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Abstract

We present a new approach to dialogue man-
agement based on the use of multiple, inter-
connected policies. Instead of capturing the
complexity of the interaction in a single large
policy, the dialogue manager operates with a
collection of small local policies combined
concurrently and hierarchically. The meta-
control of these policies relies on an activation
vector updated before and after each turn.

1 Introduction

Many dialogue domains are naturally open-ended.
This is especially the case in situated dialogue,
where the conversational agent must operate in con-
tinuously changing environments where there is of-
ten no single, pre-specified goal to achieve. De-
pending on the situation and the (perceived) user re-
quests, many distinct tasks may be performed. For
instance, a service robot for the elderly might be
used for cleaning, monitoring health status, and de-
livering information. Each of these tasks features a
specific set of observations, goals, constraints, inter-
nal dynamics, and associated actions.

This diversity of tasks and models poses signif-
icant challenges for dialogue systems, and particu-
larly for dialogue management. Open-ended inter-
actions are indeed usually much more difficult to
model than classical slot-filling applications, where
the application domain can provide strong con-
straints on the possible dialogue transitions. Using
machine learning techniques to learn the model pa-
rameters can help alleviate this issue, but only if the
task can be efficiently factored and if a sufficient
amount of data is available. Once a model of the

interaction and its associated environment is avail-
able, a control policy then needs to be learned or
designed for the resulting state space. The extrac-
tion of good control policies can be computationally
challenging, especially for interactions which si-
multaneously combine partial observability (to deal
with noisy and incomplete observations) and large
state spaces (if the optimal behaviour depends on a
wide range of user- and context-specific factors) –
which is the case for many open-ended domains.

In this paper, we present ongoing work on a new
approach to dialogue management which seeks to
address these issues by leveraging prior knowledge
about the interaction structure to break up the full
domain into a set of smaller, more predictable sub-
domains. Moving away from the idea of capturing
the full interaction complexity into a unique, mono-
lithic policy, we extend the execution algorithm of
the dialogue manager to directly operate with a col-
lection of small, interconnected local policies.

Viewing dialogue management as a decision pro-
cess over multiple policies has several benefits.
First, it is usually easier for the application devel-
oper to model several small, local interactions than
a single large one. Each local model can also be in-
dependently modified, extended or replaced without
interfering with the rest of the system, which is cru-
cial for system maintenance. Finally, different the-
oretical frameworks can be used for different poli-
cies, which means that the developer is free to decide
which approach is most appropriate to solve a spe-
cific problem, without having to commit to a unique
theoretical framework for the whole application. For
instance, one policy might be expressed as a solu-
tion to a Partially Observable Markov Decision Pro-
cess (POMDP) while another policy is encoded as a
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hand-crafted finite-state controller, and the two can
be integrated in the same control algorithm.

One of the challenges when operating with mul-
tiple policies is the “meta-control” of these policies.
At each turn, the system must know which policy
is currently in focus and is responsible for deciding
the next action to perform. Since dialogue manage-
ment operates under significant uncertainty, the sys-
tem can never be sure whether a given policy is ter-
minated or not. We thus need a “soft” control mech-
anism which is able to explicitly account for the un-
certainty about the completion status of each policy.
This is precisely what we present in this paper.

The rest of the paper is as follows. We first pro-
vide general definitions of dialogue policies, and
present an algorithm for dialogue management oper-
ating on multiple policies. We then present an imple-
mentation of the algorithm together with an empiri-
cal evaluation of its performance, and conclude the
paper by comparing our approach to related work.

2 Background

We start by providing a generic definition of a pol-
icy which can hold independently of any particular
encoding. Dialogue policies can indeed generally
be decomposed in three basic functions, which are
called consecutively upon each turn: (1) observation
update, (2) action selection and (3) action update.

2.1 Observation update
The role of observation update is to modify the pol-
icy’s current state1 upon receiving a new observa-
tion, which can be linguistic or extra-linguistic.

Observation update is formally defined as a func-
tion OBS-UPDATE : S × O → S which takes as in-
put the current state s and a new observation o, and
outputs the updated state s′. For instance, a finite-
state controller is expressed by a set of nodesN and
edges E , where the state is expressed by the current
node, and the update mechanism is defined as:

OBS-UPDATE(s, o) =

{
s′ if ∃ an edge s o−→ s′

s otherwise

In information-state approaches (Larsson and
Traum, 2000), the update is encoded in a collection

1We adopt here a broad definition of the term “state” to ex-
press any description of the agent’s current knowledge. In a
POMDP, the state thus corresponds to the belief state.

of update rules which can be applied to infer the new
state. In POMDP-based dialogue managers (Young
et al., 2010), the observation update corresponds to
the belief monitoring/filtering function.

2.2 Action selection

The second mechanism is action selection, whose
role is to select the optimal (communicative) action
to perform based on the new estimated state. The
action selection is a function π : S → Awhich takes
the updated state as input, and outputs the optimal
action to execute (which might be void).

Different encodings are possible for the action se-
lection mechanism. Finite-state controllers use a
straightforward mechanism for π, since each state
node in the graph is directly associated with a unique
action. Information-state approaches provide a map-
ping between particular sets of states and actions
by way of selection rules. Decision-theoretic ap-
proaches such as MDPs and POMDPs rely on an
estimated action-value function which is to be max-
imised: π(s) = arg maxaQ(s, a). The utility func-
tion Q(s, a) can be either learned from experience
or provided by the system designer.

2.3 Action update

Once the next action is selected and sent for execu-
tion, the final step is to re-update the dialogue state
given the action. Contrary to the two previous func-
tions which can be found in all approaches, this third
mechanism is optional and is only implemented in
some approaches to dialogue management.

Action update is formally defined as a function
ACT-UPDATE : S × A → S. Finite-state and
information-state approaches typically have no ex-
plicit account of action update. In (PO)MDPs ap-
proaches, the action update function is computed
with the transition function of the model.

3 Approach

3.1 Activation vector

To enable the dialogue manager to operate with mul-
tiple policies, we introduce the notion of activation
value. The activation value of a policy i is the prob-
ability P (φi) that this policy is in focus for the in-
teraction, where the random variable φi denote the
activation of policy i. In the rest of this paper, we
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shall use bt(φi) to denote the activation value of pol-
icy φ at time t, given all available information. The
bt(φi) value is dependent on both the completion
status of the policy itself and the activations of the
other policies: bt(φi) = P (φi|si, bt(φ1), ...bt(φn)).
We group these values in an activation vector bΦ =
〈b(φ1)...b(φn)〉 which is updated after each turn.

3.2 Activation functions
To compute the activation values, we define the two
following functions associated with each policy:

1. LIKELIHOODi(s, o) : S × O → [0, 1] computes
the likelihood of the observation o if the policy
i is active and currently in state s. It is therefore
an estimate of the probability P (o|φi, s).

2. ACTIVATIONi(s) : S → [0, 1] is used to deter-
mine the probability of policy i being active at
a given state s. In other words, it provides an
estimate for the probability P (φi|s).

These functions are implemented using heuris-
tics which depend on the encoding of the policy.
For a finite-state controller, we realise the function
LIKELIHOOD(s, o) by checking whether the observa-
tion matches one of the outward edges of the current
state node – the likelihood returns a high probability
if such a match exists, and a low probability oth-
erwise. Similarly, the ACTIVATION function can be
defined using the graph structure of the controller:

ACTIVATION(s) =

{
1 if s non-final
δ if s final with outgoing edges
0 if s final w/o outgoing edges

where δ is a constant between 0 and 1.

3.3 Constraints between policies
In addition to these activation functions, various
constraints can hold between the activation of re-
lated policies. Policies can be related with each
other either hierarchically or concurrently.

In a hierarchical mode, a policy A triggers an-
other policy B, which is then executed and returns
the control to policyA once it is finished. As in hier-
archical planning (Erol, 1996; Pineau, 2004), we im-
plement such hierarchy by distinguishing between
primitive actions and abstract actions. An abstract
action is an action which corresponds to the execu-
tion of another policy instead of leading directly to

a primitive action. With such abstract actions, the
system designer can define a hierarchical structure
of policies as illustrated in Figure 1. When a policy
A executes an abstract action pointing to policy B,
the activation value of policy B is increased and the
one of policy A proportionally decreased. This re-
mains so until policy B terminates, at which point
the activation is then transferred back to policy A.

Figure 1: Graphical illustration of a hierarchical policy
structure. Dotted lines denote abstract actions.

In a concurrent mode, policies stand on an equal
footing. When a given policy takes the turn after an
observation, the activations of all other concurrent
policies are decreased to reflect the fact that this part
of the interaction is now in focus. This redistribution
of the activation mass allows us to run several poli-
cies in parallel while at the same time expressing a
“preference” for the policy currently in focus. The
“focus of attention” is indeed crucial in verbal inter-
actions, and in linguistic discourse in general (Grosz
and Sidner, 1986) – humans do not arbitrarily switch
from one topic to another and back, but rather con-
centrate on the most salient elements.

The set of constraints holding between the activa-
tion values of hierarchical and concurrent policies is
encoded in a simplified Bayesian network.

3.4 Execution algorithm

Algorithm 1 illustrates how the activation values
are exploited to select the optimal action for mul-
tiple policies. The algorithm relies on a set of pro-
cesses P , where a process i is associated with a spe-
cific policy, a current state si for the policy, and a
current activation value b(φi) ∈ bΦ. As we have
seen, each policy is fully described with five func-
tions: LIKELIHOOD(s, o), OBS-UPDATE(s, o), π(s),
ACT-UPDATE(s, a), and ACTIVATION(s). A network
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of conditional constraints C on the activation vector
is also given as input to the algorithm.

Algorithm 1 operates as follows. Upon receiv-
ing a new observation, the procedure loops over
all processes in P and updates the activation val-
ues b′(φi) for each given the likelihood of the ob-
servation (with η as a normalisation factor). Once
this update is completed, the process p with the
highest activation is selected, and the function
GET-OPTIMAL-ACTION(p, o) is triggered.

Algorithm 1 : MAIN-EXECUTION (P, o)

Require: P: the current set of processes
Require: C: network of constraints on bΦ
Require: o: a new observation

1: for all i ∈ P do
2: P (o|φi, si)← LIKELIHOODi(si, o)
3: b′(φi)← η · P (o|φi, si) · b(φi)
4: end for
5: Select process p← arg maxi b

′(φi)
6: a∗ ← GET-OPTIMAL-ACTION(p, o)

7: for all i ∈ P do
8: P (φi|si)← ACTIVATIONi(si)
9: Prune i from P if inactive

10: Compute b(φi) given P (φi|si) and C
11: end for
12: return a∗

Within GET-OPTIMAL-ACTION, the state of the pro-
cess is updated given the observation, the next action
a∗ is selected using π(s) and the state is updated
again given this selection. If the action is abstract,
the above-mentioned procedure is repeated until a
primitive action is reached. The resulting hierarchi-
cal structure is recorded in children(p) which details,
for each process p ∈ P , the list of its children pro-
cesses. To ensure consistency among the activation
values in this hierarchy, a constraint is added to C for
each process visited during execution.

Once the action a∗ is found, the activation values
b(φi) are recomputed according to the local activa-
tion function combined with the constraints C. Pro-
cesses which have become inactive (i.e. which have
transferred control to one parent process) are also
pruned from P . Finally, the action a∗ is returned.

Algorithm 2 : GET-OPTIMAL-ACTION (p, o)

Require: p: process with current state sp

Require: o: a new observation
Require: children(p): list of current processes di-

rectly or indirectly forked from p

1: sp ← OBS-UPDATEp(sp, o)
2: a∗ ← πp(sp)
3: sp ← ACT-UPDATEp(sp, a

∗)

4: if a∗ is an abstract action then
5: Fork new process q with policy from a∗

6: Add q to set of current processes P
7: a∗ ← GET-OPTIMAL-ACTION(q, o)
8: children(p)← 〈q〉+ children(q)
9: else

10: children(p)← 〈〉
11: end if
12: Add to C the constraint b(φp) =

(1−
∑

i∈children(p) b(φi)) · P (φp|sp)

13: return a∗

4 Evaluation

The described algorithm has been implemented and
tested with different types of policies. We present
here a preliminary experiment performed with a
small dialogue domain. The domain consists of a
(simulated) visual learning task between a human
and a robot in a shared scene including a small num-
ber of objects, described by various properties such
as color or shape. The human asks questions re-
lated to these object properties, and subsequently
confirms or corrects the robot’s answers – as the case
may be. We account for the uncertainty both in the
linguistic inputs and in the visual perception.

We model this domain with two connected poli-
cies, one top policy handling the general interac-
tion (including engagement and closing acts), and
one bottom policy dedicated to answering each user
question. The top policy is encoded as a finite-state
controller and the bottom policy as a POMDP solved
using the SARSOP algorithm, available in the APPL
toolkit2 (Kurniawati et al., 2008). A sample run is
provided in Appendix A.

The experiment was designed to empirically com-
pare the performance of the presented algorithm

2http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
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with a simpler hierarchical control algorithm which
does not use any activation vector, but where the
top policy is blocked until the sub-policy releases
its turn. The policies themselves remain identical
in both scenarios. We implemented a handcrafted
user simulator for the domain, and tested the poli-
cies with various levels of artificial noise.

The average return for the two scenarios are pro-
vided in Figure 2. The results show that activation
values are beneficial for multi-policy dialogue man-
agement, especially in the presence of noise.. This is
due to the soft control behaviour provided by the ac-
tivation vector, which is more robust than hierarchi-
cal control. Activation values provide a more fine-
grained mechanism for expressing the completion
status of a policy, and therefore avoid fully “block-
ing” the control at a given level.
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Figure 2: Average return (as generated by the hand-
crafted user simulator) for the two connected policies,
using either the present algorithm or strict hierarchical
control. 400 runs are used for each level of noise.

5 Related work

The exploitation of prior structural knowledge in
control has a long history in the planning commu-
nity (Erol, 1996; Hauskrecht et al., 1998), and has
also been put forward in some approaches to di-
alogue modelling and dialogue management – see
e.g. (Grosz and Sidner, 1990; Allen et al., 2000;
Steedman and Petrick, 2007; Bohus and Rudnicky,
2009). These approaches typically rely on a task de-
composition in goals and sub-goals, and assume that
the completion of each of these goals can be fully

observed. The novel aspect of our approach is pre-
cisely that we seek to relax this assumption of per-
fect knowledge of task completion. Instead, we treat
the activation/termination status of a given policy as
a hidden variable which is only indirectly observed
and whose value at each turn is determined via prob-
abilistic reasoning operations.

The idea of combining different dialogue man-
agement frameworks in a single execution process
has also been explored in previous work such as
(Williams, 2008), but only as a filtering mecha-
nism – one policy constraining the results of an-
other. Related to the idea of concurrent policies,
(Turunen et al., 2005) describes a software frame-
work for distributed dialogue management, mostly
focussing on architectural aspects. In the same vein,
(Lemon et al., 2002; Nakano et al., 2008) describe
techniques for dialogue management respectively
based on multi-threading and multi-expert models.
(Cuayáhuitl et al., 2010) describe an reinforcement
learning approach for the optimisation of hierarchi-
cal MDP policies, but is not extended to other types
of policies. Closest to our approach is the PolCA+
algorithm for hierarchical POMDPs presented in
(Pineau, 2004), but unlike our approach, her method
does not support temporally extended actions, as the
top-down trace is repeated after each time step.

6 Conclusion

We introduced a new approach to dialogue manage-
ment based on multiple, interconnected policies con-
trolled by activation values. The values are updated
at the beginning and the end of each turn to reflect
the part of the interaction currently in focus.

It is worth noting that the only modification re-
quired in the policy specifications to let them run
in a multi-policy setting is the introduction of the
two functions LIKELIHOOD(s, o) and ACTIVATION(s).
The rest remains untouched and can be defined in-
dependently. The presented algorithm is therefore
well suited for the integration of dialogue policies
encoded in different theoretical frameworks.

Future work will focus on various extensions of
the approach and the use of more extensive evalua-
tion metrics. We are also investigating how to ap-
ply reinforcement learning techniques to learn the
model parameters in such multi-policy paradigms.
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A Example of execution with two policies

We provide here an example of execution of Algo-
rithm 1 with the two policies described in the evalua-
tion section. Figure 3 illustrates the policy hierarchy,
which consists of two policies connected with an ab-
stract action. The finite-state graph of the top policy
is shown in Figure 4.

“hi!”

Bottom policy (POMDP)

Top policy (finite-state)

“how may I 
help you?”

“goodbye!”

“the object is X”

“I don’t know the 
colour/shape”

“do you mean the 
1st/2nd object?”

“could you 
repeat?”

“which 
object?”

(X=green,red, 
blue,round,

squared,etc.)

... ...

Figure 3: Hierarchical structure of the two policies.

(wait 1 s.)Robot: “hi!”

User: (received new intention)Robot: “how 
may I help you?”

User: “hi robot!”

(timeout)

Robot: (trigger 
POMDP)

Robot: “goodbye!”

User: “goodbye robot!”

User: (received 
new intention)

Figure 4: Finite-state controller for the top policy.

A.1 Example of interaction
Transcript A.1 provides a full example of interaction
as generated by the user simulator. Human utter-
ances can contain variable noise levels, which makes
it necessary to use clarification requests when the
user intention is unclear (lines 5 and 10).

Contextual knowledge can also influence how the
dialogue unfolds – here, the robot knows that the
first object is blue but is uncertain about the second
object. Such contextual knowledge is expressed in
terms of hidden variables in the POMDP model.

The execution of Algorithm 1 for the above ex-
ample proceeds as follows. From line 1 to line 4, the
set P contains one single process, based on the top

Transcript A.1 Example of interaction
1: HUMAN: Hi robot!
2: ROBOT: Hi! [wait 1 s.]
3: ROBOT: How may I help you?
4: HUMAN: Could you tell me the colour of

the first object? [trigger POMDP]
5: ROBOT: Sorry, could you repeat?
6: HUMAN: What colour is the first object?
7: ROBOT: It is blue
8: HUMAN: That’s right
9: HUMAN: Now, could you tell me the colour

of the second object? [trigger POMDP]
10: ROBOT: Do you mean the second object?
11: HUMAN: Yes
12: ROBOT: I don’t know
13: HUMAN: It is green
14: ROBOT: Thanks
15: HUMAN: Ok I’m done. Goodbye!
16: ROBOT: Goodbye! [close interaction]

policy. This process is fully activated. At line 5, the
new user intention is mapped to the abstract action,
and thus to the creation of a second process based
the POMDP policy. This second process becomes
highly activated due its function ACTIVATION(s).
Given the constraint holding between the activation
values of two processs, the high activation of the bot-
tom process leads to a proportional reduction of the
activation value of the top process.

The utterance at line 8 is interpreted as a signal
that the user intention has been met, and the acti-
vation value of the bottom process is subsequently
decreased. The top process is then partially reac-
tivated, and interprets the utterance at line 9 as a
new user intention, leading to the creation of a new
POMDP process. This process handles the interac-
tion until the line 14, where the control is transferred
back to the finite-state controller.

The better performance of Algorithm 1 compared
to strict hierarchical control is due to the lines 8− 9.
In the presence of noise, the transition to the second
question might not be detected (if the confidence
scores of the utterance is below a fixed threshold). In
such case, the dialogue manager might stay “stuck”
in the first POMDP process instead of interpreting
the utterance as a new question.
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