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Abstract. Spoken dialogue is notoriously hard to process with standard language
processing technologies. Dialogue systems must indeed meet two major chal-
lenges. First, natural spoken dialogue is replete with disfluent, partial, elided or
ungrammatical utterances. Second, speech recognition remains a highly error-
prone task, especially for complex, open-ended domains. We present an inte-
grated approach for addressing these two issues, based on a robust incremental
parser. The parser takes word lattices as input and is able to handle ill-formed
and misrecognised utterances by selectively relaxing its set of grammatical rules.
The choice of the most relevant interpretation is then realised via a discrimina-
tive model augmented with contextual information. The approach is fully im-
plemented in a dialogue system for autonomous robots. Evaluation results on a
Wizard of Oz test suite demonstrate very significant improvements in accuracy
and robustness compared to the baseline.

1 Introduction

Spoken dialogue is one of the most natural means of interaction between a human and
a robot. It is, however, notoriously hard to process with standard language process-
ing technologies. Dialogue utterances are often incomplete or ungrammatical, and may
contain numerousdisfluencieslike fillers (err, uh, mm), repetitions, self-corrections,
fragments, etc. Moreover, even if the utterance is perfectly well-formed and does not
contain disfluencies, the dialogue system still needs to accommodate the variousspeech
recognition errorsthay may arise. This problem is particularly acute for robots operat-
ing in real-world environments and dealing with complex, open-ended domains.

Spoken dialogue systems designed for human-robot interaction must therefore be
robust to bothill-formed andill-recognisedinputs. In this paper, we present a new ap-
proach to address these two issues. Our starting point is the work done by Zettlemoyer
and Collins on parsing using CCG grammars [10]. To account for natural spoken lan-
guage phenomena (more flexible word order, missing words, etc.), they augment their
grammar framework with a small set of non-standard rules, leading to arelaxationof
the grammatical constraints. A discriminative model over the parses is coupled to the
parser, and is responsible for selecting the most likely interpretation(s).

In this paper, we extend their approach in two important ways. First, [10] focused on
the treatment of ill-formed input, ignoring the speech recognition issues. Our approach,
however, deals with both ill-formed and misrecognized input, in an integrated fashion.
This is done by augmenting the set of non-standard rules with new ones specifically tai-
lored to deal with speech recognition errors. Second, we significantly extend the range



of features included in the discriminative model, by incorporating not onlysyntactic,
but alsoacoustic, semanticandcontextualinformation into the model.

An overview of the paper is as follows. We describe in Section 2 the general archi-
tecture of our system, and discuss the approach in Section 3. We present the evaluation
results on a Wizard-of-Oz test suite in Section 4, and conclude.

2 Architecture

The approach we present in this paper is fully implemented and integrated into a cog-
nitive architecture for autonomous robots (see [4]). It is capable of building up visuo-
spatial models of a dynamic local scene, and of continuously planning and executing
manipulation actions on objects within that scene. The robot can discuss objects and
their material- and spatial properties for the purpose of visual learning and manipula-
tion tasks. Figure 1 illustrates the architecture for the communication subsystem.

Fig. 1.Architecture schema of the communication subsystem (only for comprehension).

Starting with speech recognition, we process the audio signal to establish aword
lattice containing statistically ranked hypotheses about word sequences. Subsequently,
parsing constructs grammatical analyses for the given word lattice. A grammatical anal-
ysis constructs both a syntactic analysis of the utterance, and a representation of its
meaning. The analysis is based on an incremental chart parser1 for Combinatory Cat-
egorial Grammar [8]. These meaning representations are ontologically richly sorted,
relational structures, formulated in a (propositional) description logic, more precisely
in HLDS [1]2. Finally, at the level of dialogue interpretation, the logical forms are re-
solved against a dialogue model to establish co-reference and dialogue moves.

3 Approach

3.1 Grammar relaxation

Our approach to robust processing rests on the idea ofgrammar relaxation: the gram-
matical constraints specified in the grammar are “relaxed” to handle slightly ill-formed

1 Built using the OpenCCG API:http://openccg.sf.net
2 An example of such meaning representation (HLDS logical form) is given in Figure 2.



or misrecognised utterances. Practically, the grammar relaxation is done via the intro-
duction ofnon-standard CCG rules[10]. We describe here two families of relaxation
rules: thediscourse-level composition rulesand theASR correction rules[5].

Discourse-level composition rulesIn natural spoken dialogue, we may encounter ut-
terances containing several independent “chunks” without any explicit separation (or
only a short pause or a slight change in intonation), such as “yes take the ball right
and now put it in the box”. These chunks can be analysed as distinct “discourse units”.
Syntactically speaking, a discourse unit can be any type of saturated atomic categories
– from a simple discourse marker to a full sentence.

The type-changing ruleTdu converts atomic categories into discourse units:

A : @if ⇒ du : @if (Tdu)

whereA represents an arbitrary saturated atomic category (s, np, pp, etc.).
RuleTC then integrates two discourse units into a single structure:

du : @ax ⇒ du : @cz / du : @by (TC)

where the formula@cz is defined as:

@{c:d-units}(list ∧
(〈FIRST〉 a ∧ x)∧
(〈NEXT〉 b ∧ y)) (1)

ASR error correction rules Speech recognition is highly error-prone. It is however
possible to partially alleviate this problem by inserting error-correction rules (more pre-
cisely, new lexical entries) for the most frequently misrecognised words. If we notice
for instance that the ASR frequently substitutes the word “wrong” for “round” (because
of their phonological proximity), we can introduce a new lexical entry to correct it:

round ` adj : @attitude(wrong) (2)

A small set of new lexical entries of this type have been added to our lexicon to
account for the most frequent recognition errors.

3.2 Parse selection

Using more powerful rules to relax the grammatical analysis tends to increase the num-
ber of parses. We hence need a mechanism to discriminate among the possible parses.
The task of selecting the most likely interpretation among a set of possible ones is
calledparse selection. Once the parses for a given utterance are computed, they are
filtered or selected in order to retain only the most likely interpretation(s). This is done
via a (discriminative) statistical model covering a large number of features.

Formally, the task is defined as a functionF : X → Y whereX is the set of possible
inputs (in our case,X is the space ofword lattices), andY the set of parses. We assume:



1. A function GEN(x) which enumerates all possible parses for an inputx. In our
case, the function represents the admissibles parses of the CCG grammar.

2. A d-dimensional feature vectorf(x, y) ∈ <d, representing specific features of the
pair (x, y) (for instance, acoustic, syntactic, semantic or contextual features).

3. A parameter vectorw ∈ <d.

The functionF , mapping a word lattice to its most likely parse, is then defined as:

F (x) = argmax
y∈GEN(x)

wT · f(x, y) (3)

wherewT · f(x, y) is the inner product
∑d

s=1 ws fs(x, y), and can be seen as a
measure of the “quality” of the parse. Given the parameter vectorw, the optimal parse
of a given word latticex can be therefore easily determined by enumerating all the
parses generated by the grammar, extracting their features, computing the inner product
wT · f(x, y), and selecting the parse with the highest score.

3.3 Learning

Training data To estimate the parametersw, we need a set of training examples. Since
no corpus of situated dialogue adapted to our task domain is available to this day – let
alone semantically annotated – we followed the approach advocated in [9] andgener-
ateda corpus from a hand-written task grammar. We first designed a small grammar
covering our task domain, each rule being associated with a HLDS representation and
a weight. Once specified, the grammar is then randomly traversed a large number of
times, resulting in a large set of utterances along with their semantic representations.

Perceptron learning The algorithm we use to estimate the parametersw using the
training data is aperceptron. The algorithm is fully online - it visits each example in
turn, in an incremental fashion, and updatesw if necessary. Albeit simple, the algorithm
has proven to be very efficient and accurate for the task of parse selection [3,10].

The pseudo-code for the online learning algorithm is detailed in [Algorithm 1 ].
The parametersw are first initialised to arbitrary values. Then, for each pair(xi, zi)

in the training set, the algorithm computes the parsey′ with the highest score according
to the current model. If this parse matches the best parse associated withzi (which we
denotey∗), we move to the next example. Else, we perform a perceptron update on the
parameters:

w = w + f(xi, y
∗)− f(xi, y

′) (4)

The iteration on the training set is repeatedT times, or until convergence.

3.4 Features

As we have seen, the parse selection operates by enumerating the possible parses and
selecting the one with the highest score according to the linear model parametrised
by w. The accuracy of our method crucially relies on the selection of “good” features
f(x, y) for our model - that is, features which helpdiscriminatingthe parses. In our
model, the features are of four types: semantic features, syntactic features, contextual
features, and speech recognition features.



Algorithm 1 Online perceptron learning

Require: - set ofn training examples{(xi, zi) : i = 1...n}
- T : number of iterations over the training set
- GEN(x): function enumerating the parses for an inputx according to the grammar.
- GEN(x, z): function enumerating the parses for an inputx with semanticsz.
- L(y) maps a parse treey to its logical form.
- Initial parameter vectorw0

% Initialise
w← w0

% LoopT times on the training examples
for t = 1...T do

for i = 1...n do

% Compute best parse according to current model
Let y′ = argmaxy∈GEN(xi)

wT · f(xi, y)

% If the decoded parse6= expected parse, update the parameters
if L(y′) 6= zi then

% Search the best parse for utterancexi with semanticszi

Let y∗ = argmaxy∈GEN(xi,zi)
wT · f(xi, y)

% Update parameter vectorw
Setw = w + f(xi, y

∗)− f(xi, y
′)

end if

end for
end for

return parameter vectorw

Fig. 2. Logical form for “I want
you to take the mug”.

Semantic features Semantic features are defined
on substructuresof the logical form. We define
features on the following information sources: the
nominals, the ontological sorts of the nominals, and
the dependency relations (following [2]). These
features help us handle various forms of lexical and
syntactic ambiguities.

Syntactic features Syntactic features are features
associated to thederivational historyof a specific
parse. The main use of these features is tope-
naliseto a correct extent the application of the non-
standard rules introduced into the grammar.

To this end, we include in the feature vector
f(x, y) a new feature for each non-standard rule,
which counts the number of times the rule was ap-
plied in the parse. In the derivation shown in Figure
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Fig. 3.CCG derivation of“pick cup the ball”.

3, the rulecorr (application of an ASR correction rule) is applied once, so the corre-
sponding feature value is set to1. These syntactic features can be seen as apenaltygiven
to the parses using these non-standard rules, thereby giving a preference to the “normal”
parses over them. This mechanism ensures that the grammar relaxation is only applied
“as a last resort” when the usual grammatical analysis fails to provide a full parse.

Contextual features One striking characteristic of spoken dialogue is the importance
of context. Understanding the visual and discourse contexts is crucial to resolve poten-
tial ambiguities and compute the most likely interpretation(s) of a given utterance. The
feature vector f (x, y) therefore includes various contextual features [5]. The dialogue
system notably maintains in its working memory a list of contextually activated words
[7]. This list is continuously updated as the dialogue and the environment evolves. For
each context-dependent word, we include one feature counting its occurrence in the
utterance.

Speech recognition featuresFinally, the feature vectorf(x, y) also includes features
related to thespeech recognition. The ASR module outputs a set of (partial) recognition
hypotheses, packed in a word lattice. One example is given in Figure 4. To favour the
hypotheses with high confidence scores (which are, according to the ASR statistical
models, more likely to reflect what was uttered), we introduce in the feature vector
several acoustic features measuring the likelihood of each recognition hypothesis.

Fig. 4.Example of word lattice

4 Evaluation

We performed a quantitative evaluation of our approach, using its implementation in
a fully integrated system (cf. Section 2). To set up the experiments for the evaluation,
we have gathered a Wizard-of-Oz corpus of human-robot spoken dialogue for our task-
domain, which we segmented and annotated manually with their expected semantic



interpretation. The data set contains 195 individual utterances along with their complete
logical forms.

Three types of quantitative results are extracted from the evaluation results:exact-
match, partial-match, andword error rate. Tables 1, 2 and 3 illustrate the results, broken
down by use of grammar relaxation, use of parse selection, and number of recognition
hypotheses considered. Each line in the tables corresponds to a possible configuration.
Tables 1 and 2 give the precision, recall andF1 value for each configuration (respec-
tively for the exact- and partial-match), and Table 3 gives the Word Error Rate [WER].

Size of word lattice
(number of NBests)

Grammar
relaxation

Parse
selection

Precision Recall F1-value

(Baseline) 1 No No 40.9 45.2 43.0
. 1 No Yes 59.0 54.3 56.6
. 1 Yes Yes 52.7 70.8 60.4
. 3 Yes Yes 55.3 82.9 66.3
. 5 Yes Yes 55.6 84.0 66.9

(Full approach) 10 Yes Yes 55.6 84.9 67.2

Table 1.Exact-match accuracy results (in percents).

Size of word lattice
(number of NBests)

Grammar
relaxation

Parse
selection

Precision Recall F1-value

(Baseline) 1 No No 86.2 56.2 68.0
. 1 No Yes 87.4 56.6 68.7
. 1 Yes Yes 88.1 76.2 81.7
. 3 Yes Yes 87.6 85.2 86.4
. 5 Yes Yes 87.6 86.0 86.8

(Full approach) 10 Yes Yes 87.7 87.0 87.3

Table 2.Partial-match accuracy results (in percents).

Size of word
lattice (NBests)

Grammar
relaxation

Parse
selection

WER

1 No No 20.5
1 Yes Yes 19.4
3 Yes Yes 16.5
5 Yes Yes 15.7
10 Yes Yes 15.7

Table 3.Word error rate (in percents).

The baseline corresponds to the
dialogue system with no grammar
relaxation, no parse selection, and
use of the first NBest recognition
hypothesis. Both the partial-, exact-
match accuracy results and the WER
demonstrate statistically significants
improvements over the baseline. We
also observe that the inclusion of
more ASR recognition hypotheses
has a positive impact on the accuracy
results.



5 Conclusions

We presented anintegratedapproach to the processing of (situated) spoken dialogue,
suited to the specific needs and challenges encountered in human-robot interaction.

In order to handle disfluent, partial, ill-formed or misrecognized utterances, the
grammar used by the parser is “relaxed” via the introduction of a set ofnon-standard
rules which allow for the combination of discourse fragments or the correction of
speech recognition errors. The relaxed parser yields a (potentially large) set of parses,
which are then retrieved by the parse selection module. The parse selection is based on
a discriminative model exploring a set of relevant semantic, syntactic, contextual and
acoustic features extracted for each parse.

The outlined approach is currently being extended in new directions, such as the
exploitation of parse selectionduring incremental parsing to improve the parsing ef-
ficiency [6], the introduction of more refined contextual features, or the use of more
sophisticated learning algorithms, such as Support Vector Machines.
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