advantages. We can
(linguistically) resolve contextual references such as deictic
pronouns and anaphora. This resolution relates references
made in the current utterance to ones made already earlier
in the dialogue – i.e., ultimately to visual objects that have
already been identified. Furthermore, we can use the dia-
logue ”move” of the utterance to determine whatneedsto
be bound. For example, in a greeting like ”Hi there!” the
model does not need to try and bind ”there” to a location.

A further advance is that we adopt a ”packed” represen-
tation of the linguistic interpretations (Oepen and Carroll,
2000; Carroll and Oepen, 2005) to efficiently handle alterna-



tive (i.e. ambiguous) meanings. Any grammar of a reason-
able size will generate multiple syntactic-semantic analyses
of an utterance. This can easily result in hundreds of alterna-
tive analyses that would need to be checked. A packed repre-
sentation represents all the information shared across alter-
native analyses onlyonce, which greatly reduces the amount
of linguistic content we need to ground. These packed rep-
resentations are subsequently related to information about
the situation and ongoing tasks (Allen et al., 2001; DeVault
and Stone, 2003; Gorniak and Roy, 2007). This essentially
comes down to trying to resolve how a meaning refers to the
current context (Stone and Doran, 1997; Brick and Scheutz,
2007). Intuitively, if a meaning presents an unresolvable ref-
erence, or an unresolvable assertion about spatial organiza-
tion, then it can be discarded.

An overview of the paper is as follows. We start by pro-
viding a brief overview of insights of how humans process
situated utterances, and position our approach to other work
in AI and HRI. We then present our approach. We discuss its
implementation using the CoSy Architecture Schema toolkit
(Hawes et al., 2007a; Hawes et al., 2007b). Using a test suite
with a variety of visual scenes, we evaluate our approach in
a systematic way on different types of potential linguistic
ambiguity. We measure the effects of linguistic understand-
ing on priming utterance processing. The paper closes with
conclusions.

Background
The combinatorial nature of language provides us with virtu-
ally unlimited ways in which we can communicate meaning.
This, of course, raises the question of how precisely an ut-
terance should then be understood as it is being heard. Em-
pirical studies in various branches of psycholinguistics and
cognitive neuroscience have investigated what information
listeners use when comprehending spoken utterances. An
important observation across these studies is that interpreta-
tion in contextplays a crucial role in the comprehension of
utterance as it unfolds. Following (Knoeferle and Crocker,
2006) we can identify two core dimensions of the interac-
tion between linguistic context and situated context. One is
thetemporal dimension. Attentional processes in situational
perception appear to be closely time-locked with utterance
comprehension. This can be witnessed by for example eye
movements. The second is theinformation dimension. This
indicates that listeners not only use linguistic information
during utterance comprehension, but also scene understand-
ing and ”world knowledge.” Below we discuss aspects of
these dimensions in more detail.

Multi-level integration in language processing
Until the early 1990s, the dominant model of language com-
prehension was that of a modular, stage-like process; see
for example (Fodor, 1983). On this model, a language user
would sequentially construct each level of linguistic com-

prehension – from auditory recognition all the way to prag-
matic, discourse-level interpretation. As (Van Berkum et al.,
2003) observe, two hypotheses followed from this view.
Firstly, people first construct a local, context-independent
representation of the communicated meaning, before this
meaning is interpreted against the preceding discourse con-
text. Secondly, and related, is the hypothesis that discourse
context-related processing only enters the process of lan-
guage comprehension at a relatively late stage.

Opposing these hypotheses is the view that language com-
prehension is an incremental process, in which each level of
linguistic analysis is performed in parallel. Every new word
is immediately related to representations of the preceding
input, across several levels – with the possibility for using
the interpretation of a word at one level to co-constrain its
interpretation at other levels. A natural prediction that fol-
lows from this view is that interpretation against dialogue
context can in principle affect utterance comprehensionas
the utterance is incrementally analyzed, assisting in restrict-
ing the potential for grammatical forms of ambiguity. (Crain
and Steedman, 1985; Altmann and Steedman, 1988) phrased
this as aprinciple of parsimony: those grammatical analy-
ses are selected that for their reference resolution impose the
least presuppositional requirements on a dialogue context.

Since then, various studies have investigated further pos-
sible effects of dialogue context during utterance compre-
hension. Methodologically, psycholinguistic studies have
primarily investigated the effects of dialogue context by
measuringsaccadic eye movementsin a visual scene, based
on the hypothesis that eye movements can be used as indi-
cations of underlying cognitive processes (Tanenhaus et al.,
1994; Liversedge and Findlay, 2000). Alternatively, cogni-
tive neuroscience-based studies use event-related brain po-
tentials (ERPs) to measure the nature and time course of the
effects of discourse context on human sentence comprehen-
sion (Van Berkum, 2004).

Both lines of study have found that lexical, semantic and
discourse-level integrative effects occur in a closely time-
locked fashion, starting already at the phoneme or sub-word
level; (Allopenna et al., 1998), and (van Berkum et al.,
1999b; Van Berkum et al., 2003; Van Petten et al., 1999).
Particularly, a range of discourse-level integrative effects
have observed. Referential binding has been shown to play
a role in the constraining various types of local syntac-
tic ambiguities, like garden path-constructions (Crain and
Steedman, 1985; Altmann and Steedman, 1988; Altmann,
1988), and relative clauses (Spivey et al., 1993; Spivey and
Tanenhaus, 1998); (van Berkum et al., 1999a; van Berkum
et al., 1999b; Van Berkum et al., 2003). These effects pri-
marily concern adisambiguationof already built structures.
Integrating semantic and discourse-level information dur-
ing utterance comprehension also has importantanticipa-
tory effects. (Tanenhaus et al., 2000; Dahan and Tanenhaus,
2004); (Van Berkum et al., 2005) observe how contextual



information influences what lexical meanings can be antic-
ipated, priming phonological understanding and lexical ac-
cess. (Contextual information can even override disprefered
lexical meaning (Nieuwland and Van Berkum, 2006).)

Anticipatory effects indicate that utterance comprehen-
sion is thus not only an incremental process of construct-
ing and then disambiguating. Anticipation enables context-
dependent phonological recognition, lexical retrieval, and
syntactic construction - without there being a need to gen-
erate and test all combinatory possible constructions. Incre-
mentality and anticipation based on multi-level integration
appears to give rise to a process in which comprehension
arises through a convergence based on constraining and co-
activation. Discourse context and the interpretative contexts
which are delineated during utterance comprehension con-
verge to become functionally identical (Van Berkum et al.,
2003). As a result, ambiguity need not even arise, or is at
least being much more limited a priori through context.

An important issue in all of the above remains of course
the degree to which integrative effects indeed should commit
to a certain understanding. Garden path sentences are a good
example. They show that overcommitment risks the need for
re-interpretation – an issue forcognitive control(Botvinick
et al., 2001; Hommel et al., 2002; Novick et al., 2005).

Language processing and situational experience

We already noted before that human language processing in-
tegrateslinguisticandnon-linguisticinformation. Below we
discuss studies which investigate how categorical and con-
textual information from situated experience can effect ut-
terance comprehension. These studies use eye-trackers to
monitor where people look at in a scene, and when.

Figure 1: Mouse,
cheese, cat

(Altmann and Kamide,
1999) present a study reveal-
ing that listeners focus their
attention on objects before
these objects are referred to
in the utterance. Figure 1
illustrates the setup of the
study. When someone hears
”The cat chases the mouse”,
her gaze already moves to the
mouse in the scene before she
has actually heard that word;
similarly for ”The mouse eats the cheese.” Knowing that
cats typically chase mice (not cheese), and that the argument
structure ofchasereflects this, the listenerexpectsthat the
next object to be mentioned will be the mouse, and directs
gaze to that object. We thus see an anticipatory effect arising
from the online integration of lexico-semantic information
(verbal argument structure), situational context (the present
objects, and the intended action), and categorical knowledge
(prototypical object-action relations).

Figure 2: Put, ap-
ple, towel, box

Not only world knowledge can
influence online utterance com-
prehension, also scene under-
standing can. For example, con-
sider the situation in Figure 2.
(Tanenhaus et al., 1994) show
that, once the listener has heard
”Put the apple on the towel
...” she faces the ambiguity of
whether to put the (lone) apple
onto the (empty) towel, or to take
the apple that is on the towel and
put it somewhere else. The ambiguity is revealed as visual
search in the scene. Only once she has heard the continu-
ation ”... into the box” this ambiguity can be resolved. In-
terestingly, in (Tanenhaus et al., 1994) the listener cannot
directly manipulate the objects. If this is possible (cf. Fig-
ure 2), (Chambers et al., 2004) show that also reachability
plays a role in comprehending the utterance. Because only
one apple is reachable, this is taken as the preferred referent,
and as such receives the attention. This underlines the effect
physical embodimentmay have on language comprehension.

Scene understanding also concerns thetemporal projec-
tion towards possible future events (Endsley, 2000). (Alt-
mann and Kamide, 2004; Kamide et al., 2003) show how
such projection can also affect utterance comprehension.
These studies used a scene with a table, and besides it a
glass and a bottle of wine, as illustrated in Figure 3 (left).
Investigated was where listeners look when they hear ”The
woman will put the glass on the table. Then, she will pick
up the wine, and pour it carefully into the glass.” It turns out
that after hearing the ”pouring” phrase, listeners look at the
table, not the glass. Listeners thus explicitly project the re-
sult of the picking action into the scene, imagining the scene
Figure 3 (right).

Figure 3: Pouring, wine, glass, table

These stud-
ies reveal that
the interaction
between vision
and language
is not direct,
but mediated
(Altmann and
Kamide, 2004).
Categorical
understanding
plays an important role in the sensorimotoric grounding
of language. This is further underlined by studies like
(Glenberg and Kaschak, 2002; De Vega et al., 2004),
following up on the idea of category systems as mediating
between perceptual modalities and language (Glenberg,
1997; Barsalou, 1999). These studies show how categorical
understanding gives rise to expectations based on affor-
dances, influencing comprehension of spatial or temporal



aspects of action verbs.
In conversational dialogue (Hadelich and Crocker, 2006;

Pickering and Garrod, 2004) gaze has been shown to be au-
tomatically aligned in simple collaborative interaction. The
time intervals between eye-fixations during production and
comprehension of a referring expression are shorter than in
monologue. This is further evidence for the relevance of
visual common ground of interlocutors and how that accel-
erates the activation of jointly relevant concepts.

Situated language processing in AI/HRI

Studies on how humans process visually situated dialogue
show an important aspect of ”grounding” is based on how
we can resolve a visual referent for an object reference.
In establishing referents, listeners use visual and spatio-
temporal properties of objects, and combine these properties
with various forms of salience.

Several approaches have been proposed for visual refer-
ent resolution in human-robot interaction, in relation to lan-
guage processing. Gorniak & Roy (Gorniak and Roy, 2004;
Gorniak and Roy, 2005) present an approach in which utter-
ance meaning is probabilistically mapped to visual and spa-
tial aspects of objects in the current scene. Recently, they
have extended their approach to include action-affordances
(Gorniak and Roy, 2007). Their focus has primarily been on
the grounding aspect, though. Although they use an incre-
mental approach to constructing utterance meaning, ground-
ing meanings in the social and physical context as they are
construed, the (im)possibility to ground alternative mean-
ings does not feed back into the incremental process to
prune inviable analyses. This is where they differ from
e.g. Scheutz et al (Scheutz et al., 2004; Brick and Scheutz,
2007). Scheutz et al present a model for incremental ut-
terance processing in which the analyses are pruned if it is
impossible to find visual referents for them.

Our approach to incremental language analysis is closely
related to that of Scheutz et al. We incrementally build up a
representation of utterance meanings, in parallel to syntactic
analyses (Steedman, 2000). In this we (jointly) differ from
other approaches such as (Allen et al., 1996; Mori et al.,
2001; Rośe et al., 2002), who only build syntactic analy-
ses. We advance on Scheutz et al in several ways, though.
We analyze utterance meaning incrementally not only at the
level of grammar, but also relative to the structure of the
dialogue context. This allows different levels of linguistic
description to constrain possible interpretations (Stone and
Doran, 1997). Furthermore, we do not deal with individ-
ual analyses, but with a ”packed” representation (Oepen and
Carroll, 2000; Carroll and Oepen, 2005) to handle linguis-
tic ambiguity. Ambiguity is inherent in natural language.
Often, parts of an utterance may be understood in different
ways. Packing provides an efficient way to represent ambi-
guity. Parts shared across different analyses are represented
only once, and ambiguities are reflected by different ways

in which such parts can be connected. These packed repre-
sentations are subsequently related to information about the
(possibly dynamic) situation (Kruijff et al., 2006) and on-
going tasks (Allen et al., 2001; DeVault and Stone, 2003;
Brenner et al., 2007; Gorniak and Roy, 2007). Should a pos-
sible meaning turn out to present an unresolvable reference,
we discard it from the set of analyses the parser maintains.

Approach
Our approach has been implemented as part of an artifi-
cial cognitive architecture, built using the CoSy Architecture
Schema Toolkit (CAST) (Hawes et al., 2007a; Hawes et al.,
2007b). For the purpose of this paper, we focus on an archi-
tecture consisting of subsystems for visual and spatial pro-
cessing of the situation, for interconnecting (”grounding”)
content across subsystems, and for dialogue processing.

In CAST, we conceive of a cognitive architecture as a dis-
tributed collection of subsystems for information processing
(Hawes et al., 2007a; Hawes et al., 2007b). Each subsystem
consists of one or more processes, and a working memory.
The processes can access sensors, effectors, and the work-
ing memory to share information within the subsystem. We
divide processes into unmanaged, data-driven and managed,
goal-driven processes. A data-driven process writes infor-
mation onto the working memory in an ”unmanaged” fash-
ion, typically whenever that information becomes available
(e.g. from a sensor). A goal-driven process performs a spe-
cific type of interpretation of information available in work-
ing memory. This is a ”managed” process controlled by the
subarchitecture’s task manager. The task manager decides
when a goal process may, or may not, carry out its process-
ing. This enables the subarchitecture to synchronize various
forms of information processing.

Figure 4: Abstract organization of a subarchitecture

Subsystems can also share information with other subsys-
tems. We do this by monitoring a working memory of an-
other subsystem, and reading/writing content to it.



Typically, a subsystem uses its own representation for-
mats to deal most efficiently with the data it needs to handle.
For example, the visual working memory contains regions of
interest generated by a segmentor and proto-objects gener-
ated by interpreting these regions, whereas the dialogue sub-
system contains logical forms generated from parsing utter-
ances, and spatial reasoning maintains abstractions of phys-
ical objects with qualitative spatial relationships between
them.

In our overall system, we have subsystems for vision,
dialogue processing, manipulation, spatial reasoning (local
scenes as well as multi-level maps), planning, coordination,
and binding (used for symbol grounding). Several instantia-
tions of this system have been described elsewhere (Hawes
et al., 2007a; Brenner et al., 2007; Kruijff et al., 2007). To-
gether, these subsystems create a system that can learn and
communicate about objects and spatial locations with a user,
and perform manipulation and navigation tasks.

Figure 5: Dialogue processing (comprehension part)

Figure 5 illustrates the comprehension side of our dia-
logue processing subsystem.1 (The numbers in the text refer
to the round, blue labels in the figure.)

For speech recognition we use Nuance v8.5, to which the
subsystem connects over a SIP connection. This enables us
to use any number of microphones to ”speak” to the robot
– enabling both face-to-face and remote dialogue. Using an
8-microphone array on the robot we can do basic forms of
noise cancellation and speaker localization. Speech recog-
nition stores a recognition result on working memory in the
form of a best string. Once this information becomes avail-

1Most of the indicated processes have been implemented at the
time of writing. Under construction are stillsemantic integration
andIS i.e. information structure resolution.

able, an incremental parsing process is triggered.
We have factorized (incremental) parsing into several, in-

terconnected functions: the incremental parsing process it-
self (1), packing/unpacking and pruning of incrementally
construed analyses of utterance meaning (2), and context-
sensitive lexical retrieval (3). Parsing is based on a bottom-
up Early chart parser (Sikkel, 1999) built for incremen-
tally parsing Combinatory Categorial Grammar (Steedman,
2000; Baldridge and Kruijff, 2003). Its implementation re-
lies on basic functionality provided by OpenCCG2.

Incremental chart parsing creates partial, and integrated
analyses for a string in a left-to-right fashion. As each
word in the utterance is being scanned, the parser retrieves
from the lexicon (3) a set of lexical entries. A lexical entry
specifies for a word all its possible syntactic and semantic
uses. During parsing, this information is used to integrate
the word into possible analyses. By factorizing out lexical
retrieval we have made it possible to use information about
the situated- and task-context to restrict what lexical mean-
ings are retrieved (”activated”) for a word. After each word,
the parser’s chart maintains one or more possible analyses
in parallel. These analyses represent the syntactic and se-
mantic structure built for the utterance so far, and indicate
possible ways in which these analyses can be continued by
means of open arguments.

Figure 6: Logical form ”I want you to take the mug”

Semantic structure is represented as an ontologically
richly sorted, relational structure – a logical form (Baldridge
and Kruijff, 2002). Figure 6 gives an example of a log-
ical form (system output). Each node has a unique iden-
tifier with an associated ontological sort (e.g.t1 of sort
action−motion), and a proposition (e.g.take). Nodes are
connected through named relations. These indicate how the
content of a single node contributes to the meaning of the
whole expression. For example, ”you” (y1) both indicates
the one whom something is wanted of (Patient-relation from

2http://openccg.sf.net



w1), and the one who is to perform the taking action (Actor-
relation fromt1). Nodes carry additional features, e.g.i1
identifies a singular person.

After each step in incremental parsing, the current set of
logical forms is packed to create a more efficient represen-
tation for computing with logical forms (Oepen and Carroll,
2000; Carroll and Oepen, 2005). Figure 7 illustrates the de-
velopment of the packed packed representation for ”take the
mug”. At the first step (”take”), 6 logical forms are packed
together, showing we essentially have two alternative inter-
pretations: ”take” as an action, and as part of the expression
”take a look.” The second step (”take the”) makes it clear
we only need to look at the action-interpretation. The pos-
sible meanings for the determiner is expressed at the node
for the Patient. At this point we have anoverspecifiedmean-
ing. Although the delimination is unique, we cannot tell at
this point whether we are dealing with a singular object, or
a non-singular (i.e. plural) object – all we know it has to be
one or the other. This becomes determined in the third step
(”take the mug”).

Figure 7: Example packed logical forms

Once the parser has created a packed representation, this
is provided to the working memory. At this point, sev-
eral processes for dialogue interpretation further interpret
the representation, by providing discourse referents for the
objects and events in the logical forms (4) and trying to con-
nect the utterance to the preceding dialogue context in terms
of rhetorical relations and dialogue moves (Asher and Las-
carides, 2003). The resulting interpretations are related to
the packed logical forms through ”caches”. A cache is a rep-
resentation in which content is associated with other content,
maintaining a mapping between unique keys in the two con-
tent representations. By using caches on top of the packed
logical forms, we achieve a scalable approach for multi-level
dialogue interpretation.

The packed logical forms, together with any dialogue-
level interpretation of the content, is then provided to sub-
systems for extra-linguistic interpretation (8–10) (see be-
low). The result of such interpretation is one or more pref-
erence orders over the interpretations representation by the
packed logical forms. Technically, a scoring function is

a partial order over substructures in packed logical forms.
We can define ensembles over these functions to integrate
their preferences, as e.g. suggested in (Kelleher, 2005) for
salience functions. Before each next parsing step, packed
logical forms are then pruned based on scoring ensembles,
and the parse chart is updated.

In the architecture discussed here we rely for visual ref-
erent resolution on a grounding process calledbinding. The
basic idea is illustrated in Figure 8. Each subsystem can have
a binding monitor, which is a process that monitors the sub-
system’s working memory. Every time the working mem-
ory contains content that could be connected to content in
other modalities, the binding monitor translates this content
using a mapping between the subsystem’s own representa-
tional formalism, and anamodalformat used in the binding
subsystem. This is based on the idea of ontology-mediated
information fusion, cf. (Kruijff et al., 2006).

The resulting representation is then written to the working
memory in the binding subsystem. There it acts as aproxy–
namely, as a proxy for content in the originating subsystem.
The binding subsystem now applies strategies to combine
proxies with similar content, but coming from different sub-
systems. Proxies can then be combined form unions. The
power of the binding mechanism is that we can use a mix-
ture of early- and late-fusion, and represent content at any
level of abstraction.

Figure 8: Cross-modal interconnectivity

Particularly, proxies from an individual subsystem can
form relational structures. We thus can represent ”the blue
mug” as a single proxy, as well as ”the blue mug next to the
red box” as a relational structure connecting two proxies.
Like individual proxies, the binder will try to connect rela-
tional structures – and either succeeding in doing so, e.g. if
there is a blue mug next to the red box, or failing. This is
crucial for situated dialogue processing (cf. also (Scheutz
et al., 2004; Brick and Scheutz, 2007)).

Once we have a packed representation of logical forms,
alternative relational structures are presented as proxies to
the binding subsystem. By monitoring which relational
structures can be bound into unions, and which ones can-
not, we can prune the set of logical forms we maintain for
the next step(s) in incremental parsing. We thus handle ex-
amples such as those discussed in (Brick and Scheutz, 2007)
through an interaction between our binding subsystem, and
the subsystem for dialogue processing.



Evaluation
Below we present preliminary results of an evaluation of the
system. At the time of writing, we can only present statisti-
cal results evaluating the linguistic aspects of our processing
model – not for the impact cross-modal binding has on lin-
guistic processing. We do describe below how we will be
able to statistically evaluate the impact of binding.

Design & measures
We have designed a set of eleven visual scenes, in which
we can systematically vary the potential ambiguity of a vi-
sual object relative to specific types of referring expressions.
Figure 9 gives an example of such a scene. Assuming we are
looking at the scene from the robot’s viewpoint, expressions
such as ”the blue thing” or ”the blue ball” uniquely refer
to the blue ball (with identifierb2). If we furthermore take
e.g. visual and topokinetic salience into account, the refer-
ring expression ”the mug” in ”take the mug” has a strong
preference for the red mug (m1) as being the visual referent
(the white mug (m2) being less visually salient, and unreach-
able).

Figure 9: Sample visual scene

For these scenes, we have formulated a total of 58 utter-
ances. These utterances express either commands (”put the
mug to the left of the ball”) or assertions (”the mug is red”).
The utterances vary in length, with a distribution as given in
Table 1. The (weighted) average length of the utterances in
the evaluation is 6.07 words.

The utterances include referring expressions, which may
be ambiguous relative to the scene for which they have been
formulated. This enables us to investigate the interplay be-
tween different forms of ambiguity. First, we want to ex-
plore to what degree we can resolve purely linguistic ambi-
guity (notably, syntactic PP-attachment ambiguities) against
non-ambiguous situations. Second, we want to evaluate to
what degree ambiguity in situation awareness can be re-
solved through non-ambiguous linguistic meaning – or, if
both would be ambiguous, to what degree we can still re-
duce the ambiguity. By systematically varying the ambigu-
ity in the scenes, and in the structure of the utterances, we
can properly evaluate these factors.

In the experiment, we have used two incremental parsers.
One is the incremental parser which uses grammatical

length # utterances
16 1
14 2
13 2
12 4
11 7
10 4
9 3
8 5
7 4
6 5
5 11
4 10

Table 1: Distribution of #utterances over lengths

knowledge to prune analyses during parsing (”pruning”).
The other parser does not do any pruning, and functions as
baseline (”baseline”). Below we show results of the pruning
parser relative to the baseline performance.

Results
We present here results that measure the improvements the
pruning parser makes over the baseline in terms of num-
ber of final analyses, the size of the resulting packed logical
form, and time to obtain all complete analyses. The first two
aspects measure memory use. Memory use is a factor that
has an important impact on situated grounding of language.
The fewer analyses, and the smaller the packed logical form,
the lessvarying (or ambiguous) information we need to try
and bind to information in other modalities.

Figure 10: Number of final analyses (baseline, pruning)

Figure 10 shows a bar chart of the number of final analy-



ses produced by the baseline parser (light-blue, left) and the
pruning parser (red, right). Using weighted averages, we get
a 65.92% improvement of the pruning parser over the base-
line. This improvement is statistically significant (one-way
analysis of variance, F value = 27.036, Pr> 0.001).

Figure 11: Number of final packed LF size (baseline, prun-
ing)

If we look at the variation in size of the packed logical
forms, we see a similar improvement. Figure 11 plots the
sizes of the resulting packed logical forms against the utter-
ance length, for the two parsers. This shows a 49.87% im-
provement of the pruning parser over the baseline (weighted
average). Again, this result is statistically significant (one-
way analysis of variance, F value=6.5283, Pr>0.01).

Figure 12 gives the results for time to parse completion,
for the pruning parser and the baseline. On a weighted av-
erage, the pruning parser presents a 6.04% over the baseline
(statistically significant, F value = 115.40, Pr> 0.001).

Discussion
The results show improvements of the pruning parser over
the baseline in terms of memory use, and in time to comple-
tion. We have obtained these improvements on a data set of
58 utterances of varying complexity – not on isolated exam-
ples – and shown them to be statistically significant.

These results are in and by themselves not surprising –
if a parser does pruning, it should do better than a baseline
which does not. What is more interesting in the light of
situated dialogue processing is that, even when we do use
grammatical knowledge to select analyses, this may still not
be enough to reduce the final number of analyses to 1. If that

Figure 12: Time (ms) to parse completion (baseline, prun-
ing)

were the case, then there would be no need to use ground-
ing in the situation. On the data set we have used, we have
a (weighted) average of 2.71 final analyses for the pruning
parser (against a weighted average of 10.77 for the baseline).

Our next step is to evaluate our system, including the vi-
sual scenes on which the utterances have been formulated.
The system enables us to prune analyses based on what con-
tent in a packed logical form can (or cannot) be grounded in
situation awareness.

Conclusions

We presented work on an implemented model of situated
dialogue processing. The model is based on the idea that
to understand situated dialogue, linguistic meaning needs
to be coupled to the situated context. Processing dialogue
incrementally, information about the dialogue- and situated
context can help at each step to focus the linguistic analy-
sis. The implemented has been evaluated on a data set of 58
utterances formulated on 11 different visual scenes. Investi-
gating the effects of using linguistic knowledge, the results
show that using such knowledge can greatly improve the per-
formance of an incremental parser, but cannot fully reduce
linguistic ambiguity. This confirms the need for including
information about the situated context to further reduce that
ambiguity. We are currently planning follow-up evaluations
that will investigate these effects further.
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