
Towards Online Planning for Dialogue
Management with Rich Domain Knowledge

Pierre Lison

Abstract Most approaches to dialogue management have so far concentrated on
offline optimisation techniques, where a dialogue policy is precomputed for all pos-
sible situations and then plugged into the dialogue system. This development strat-
egy has however some limitations in terms of domain scalability and adaptivity,
since these policies are essentially static and cannot readily accommodate runtime
changes in the environment or task dynamics. In this paper, we follow an alternative
approach based on online planning. To ensure that the planning algorithm remains
tractable over longer horizons, the presented method relies on probabilistic models
expressed via probabilistic rules that capture the internal structure of the domain
using high-level representations. We describe in this paper the generic planning al-
gorithm, ongoing implementation efforts and directions for future work.

1 Introduction

Dialogue management is at its core a decision-making operation: given a specific
conversational situation the agent finds itself in, the objective of the dialogue man-
ager is to find the optimal action to perform at that stage, depending on some per-
formance criteria. In order to search for this optimal action, the agent often needs to
take into account not only the local effect of the action, but also how it might influ-
ence future states and actions. An action might therefore be locally sub-optimal but
still be selected if it contributes to a higher objective within the interaction. A typ-
ical example of these lookahead strategies pertains to clarification requests. These
requests might indeed have a slightly negative effect in the short term but are often
beneficial on the longer term, since they can help reducing the state uncertainty and
therefore lead to more successful dialogues [15].

Pierre Lison
University of Oslo (Norway), Department of Informatics, Language Technology Group
e-mail: plison@ifi.uio.no

1

2 Pierre Lison

This observation has led many researchers to cast dialogue management as a
decision-theoretic planning problem [4, 23, 22]. Such formalisation relies on the
specification of rewards associated to particular (state,action) pairs. In this setting,
the role of the dialogue manager is to select the action which yields the highest return
(cumulative discounted reward) over the course of the interaction. One major benefit
of this formalisation is that it enables the system designer to flexibly encode the
trade-offs between the various, sometimes conflicting objectives of the interaction.
Dialogue strategies can then be automatically optimised for the domain at hand,
leading to conversational behaviours which are often more flexible and natural than
handcrafted strategies [8].

So far, most approaches to dialogue management relying on decision-theoretic
planning perform this optimisation entirely offline, by precomputing a dialogue pol-
icy mapping every possible state of the dialogue to the optimal action to perform
at that state. While this approach is attractive in terms of runtime computational
savings, it also presents a number of limitations. The first challenge is that pol-
icy optimisation becomes increasingly hard as the size of the dialogue state grows,
since the policy must be calculated for every hypothetical situation which might be
encountered by the agent. The problem is especially critical when the dialogue state
is partially observable and therefore expressed in a high-dimensional, continuous
space. The second challenge is the difficulty of adapting or refining the policy once
it has been calculated. Precomputed policies must be recalculated every time the
domain-specific models are modified or extended. This is an important drawback
for application areas such as human-robot interaction, cognitive assistants or tutor-
ing systems, since these domains often rely on environment or task models whose
dynamics can vary at runtime, while the interaction unfolds (for instance in order to
adapt to shifting user preferences).

An alternative approach that has recently gained popularity in the POMDP plan-
ning literature is to perform planning online, at execution time [18]. Compared to
offline policies, the major advantage of online planning is that the agent only needs
to consider the current state to plan, instead of enumerating all possible ones. It can
also more easily adapt to changes in the environment or task models. The available
planning time is however more limited, since planning is in this case interleaved
with dialogue system execution and must therefore meet real-time constraints1.

To address these performance constraints, we investigate in this paper the use of
prior domain knowledge to filter the space of possible actions and transitions that
need to be considered by the planning algorithm. The key idea is to structure the
probability and reward models used for planning in terms of high-level, probabilistic
rules. These rules can notably express which actions are deemed to be relevant for
a given dialogue state, and thus filter the space of actions to consider at planning
time. The main intuition is that by exploiting the internal structure of the domain

1 Interestingly, offline and online approaches to planning are not mutually exclusive, but can be
combined together to offer ”the best of both worlds”. The idea is to perform offline planning to
precompute a rough policy, and use this policy as a heuristic approximation to guide the search of
an online planner [18]. These heuristic approximations can for instance be used to provide lower
and upper bounds on the value function, which can be exploited to prune the lookahead tree.

Towards Online Planning for Dialogue Management with Rich Domain Knowledge 3

and integrating it in our models, we can develop algorithms which are significantly
more efficient than approaches relying on unstructured models.

The structure of this paper is as follows. We start by briefly reviewing the math-
ematical foundations of our work, and then describe our representation formalism,
based on the concept of a probabilistic rule. We then detail our planning algorithm,
which relies on these rules to find the optimal action sequence to perform at a given
state. We then describe our current implementation efforts to develop an efficient
planner based on this algorithm. Finally, we compare our approach to related work
in the field, and conclude the paper.

2 Background

2.1 Dialogue state

Virtually all dialogue management frameworks rely on the notion of a dialogue
state, which can take various forms, depending on the chosen level of expressivity
and account of uncertainty. In this work, we encode the dialogue state as a Bayesian
Network [21], where each node represents a distinct state variable deemed to be
relevant for decision-making, such as the hypothesised user intention or contextual
features. These variables might be conditionally dependent on each other, which is
easily encoded in a Bayesian Network via directed edges.

Formally, let X1...Xn denote a set of random variables. Each variable Xi is associ-
ated with a range of mutually exclusive values. A Bayesian Network defines the joint
probability distribution P(X1...Xn) via conditional dependencies between variables
using a directed graph where each node corresponds to a variable Xi. Each edge
Xi→ X j denotes a conditional dependence between the two nodes, in which case Xi
is said to be a parent of X j. A conditional probability distribution P(Xi|Parents(Xi))
is associated with each node Xi, where Parents(Xi) denotes the parents of Xi.

A Bayesian Network can be straightforwardly extended for capturing utility-
related information. In practice, this is realised by adding utility and decision nodes
to the network. A utility node encodes the utility associated with a particular set
of dependent variables. Typically, at least one of these dependent variables is a de-
cision node, which describes a set of possible actions that the agent can perform.
Figure 1 illustrates a Bayesian Network extended with such nodes.

2.2 Decision-theoretic planning

In dialogue management, we are interested in the action which has the highest ex-
pected discounted cumulative reward for a given horizon. In order to find this op-

4 Pierre Lison

au

Value for iu: P(iu)

GoTo(kitchen) 0.4

GoTo(office) 0.3

GoTo(corridor) 0.3

iu

Value for au:
P(au|iu)P(au|iu)P(au|iu)Value for au:

iu=GoTo(ki) iu=GoTo(of) iu=GoTo(co)

GoTo(kitchen) 0.9 0.0 0.0

GoTo(office) 0.0 0.9 0.0

GoTo(corridor) 0.0 0.0 0.9

NULL 0.1 0.1 0.1

o

Value
for o:

P(o|au)P(o|au)P(o|au)P(o|au)Value
for o: au=GoTo(ki) au=GoTo(of) au=GoTo(co) au=NULL

True 0.0 0.6 0.15 0.25

False 1.0 0.4 0.85 0.75

am

R

Value for am:

GoTo(kitchen)

GoTo(office)

GoTo(corridor)

AskRepeat

Value for am:
R(iu,am)R(iu,am)R(iu,am)

Value for am:
iu=GoTo(ki) iu=GoTo(of) iu=GoTo(co)

GoTo(kitchen) 3 -5 -5

GoTo(office) -5 3 -5

GoTo(corridor) -5 -5 3

AskRepeat -0.5 -0.5 -0.5

Fig. 1 Example of Bayesian Network extended with utility nodes (shown as diamonds) and de-
cision nodes (shown as rectangles). The network represents a domain for a robot that is able to
perform 4 actions (going to the kitchen, the office, the corridor, or asking the user to repeat).
The node iu represents the user intention and the node au the last dialogue act from the user. The
latter is connected to an evidence node o which represents the actually observed N-best list of
user acts (e.g. coming from speech recognition). Depending on the user intention, the execution
of a specific action will yield different values for the reward R. In our case, we can easily cal-
culate that R(am =GoTo(office)|o=True) = 0.96, R(am =GoTo(corridor)|o=True) = −3.3,
R(am=GoTo(kitchen)|o=True) =−4.65, and finally R(am=AskRepeat|o=True) =−0.5.

timal action, the dialogue manager must be able to perform some form of forward
planning to estimate the expected future rewards of every action.

To this end, let us assume that we have a dialogue state (also called belief state) b,
with b(s) = P(s) being a joint probability distribution over the possible state values.
This joint probability distribution can for instance be described as a Bayesian Net-
work of state variables (cf. previous section). In addition, we will also assume that
we can structure our models in the generic form of a Partially Observable Markov
Decision Process (POMDP), with a reward model R(s,a) describing the rewards
associated with particular actions, a transition model P(s′|s,a) describing the state
following the execution of action a in state s, and an observation model P(o|s,a) en-
coding the expected observations (in our case, an N-best list of user dialogue acts)
for a given state s after action a. The expected cumulative reward of a state-action
sequence 〈b0,a0,b1,a1, ...,bn,an〉 with a discount factor γ is then defined as:

Q[(b0,a0,b1,a1, ...bn,an]) =
n

∑
t=0

γ
tR(bt ,at) =

n

∑
t=0

γ
t
∑
s∈S

bt(s)R(s,at) (1)

Towards Online Planning for Dialogue Management with Rich Domain Knowledge 5

where the dialogue state bt+1 is defined as an update from bt :

bt+1(s′) = P(s′|ot+1,at ,bt) = α P(ot+1|s′,at)∑
s∈S

P(s′|s,at) bt(s) (2)

with α being a normalisation constant. Of course, the observations ot are not
known in advance, so the planning strategy must take into account the range of
possible observations which might follow from the execution of a given action.

Using the fixed point of Bellman’s equation [2], we know that the expected return
for the optimal policy can be written with the following recursive form:

Q(b,a) = R(b,a)+ ∑
o∈O

P(o|b,a)maxa′Q(b′,a′) (3)

where b′ is the updated dialogue state following the execution of action a and the
observation of o, as in Eq. 2. Furthermore, for notational convenience, we used
R(b,a) = ∑s∈S R(s,a)b(s) and P(o|b,a) = ∑s∈S P(o|s,a)b(s).

Extracting an optimal policy for such POMDP is known to be a hard problem,
with intractable exact solutions. Fortunately, many good approximations exist, often
based on sampling a limited number of trajectories [13, 19]. The online planning
algorithm we present in the next section makes use of such sampling techniques.

3 Approach

The general architecture of our approach revolves around a shared dialogue state,
which is read and written asynchronously by a collection of modules (for dialogue
understanding, interpretation, decision-making, generation, etc.). Each module can
update the current state with new information. We have already described in our
previous work the general dialogue system workflow [10], and will not repeat it
here. Instead, we will concentrate on the dialogue manager module, and in particular
on its internal, domain-specific models.

As we will shortly describe, our planning algorithm relies on rich domain knowl-
edge to speed up the action selection process. Our starting point is the observa-
tion that the probability and reward models used in dialogue management usu-
ally contain quite a lot of internal structure that can be readily exploited to yield
more efficient algorithms. For instance, we can see in Figure 1 that the probability
P(au =NULL|iu) does not actually depend on the specific value of iu. Similarly, the
reward Q(am =AskRepeat, iu) does not depend on iu either, since it is equal to−0.5
for all possible values of iu. Generally speaking, we can often group the enumera-
tion of possible values for the dependent variables into a set of distinct, mutually
exclusive partitions that yield similar outcomes.

6 Pierre Lison

3.1 Probabilistic Rules

Probabilistic rules are a generic description formalism to capture such structure.
They take the form of if...then...else cases mapping a list of conditions on input vari-
ables to specific effects on output variables. At runtime, these rules are then directly
applied on the dialogue state, thereby extending the Bayesian Network with new
nodes and conditional dependencies. This Bayesian Network can then be directly
used for inference, e.g. to compute the marginal distribution of a particular variable
or the utility of a given action. The probabilistic rules thus function as high-level
templates for the incremental construction of a classical probabilistic model.

Probability models

For probabilistic models of the form P(X1, ...Xn|Y1, ...Ym), a rule is formally ex-
pressed as an ordered list 〈c1, ...cn〉, where each case ci is associated with a condi-
tion φi and a distribution over stochastic effects {(ψ1

i , p1
i), ...,(ψ

k
i , pk

i)}, where ψ
j

i
is a stochastic effect and probability p j

i = P(ψ j
i |φi), where p1...m

i satisfy the usual
probability axioms. The rule reads as such:

if (φ1) then

{[P(ψ1
1) = p1

1], ... [P(ψ
k
1) = pk

1]}
else if (φ2) then

{[P(ψ1
2) = p1

2], ... [P(ψ
l
2) = pl

2]}
...

else if (φn) then

{[P(ψ1
n) = p1

n], ... [P(ψ
m
n) = pm

n]}

A final else case is implicitly added to the bottom of the list, and holds if no other
condition applies. If not overridden, the default effect associated to this last case is
void – i.e. it causes no changes to the distribution over the output variables.

The rule conditions φi are expressed as logical formulae grounded in the depen-
dent variables. They can be arbitrarily complex formulae connected by conjunctive,
disjunctive and negation operators. Formally speaking, a condition is therefore a
function mapping state variable assignments to a boolean value. The conditions on
the input variables can be seen as providing a compact partition of the state space to
mitigate the dimensionality curse. Without this partitioning in alternative conditions,
a rule ranging over m variables each of size n would need to enumerate nm possible
assignments. The partitioning with conditions reduces this number to p mutually
exclusive partitions, where p is usually small.

The rule effects ψ
j

i are similarly defined: given a condition holding on a set of in-
put variables, the associated effects define specific value assignments for the output
variables. The effects can be limited to a single variable or range over several output

Towards Online Planning for Dialogue Management with Rich Domain Knowledge 7

variables. Each effect is assigned a probability, and several alternative stochastic ef-
fects can be defined for the same case. The effect probabilities are parameters which
can be hand-coded or estimated from data .

As an illustrative example, consider the probability model P(au|iu) from Figure
1. This model can be encoded with the rule r1:

Rule r1 : if (iu = GoTo(X)) then
{[P(au = GoTo(X)) = 0.9], ... [P(au = NULL) = 0.1]}

The rule simply expresses that the value of au should be identical to the one in iu
with probability 0.9, and equal to NULL with probability 0.1. The exact value for
the argument X will be filled at runtime given the instantiation in iu.

Reward models

Rules can also be applied to describe reward models, with minor notational changes.
Assume a reward model R(X1, ...Xn,A1, ...Am), where X1...Xn are random variables
and A1, ...Am decision variables. The rule is defined as an ordered list 〈c1, ...cn〉,
where each case ci has a condition φi ranging over the random variables X1, ...Xn

and a set of reward values {(ψ1
i ,r

1
i), ...,(ψ

k
i ,r

k
i)}, where ψ

j
i is an assignment of

values for the decision nodes and rk
i = R(ψk

i ,φi). The rule reads similarly:

if (φ1) then

{R(ψ1
1) = r1

1, ... R(ψk
1) = rk

1}
...

else if (φn) then

{R(ψ1
n) = r1

n, ... R(ψm
n) = rm

n }

By convention, the reward of an action value which is not explicitly expressed in
the effect is assumed to be 0. The conditions φi are defined in the exact same way
as for probability models – that is, as functions mapping assignments of values for
X1...Xn to a boolean value. The effects express assignments for the decision variables
A1, ...Am.

To illustrate the use of such rules to capture the model structure, consider the
reward model R(iu,am) from Figure 1, which can be encoded with the rule r2:

Rule r2 : if (iu = GoTo(X)) then
{[R(am = GoTo(X)) = 3], [R(am = AskRepeat) =−0.5],
[R(am = GoTo(Y)∧Y 6= X) =−5]}

The general rule structure is provided by the system designer, while their param-
eters (probabilities or utilities) can be estimated from data, as shown in [11].

8 Pierre Lison

Rule instantiation

At runtime, the rules are instantiated on the current dialogue state by creating new
nodes and dependencies, thereby converting (”grounding”) the rules into a standard
probabilistic model which can then be straightforwardly used for inference based
on standard algorithms such as variable elimination or importance sampling. The
outlined procedure is an instance of ground inference [6], since the rule structure is
grounded in a standard Bayesian Network.

Practically, this instantiation is realised by creating one node for each rule:

• For probability models, the rule node is a chance node that is conditionally de-
pendent on the input variables, and expresses the effect which is likely to hold
given their values. This rule node also has outward dependencies to the set of
output variables it determines – for instance, au for rule r1.

• For utility models, the rule node is a utility node dependent on the input variables,
and expresses the reward associated with specific action values given the inputs.

rule r2

r2

r1

rule r1

au

iu

o

am

Fig. 2 Example of Bayesian Network generated by the instantiation of rules r1 and r2, producing
a distribution similar to Figure 1. The nodes r1 and r2 are rule nodes expressing which of the rule
effects hold given the value of the iu variable. The node r1 represents the probabilistic effect on au
given iu, while r2 encodes the utility of am given iu. Finally, the distribution P(au|r1) is a simple
deterministic distribution following the value assignment ascribed in the effect.

3.2 Planning algorithm

The pseudo-code of the planning algorithm we are currently developing is given in
Algorithm 1. It works by sampling a set of trajectories starting from the current
dialogue state until a given horizon limit is reached. One benefit of this sampling-
based strategy is the ability to work in anytime mode, which means that at any point
in time, the procedure is able to deliver a solution. The quality of the solution will
of course depend on the number of trajectories that are sampled – more trajectories
leading to a more accurate plan, but at a higher computational cost. The anytime

Towards Online Planning for Dialogue Management with Rich Domain Knowledge 9

nature of the algorithm is important since the planner operates online and must thus
satisfy real-time constraints.

Algorithm 1 : PLAN (b)

Require: b: Current dialogue state (expressed as a Bayesian Network)
Require: nbTra jectories: Number of trajectories to sample
Require: γ: Discount factor
Require: horizon: Planning horizon

1: sequences← /0

2: for i = 0→ nbTra jectories do
3: b′← copy of b
4: am← sample system action
5: tra jectory← [am]
6: Q← ∑s∈S R(s,am)b′(s)
7: for t = 0→ horizon do
8: au← sample next user action given b′
9: b′← BELIEFUPDATE(b′∪au)

10: am← sample system action
11: tra jectory← tra jectory∪ [am]
12: Q← Q+ γ t

∑s∈S R(s,am)b′(s)
13: end for
14: if tra jectory ∈ sequences then
15: sequences[tra jectory]← sequences[tra jectory]∪ [Q]
16: else
17: sequences[tra jectory]← [Q]
18: end if
19: end for

20: sequence∗← argmaxi
∑Q∈sequences[i] Q
|sequences[i]|

21: return sequence∗

The trajectories are sampled by repeatedly selecting system actions and subse-
quent user actions until the horizon limit is reached. The system actions can be sam-
pled uniformly or following heuristic distributions if some are available to guide the
search towards high-utility regions [7]. For the user actions, the sampling relies on a
(also rule-structured) user action model P(au|s,am) that predicts the next user action
given the current state and last system action, modulo some standard noise inserted
into the distribution to simulate speech recognition errors.

In order to navigate through the trajectories, the algorithm needs to update its
dialogue state after the selection of a user action. The belief update algorithm is
described in detail in [10]. For each trajectory, the algorithm records the rewards
accumulated after each action. Once enough trajectories have been sampled, the
algorithm computes the average expected return for each possible sequence, and
selects the sequence with the highest score. This sequence will correspond to the
optimal plan, and the only remaining step for the dialogue system is to execute the
first action of this plan.

10 Pierre Lison

The originality of our approach lies in the use of probabilistic rules for updating
the dialogue state and determining the possible actions available at that state. More
specifically, the reward rules will determine a set of actions which can be performed
if their conditions hold, and which reward is expected from their execution. The
major benefit is that instead of having to search through the whole space of possible
actions, the planning algorithm can be limited to consider only a subset of relevant
actions. The reward rules can therefore be seen as providing a high-level filter on
the action space [9], and we expect them to significantly speed up the search for the
optimal action.

We are currently in the process of implementing the details of this online planner
and integrating it in the dialogue system architecture described in [10]. Unsurpris-
ingly, the main bottleneck we currently encounter remains the runtime performance,
which doesn’t yet scale to real-time requirements for more than trivial domains. We
hope to solve these tractability issues soon, and be able to report empirical results on
the performance of this online planner for a human-robot interaction domain similar
to the one described in [11].

4 Related work

Online planning has a long history in dialogue systems [1, 20], but it has usually
been confined to classical planning, relying on a clear-cut set of goal states instead of
relative utilities and with no account of observation uncertainty. Decision-theoretic
approaches on the other hand have mostly focused on offline optimisations of MDPs
[12, 16] or POMDPs [23] via reinforcement learning.

The field of POMDP planning has recently witnessed a surge of interest for on-
line methods [18, 19]. As mentioned in the introduction, online planning offers
clear advantage in terms of scalability to large domains, and adaptivity to dynamic
changes in the environment or task models. Moreover, it can be combined with of-
fline methods, the precomputed policy being in this case employed as a heuristic
approximation to guide the online search for the optimal action. Another related
development is the use of online planning for model-based Bayesian reinforcement
learning [17]. These approaches rely on the inclusion of model uncertainty as part
of the state space. Due to the increased size and continuous nature of the resulting
state space, direct policy optimisation is not feasible, and online planning based on
sampling methods is the only viable alternative.

Online reinforcement learning is another alternative for adapting the system be-
haviour to its context. Most work so far has concentrated on model-free learning
algorithms such as Gaussian Process SARSA or Kalman Temporal Differences
[5, 3]. Model-free reinforcement learning seeks to directly derive an optimal pol-
icy through interaction with the environment. The approach we take in this work
is closer to (Bayesian) model-based approaches to reinforcement learning [14, 17],
where the learner first seeks to estimate a model of the environment and then uses
this model to plan an optimal behaviour. The model estimation is often done by

Towards Online Planning for Dialogue Management with Rich Domain Knowledge 11

incorporating model uncertainty into the state space. Model-based approaches are
able to directly incorporate prior knowledge and constraints into their models, which
make them attractive for dialogue management tasks.

The use of high-level representations such as probabilistic rules in planning has
been explored in previous work [24, 7]. The common intuition behind most of these
approaches is that capturing the inner structure of the domain via high-level repre-
sentations can yield models which are:

• easier to learn and generalise better to unseen data, since they depend on a greatly
reduced number of parameters (as shown in [11])

• more efficient to use, since the model structure can be exploited by the inference
algorithms (as we have tried to show in this paper).

5 Conclusions

We have presented in this paper a general approach to online planning for dialogue
management, based on the use of high-level probabilistic rules. These rules enable
the system designer to provide important domain knowledge which can help filtering
the space of possible actions to consider at a given time point.

Our underlying hypothesis is that online or hybrid planning can be beneficial
for dialogue management, especially for open-ended domains such as human-robot
interaction or tutoring systems. The environment’s dynamics of these domains is
rarely static, and is likely to change over time due to shifting user preferences or
contextual factors. Online planning strategies are able to naturally cope with such
changes without having to recompile policies.

The major bottleneck for online planning remains however the runtime perfor-
mance. We still need to find ways to make online planning tractable for real do-
mains. In this respect, we would like to investigate the use of precomputed policies
as heuristic approximation to guide the lookahead search.

Another interesting venue for future work is the combination of online planning
with reinforcement learning. As described in [17], online planning can be ideally
combined with Bayesian approaches to reinforcement learning, where uncertainty
in the model parameters is directly captured in terms of additional variables in the
state space. Given the high-level representations provided by the probabilistic rules,
the rule parameters could potentially be estimated from limited amounts of (raw) in-
teraction data, and be continuously refined as more interaction experience becomes
available, either from real users or from simulation.

References

1. Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L., Stent, A.: An architecture for
a generic dialogue shell. Natural Language Engineering 6, 213–228 (2000)

12 Pierre Lison

2. Bellman, R.: Dynamic programming. Princeton University Press, Princeton, NY (1957)
3. Daubigney, L., Geist, M., Pietquin, O.: Off-policy learning in large-scale pomdp-based di-

alogue systems. In: 2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 4989 –4992 (2012)

4. Frampton, M., Lemon, O.: Recent research advances in reinforcement learning in spoken dia-
logue systems. Knowledge Engineering Review 24(4), 375–408 (2009)

5. Gasic, M., Jurcicek, F., Thomson, B., Yu, K., Young, S.: On-line policy optimisation of spo-
ken dialogue systems via live interaction with human subjects. In: 2011 IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU), pp. 312–317 (2011)

6. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. The MIT Press (2007)
7. Lang, T., Toussaint, M.: Planning with noisy probabilistic relational rules. Journal of Artificial

Intelligence Research 39, 1–49 (2010)
8. Lemon, O., Pietquin, O.: Machine Learning for Spoken Dialogue Systems. In: Proceedings of

the 10th European Conference on Speech Communication and Technologies (Interspeech’07),
pp. 2685–2688 (2007)

9. Lison, P.: Towards relational POMDPs for adaptive dialogue management. In: Proceeding of
the Student Research Workshop of the 48th Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational Linguistics (2010)

10. Lison, P.: Declarative design of spoken dialogue systems with probabilistic rules. In: Proceed-
ings of the 16th Workshop on the Semantics and Pragmatics of Dialogue (2012)

11. Lison, P.: Probabilistic dialogue models with prior domain knowledge. In: Proceedings of the
SIGDIAL 2012 Conference, pp. 179–188. Seoul, South Korea (2012)

12. Pietquin, O.: Optimising spoken dialogue strategies within the reinforcement learning
paradigm. In: M.E. Cornelius Weber, N.M. Mayer (eds.) Reinforcement Learning, Theory
and Applications, pp. 239–256. I-Tech Education and Publishing, Vienna, Austria (2008)

13. Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An anytime algorithm for
POMDPs. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 1025 –
1032 (2003)

14. Poupart, P., Vlassis, N.A.: Model-based bayesian reinforcement learning in partially ob-
servable domains. In: International Symposium on Artificial Intelligence and Mathematics
(ISAIM) (2008)

15. Purver, M.: The theory and use of clarification requests in dialogue. Ph.D. thesis (2004)
16. Rieser, V., Lemon, O.: Learning human multimodal dialogue strategies. Natural Language

Engineering 16, 3–23 (2010)
17. Ross, S., Pineau, J., Chaib-draa, B., Kreitmann, P.: A Bayesian Approach for Learning and

Planning in Partially Observable Markov Decision Processes. Journal of Machine Learning
Research 12, 1729–1770 (2011)

18. Ross, S., Pineau, J., Paquet, S., Chaib-Draa, B.: Online planning algorithms for POMDPs.
Journal of Artificial Intelligence Research 32, 663–704 (2008)

19. Silver, D., Veness, J.: Monte-carlo planning in large POMDPs. In: J. Lafferty, C.K.I. Williams,
J. Shawe-Taylor, R. Zemel, A. Culotta (eds.) Advances in Neural Information Processing Sys-
tems 23, pp. 2164–2172 (2010)

20. Steedman, M., Petrick, R.P.A.: Planning dialog actions. In: Proceedings of the 8th SIGDIAL
Meeting on Discourse and Dialogue, pp. 265–272. Antwerp, Belgium (2007)

21. Thomson, V., Young, S.: Bayesian update of dialogue state: A POMDP framework for spoken
dialogue systems. Computer Speech & Language 24, 562–588 (2010)

22. Williams, J.: A case study of applying decision theory in the real world: POMDPs and spoken
dialog systems. In: L. Sucar, E. Morales, J. Hoey (eds.) Decision Theory Models for Applica-
tions in Artificial Intelligence: Concepts and Solutions, pp. 315–342. IGI Global (2012)

23. Young, S., Gašić, M., Keizer, S., Mairesse, F., Schatzmann, J., Thomson, B., Yu, K.: The
hidden information state model: A practical framework for POMDP-based spoken dialogue
management. Computer Speech & Language 24, 150–174 (2010)

24. Zettlemoyer, L.S., Pasula, H.M., Kaelblin, L.P.: Learning planning rules in noisy stochastic
worlds. In: IN AAAI, pp. 911–918. AAAI Press (2005)

