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Abstract. The paper presents an implemented model for prim-
ing speech recognition, using contextual information about salient
entities. The underlying hypothesis is that, in human-robot interac-
tion, speech recognition performance can be improved by exploiting
knowledge about the immediate physical situation and the dialogue
history. To this end, visual salience (objects perceived in the physical
scene) and linguistic salience (objects, events already mentioned in
the dialogue) are integrated into a single cross-modal salience model.
The model is dynamically updated as the environment changes. It
is used to establish expectations about which words are most likely
to be heard in the given context. The update is realised by continu-
ously adapting the word-class probabilities specified in a statistical
language model. The paper discusses the motivations behind the ap-
proach, and presents the implementation as part of a cognitive archi-
tecture for mobile robots. Evaluation results on a test suite show a sta-
tistically significant improvement of salience-driven priming speech
recognition (WER) over a commercial baseline system.

1 Introduction

Service robots are becoming more and more sophisticated. In many
cases, these robots must operate in open-ended environments and in-
teract with humans using spoken natural language to perform a vari-
ety of service-oriented tasks. This has led to an increasing interest in
developing dialogue systems for robots [28, 15, 23]. A fundamental
challenge here is, how the robot can situate the dialogue: The robot
should be able to understand what is being said, and how that relates
to the physical situation [20, 25, 26, 11].

The relation between language and experience is often character-
ized as being bi-directional (cf. [14]). That is, language influences
how to perceive the environment — and vice versa, the physical situ-
ation provides a context against which to interpret language. In this
paper, we focus on how information from the dialogue- and situated
context can help guiding, and improving, automatic speech recog-
nition (ASR) in human-robot interaction (HRI). Spoken dialogue is
one of the most natural means of communication for humans. De-
spite significant technological advances, however, ASR remains for
most tasks at least an order of magnitude worse than that of human
listeners [17]. This particularly holds for using ASR in HRI systems
which typically have to operate in real-world noisy environments,
dealing with utterances pertaining to complex, open-ended domains.

In this paper we present an approach to using context in priming
ASR. By priming we mean, focusing the domain of words / word se-
quences ASR can expect next, so as to improve recognition. This ap-
proach has been implemented, and integrated into a cognitive archi-
tecture for a mobile robot [10, 14]. Evaluation results on a test suite
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with recordings of “free speech” in the application domain show a
statistically significant decrease in word-error rate (WER) of the im-
plemented system, over a commercial baseline system.

We follow [9] and use context information (in the form of con-
textual constraints) to update the statistical language model used in
ASR. We define a context-sensitive language model which exploits
information about salient objects in the visual scene and linguistic
expressions in the dialogue history to prime recognition. A salience
model integrating both visual and linguistic salience [12] is used to
dynamically compute lexical activations, which are incorporated into
the language model at runtime.

The structure of the paper is as follows. We first situate our ap-
proach against the background of situated dialogue and ASR, and
introduce the software architecture in which our system has been in-
tegrated. We then describe the salience model, and explain how it is
utilised within the language model used for ASR. We finally present
the evaluation of our approach, followed by conclusions.
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Figure 1. Example interaction

2 Background

The combinatorial nature of language provides virtually unlimited
ways in which we can communicate meaning. This, of course, raises
the question of how precisely an utterance should then be understood
as it is being heard. Empirical studies have investigated what infor-
mation humans use when comprehending spoken utterances. An im-
portant observation is that interpretation in context plays a crucial
role in the comprehension of utterance as it unfolds [13]. During ut-
terance comprehension, humans combine linguistic information with
scene understanding and ”world knowledge.”

Several approaches in processing situated dialogue for HRI have
made similar observations [19, 20, 21, 4, 14]: A robot’s understand-
ing can be improved by relating utterances to the situated context.
This first of all presumes the robot is able to relate language and the
world around it. [22] present a comprehensive overview of existing



approaches. One of the earliest systems which connected utterances
to a visual world was Winograd’s SHRDLU [30]. Among more re-
cent approaches, the most developed are those by Gorniak & Roy,
and Steels et al. Gorniak & Roy [6, 7] present an approach in which
utterance meaning is probabilistically mapped to visual and spatial
aspects of objects in the current scene. Recently, they have extended
their approach to include action-affordances [8]. Their focus has pri-
marily been on relating language to the situation, and not on priming
effects; same for SHRDLU. Steels et al [27, 25, 26] develop an ap-
proach where the connection between word meaning and percepts is
modeled as a semiotic network, in which abstract categories mediate
between language and the visual world.

Our approach on context-sensitive priming of speech recognition
departs from previous work by modeling salience as inherently cross-
modal, instead of relying on just one particular modality such as
gesture [5], eye gaze [18] or dialogue state [9]. The FUSE system
described in [21] is a closely related approach, but limited to the
processing of object descriptions, whereas our system was designed
from the start to handle generic dialogues. We can therefore prime
not only words related to the object linguistic description, but also
words denoting subparts, general properties, and affordances.

3 Architecture

Our approach has been implemented as part of a distributed cogni-
tive architecture [10]. Each subsystem consists of a number of pro-
cesses, and a working memory. The processes can access sensors,
effectors, and the working memory to share information within the
subsystem. Furthermore, across across subsystems can be intercon-
nected (or "bound”) [11]. Below, we first discuss ideas implemented
in the comprehension side of the dialogue system, and then briefly
point to several technical details. For more details, we refer to [14].
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Figure 2. Dialogue comprehension: Visual scene (l.) and processing (r.)

Consider the visual scene in Fig. 2. There are three mugs, labelled
m1 through m3, and a yellow ball b1. b1, m2 and m3 are in reach
of the robot arm. The robot is only able to pick up m2 and b1 — m3
is too big, and m1 is too far away. The diagram in Fig. 2 illustrates
(abstractly) what is happening in the dialogue system.

As the robot hears ‘take’, it starts parsing. All it can do at the mo-
ment is assuming it is dealing with a command (the utterance-initial
verb indicates imperative mood), which it needs to execute. On lin-
guistic grounds, it does not know what it is to manipulate. Grounding
the command in the situation, the robot then applies categorical in-
ferences, to interconnect linguistic content with content from other
modalities. These inferences yield further information: a take action
presupposes it applies to a graspable object. When the robot com-
bines this information with what it knows about the visuo-spatial

scene, it can already narrow down the set of potential objects to
which the action may apply: Only b1 and m2 are graspable.

After processing ‘the’, the utterance meaning built up so far in-
dicates the object should be salient. This constraint is met by b1
and m2. Finally, ‘mug’ completes the utterance. Using the narrowed
down set of visual objects, the robot can determine m?2 as the visual
referent for the expression ‘the mug’ — even though, as a referring ex-
pression, ‘the mug’ is at best ambiguous between m3 and m?2! Build-
ing up an interpretation of the utterance thus needs to be combined
with categorical knowledge and information about the visuo-spatial
scene. Only in this way the robot can arrive at an interpretation which
“makes sense” in context.

Of course, the example in Fig. 2 is idealized. What if someone
would have said ‘it’, instead of ‘the mug’? To understand ‘take it’,
the robot needs to be able to resolve the pronoun ‘it’ to a previously
mentioned object. Furthermore, once it knows what object is meant,
it should also be able to retrieve the corresponding visual referent. (In
Fig. 2, the steps in green would have been affected.) Other, not unre-
alistic problems would have been if the vision system would not have
been able to recognize any of the objects as mugs.This arises e.g.
in scenarios for interactive visual learning. It can partly be resolved
through categorical inference, which can establish that a ‘mug’ is a
type of thing. Thus, even if the robot would only have recognized
the ball, and discern between m2 and m3 in terms of graspability,
it would have been able to resolve ‘the mug’ to m2. (In Fig. 2, the
steps in orange would have been affected.) Finally, the utterance may
have been ambiguous: ‘Put the mug to the left of the ball to the right
of the mug.” Which mug? And where is the robot supposed to move
“the” mug? [4, 3, 14] discuss how such linguistic ambiguities can be
resolved using the situated context.
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Figure 3. Schema of the system for spoken dialogue comprehension

Fig. 3 illustrates part of the implemented dialogue system. The
first step in spoken dialogue comprehension is speech recognition.
The ASR module is based on Nuance Recognizer v8.5 together with
a statistical language model. For the online update of word class
probabilities according to the salience model, we use the “just-in-
time grammar” functionality provided by Nuance. The objective of
the ASR module is to analyse the audio signal to form a recognition
result, which is given as a word lattice with associated confidence
levels. Once a (partial or complete) recognition result is available, it
is added to the working memory.



The strings included in the word lattice are then parsed, to repre-
sent the syntactic and semantic structure of an utterance. Parsing only
interprets an utterance at the grammatical level. Parsing is based on
an incremental chart parser’ for Combinatory Categorial Grammar
[24, 1]. The parser yields a set of interpretations expressed as on-
tologically rich, relational structures (description logic-like; cf. [2]).
These interpretations are packed into a single representation [14], a
technique which enables us to efficiently handle ambiguities.

Dialogue interpretation tries to relate utterance meaning to the
preceding context, by resolving contextual references, event struc-
ture, and dialogue moves (”speech acts”). Interpretating an utterance
grammatically, and in the dialogue context, happens in parallel in the
system. This way, the dialogue context can help constraining parsing.

Furthermore, also the situated context is (indirectly) involved.
While interpreting an utterance linguistically, the system also at-
tempts to connect utterance content (once it has been interpreted
against the dialogue context) with the situated context [11]. Models
of the situated context currently contain visual information, spatial
organization, and situated action planning. The results of this pro-
cess again feed back into the linguistic analysis.

What is important for the approach we present here in this paper is
that we thus have access to the dialogue- and situated contexts, while
the analysis of an utterance unfolds.

As we explain in the next section, this contextual information is
exploited to build a salience model of the environment (§4.1). This
salience model is subsequently used to compute lexical activation
levels in our vocabulary (§4.2) and adapt the word-class probabilities
of the language model (§4.3). Finally, once the new probabilities are
estimated, they are added to the working memory and retrieved by
the speech recognizer which incorporates them at runtime.

The above process is repeated after each detected change in the
visual or linguistic context.

4 Approach
4.1 Salience modeling

In our implementation, we define salience using two main sources of
information:

1. the salience of objects in the perceived visual scene;
2. the linguistic salience or “recency” of linguistic expressions in the
dialogue history.

In the future, other information sources could be added, for in-
stance the possible presence of gestures [5], eye gaze tracking [18],
entities in large-scale space [31], or the integration of a task model —
as salience generally depends on intentionality [16].

4.1.1 Visual salience

Via the working memory, we can access the set of objects currently
perceived in the visual scene. Each object is associated with a con-
cept name (e.g. printer) and a number of features, for instance spatial
coordinates or qualitative propreties like colour, shape or size.
Several features can be used to compute the salience of an object.
The ones currently used in our implementation are (1) the object size
and (2) its distance relative to the robot (e.g. spatial proximity). Other
features could also prove to be helpful, like the reachability of the
object, or its distance from the point of visual focus — similarly to the
spread of visual acuity across the human retina. To derive the visual
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salience value for each object, we assign a numeric value for the
two variables, and then perform a weighted addition. The associated
weights are determined via regression tests.

At the end of the processing, we end up with a set E, of visual
objects, each of which is associated with a numeric salience value
s(exr), with 1 < k < |E,|.

4.1.2 Linguistic salience

There is a vast amount of literature on the topic of linguistic salience.
Roughly speaking, linguistic salience can be characterised either
in terms of hierarchical recency, according to a tree-like discourse
structure, or in terms of linear recency of mention [12]. Our imple-
mentation can theorically handle both types of linguistic salience,
but, at the time of writing, only the linear recency is calculated.

To compute the linguistic salience, we extract a set E; of potential
referents from the discourse context model, and for each referent ex
we assign a salience value s(ey) equal to the linear distance between
its last mention and the current position in the discourse model.

4.1.3 Cross-modal salience model

Once the visual and linguistic salience are computed, we can proceed
to their integration into a cross-modal statistical model. We define the
set E as the union of the visual and linguistic entities: E = E, UE,,
and devise a probability distribution P(E) on this set:

Oy Ig, (€r) sv(ex) + 01 Ig, (ex) si(ex)
|E|

Pler) = (1)

where I4(z) is the indicator function of set A, and d,, 0 are
factors controlling the relative importance of each type of salience.
They are determined empirically, subject to the following normalisa-
tion constraint: 6, Y, s(ex) +d Y. s(ex) = |E|.
e €E, e, €E;
The statistical model P(E) thus simply reflects the salience of
each visual or linguistic entity: the more salient, the higher the prob-

ability.

4.2 Lexical activation

In order for the salience model to be of any use for speech recog-
nition, a connection between the salient entities and their associated
words in the ASR vocabulary needs to be established. To this end,
we define a lexical activation network, which lists, for each possible
salient entity, the set of words activated by it. The network speci-
fies the words which are likely to be heard when the given entity
is present in the environment or in the dialogue history. It can there-
fore include words related to the object denomination, subparts, com-
mon properties or affordances. The salient entity laptop will acti-
vate words like ‘laptop’, ‘notebook’, ‘screen’, ‘opened’, ‘ibm’, ‘switch
on/off’, ‘close’, etc. The list is structured according to word classes,
and a weight can be set on each word to modulate the lexical activa-
tion: supposing a laptop is present, the word ‘laptop’ should receive
a higher activation than, say, ‘close’, which is less situation specific.

The use of lexical activation networks is a key difference between
our model and [21], which relies on a measure of “descriptive fitness”
to modify the word probabilities. One key advantage of our approach
is the possibility to go beyond object descriptions and activate word
types denoting subparts, properties or affordances of objects — in the
context of a laptop object, ‘screen’ and ‘switch on/off” would for in-
stance be activated.



If the probability of specific words is increased, we need to re-
normalise the probability distribution. One solution would be to de-
crease the probability of all non-activated words accordingly. This
solution, however, suffers from a significant drawback: our vocabu-
lary contains many context-independent words like ‘thing’, or ‘place’,
whose probability should remain constant. To address this issue,
we mark an explicit distinction in our vocabulary between context-
dependent and context-independent words.

In the current system, the lexical activation network is constructed
semi-manually, using a lexicon extraction algorithm. We start with
the list of possible salient entities, which is given by
1. the set of physical objects the vision subsystem can recognise ;

2. the set of nouns specified in the lexicon as an ‘object’.

For each entity, we then extract its associated lexicon by matching
specific syntactic patterns against a corpus of dialogue transcripts.

4.3 Language modeling

We now detail the language model used for the speech recognition
— a class-based trigram model enriched with contextual information
provided by the salience model.

4.3.1 Corpus generation

We need a corpus to train a statistical language model adapted to our
task domain, consisting of human-robot interactions related to a fixed
visual scene. The visual scene usually includes a small set of objects
(mugs, balls, boxes) which can be manipulated by the robot.

Unfortunately, no corpus of situated dialogue adapted to our task
domain was available. Collecting in-domain data via Wizard of Oz
(WOz) experiments is a very costly and time-consuming process, SO
we decided to follow the approach advocated in [29] instead and gen-
erate a class-based corpus from a domain-specific grammar.

Practically, we first collected a small set of WOz experiments, to-
talling about 800 utterances. This set is too small to be directly used
as a training corpus, but sufficient to get an intuitive idea of the type
of utterances in our domain. Based on it, we designed a task-specific
context-free grammar able to cover most of the utterances. Weights
were then automatically assigned to each grammar rule by parsing
our initial corpus, leading to a small stochastic context-free grammar.
As a last step, this grammar is randomly traversed a large number of
times, which provides us the generated corpus.

4.3.2 Salience-driven, class-based language models

The objective of the speech recognizer is to find the word sequence
‘W™ which has the highest probability given the observed speech sig-
nal O and a set E of salient objects:

W* = argmax P(O|W)x P(WIE) 2)
W —_——

acoustic model salience-driven language model

For a trigram language model, the probability of the word sequence
P(wt|E) is:
P(w?[E) ~ [ ] P(wilwi-1w;—2; E) 3)

=1

Our language model is class-based, so it can be further decomposed
into word-class and class transitions probabilities. The class transi-
tion probabilities reflect the language syntax. We assume they are in-
dependent of salient objects. The word-class probabilities, however,

do depend on context: for a given class — e.g. noun -, the probability
of hearing the word ‘laptop’ will be higher if a laptop is present in the
environment. Hence:

P(w¢|w¢,1w¢,2;E) = P(w1|cl,E) X P(Ci‘cifl,cifz) (4)

word-class probability class transition probability

We now define the word-class probabilities P(w;|c;; E):

P(wiles; B) = > P(wilei;ex) x Plex) 5)

e €EE

To compute P(w;|c;; ex ), we use the lexical activation network spec-
ified for eg:

P(wi\ci)—f—al if c1

P(w;|ei;er) = P(wi|e;) —as  if —e1 Aca (6)
P(wilci) else
where ¢1 = w; € activatedWords(ey), and c2 = w; €

contextDependentWords. The optimum value of «; is determined us-
ing regression tests, while a is computed relative to a1 in order to
keep the sum of all probabilities equal to 1:

|activatedWords|
g = - X a1
|contextDependentWords| — |activatedWords|

)

These word-class probabilities are dynamically updated as the envi-
ronment and the dialogue evolves and incorporated into the language
model at runtime.

5 Evaluation

We evaluated our approach on a test suite of 250 spoken utterances
recorded during WOz experiments. The participants were asked to
interact with the robot while looking at a specific visual scene. We
designed 10 different visual scenes by systematic variation of the na-
ture, number and spatial configuration of the objects presented. The
interactions could include descriptions, questions and commands.

Table 1 gives the experimental results. For space reasons, we focus
on the WER of our model compared to the baseline (a class-based
trigram model not using salience).

Word Error Rate Classical LM Salience-driven LM
[WER]
vocabulary size 25.04 % 24.22 %
~ 200 words (NBest 3: 20.72 %) (NBest 3: 19.97 %)
vocabulary size 26.68 % 23.85 %
~ 400 words (NBest 3: 21.98 %) (NBest 3: 19.97 %)
vocabulary size 28.61 % 23.99 %
~ 600 words (NBest 3: 24.59 %) (NBest 3: 20.27 %)

Table 1. Comparative results of recognition performance

5.1 Analysis

As the results show, the use of a salience model can enhance the
recognition performance in situated interactions: with a vocabulary
of about 600 words, the WER is indeed reduced by 16.1 % com-
pared to the baseline. According to the Sign fest, the differences for



the last two tests (400 and 600 words) are statistically significant.
As we could expect, the salience-driven approach is especially help-
ful when operating with a larger vocabulary, where the expectations
provided by the salience model can really make a difference in the
word recognition.

The word error rate remains nev-
ertheless quite high. This is due
to several reasons. The major is-
sue is that the words causing most
recognition problems are — at least
in our test suite — function words
like prepositions, discourse mark-
ers, connectives, auxiliaries, etc.,
and not content words. Unfortu-
nately, the use of function words is
usually not context-dependent, and
hence not influenced by salience.
We estimated that 89 % of the
recognition errors were due to func-
tion words. Moreover, our chosen test suite is constituted of “free
speech” interactions, which often include lexical items or grammati-
cal constructs outside the range of our language model.

Figure 4. Sample visual
scene including 3 objects: a
box, a ball, and a chocolate bar

6 Conclusion

We have presented an implemented model for speech recognition
based on the concept of salience. This salience is defined via vi-
sual and linguistic cues, and is used to compute degrees of lexical
activations, which are in turn applied to dynamically adapt the ASR
language model to the robot’s environment and dialogue state.

As future work we will examine the potential extension of our ap-
proach in two directions. First, we wish to take other information
sources into account, particularly the integration of a task model, re-
lying on data made available by the symbolic planner. And second,
we want to go beyond speech recognition, and investigate the rele-
vance of such salience model for the development of a robust under-
standing system for situated dialogue.
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