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Abstract. Spoken dialogue is notoriously hard to process with standard language
processing technologies. Dialogue systems must indeed meet two major chal-
lenges. First, natural spoken dialogue is replete with disfluent, partial, elided or
ungrammatical utterances. Second, speech recognition remains a highly error-
prone task, especially for complex, open-ended domains. We present an inte-
grated approach for addressing these two issues, based on a robust incremental
parser. The parser takes word lattices as input and is able to handle ill-formed
and misrecognised utterances by selectively relaxing its set of grammatical rules.
The choice of the most relevant interpretation is then realised via a discrimina-
tive model augmented with contextual information. The approach is fully im-
plemented in a dialogue system for autonomous robots. Evaluation results on a
Wizard of Oz test suite demonstrate very significant improvements in accuracy
and robustness compared to the baseline.

1 Introduction

Spoken dialogue is often considered to be one of the most natural means of interaction
between a human and a robot. It is, however, notoriously hard to process with standard
language processing technologies. Dialogue utterances are often incomplete or ungram-
matical, and may contain numerous disfluencies like fillers (err, uh, mm), repetitions,
self-corrections, fragments, etc. Moreover, even in the case where the utterance is per-
fectly well-formed and does not contain any kind of disfluencies, the dialogue system
still needs to accommodate the various speech recognition errors thay may arise. This
problem is particularly acute for robots operating in real-world noisy environments and
deal with utterances pertaining to complex, open-ended domains.

Spoken dialogue systems designed for human-robot interaction must therefore be
robust to both ill-formed and ill-recognised inputs. In this paper, we present a new ap-
proach to address these two difficult issues. Our starting point is the work done by
Zettlemoyer and Collins on parsing using relaxed CCG grammars [21]. In order to
account for natural spoken language phenomena (more flexible word order, missing
words, etc.), they augment their grammar framework with a small set of non-standard
combinatory rules, leading to a relaxation of the grammatical constraints. A discrimi-
native model over the parses is coupled with the parser, and is responsible for selecting
the most likely interpretation(s) among the possible ones.

In this paper, we extend their approach in two important ways. First, [21] focused on
the treatment of ill-formed input, ignoring the speech recognition issues. Our approach,



however, deals with both ill-formed and misrecognized input, in an integrated fashion.
This is done by augmenting the set of non-standard rules with new ones specifically tai-
lored to deal with speech recognition errors. Second, we significantly extend the range
of features included in the discriminative model, by incorporating not only syntactic,
but also acoustic, semantic and contextual information into the model.

An overview of the paper is as follows. We describe in Section 2 the architecture
in which our system has been integrated. We then discuss the approach in Section 3.
Finally, we present in Section 4 the evaluations on a WOZ test suite, and conclude.

2 Architecture

The approach we present in this paper is fully implemented and integrated into a cog-
nitive architecture for autonomous robots (see [10]). It is capable of building up visuo-
spatial models of a dynamic local scene, and continuously plan and execute manip-
ulation actions on objects within that scene. The robot can discuss objects and their
material- and spatial properties for the purpose of visual learning and manipulation
tasks. Figure 1 illustrates the architecture for the communication subsystem.

Mediation
to other B,
/Communication modalities

subsystem
cross-modal disc. referent bindings
binding dial move(s)
event structure

— :
Dialogue
Interpretation

word
lattice packed
logical form

Incremental
Parsing

Fig. 1. Architecture schema of the communication subsystem (only for comprehension).
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Starting with speech recognition, we process the audio signal to establish a word
lattice containing statistically ranked hypotheses about word sequences. Subsequently,
parsing constructs grammatical analyses for the given word lattice. A grammatical anal-
ysis constructs both a syntactic analysis of the utterance, and a representation of its
meaning. The analysis is based on an incremental chart parser! for Combinatory Cat-
egorial Grammar [18]. These meaning representations are ontologically richly sorted,
relational structures, formulated in a (propositional) description logic, more precisely in
HLDS [2]. The parser then compacts all meaning representations into a single packed
logical form [5,13]. A packed logical form represents content similar across the dif-
ferent analyses as a single graph, using over- and underspecification of how different
nodes can be connected to capture lexical and syntactic forms of ambiguity.

! Built using the OpenCCG API: http://openccg.sf.net



At the level of dialogue interpretation, the logical forms are resolved against a
SDRS-like dialogue model [1] to establish co-reference and dialogue moves.

Linguistic interpretations must finally be associated with extra-linguistic knowledge
about the environment — dialogue comprehension hence needs to connect with other
subarchitectures like vision, spatial reasoning or planning. We realise this information
binding between different modalities via a specific module, called the “binder”, which
is responsible for the ontology-based mediation accross modalities [11]. .

Interpretation in context indeed plays a crucial role in the comprehension of utter-
ance as it unfolds. Human listeners continuously integrate linguistic information with
scene understanding, (foregrounded entities and events) and word knowledge. This con-
textual knowledge serves the double purpose of interpreting what has been said, and
predicting/anticipating what is going to be said. Their integration is also closely time-
locked, as evidenced by analyses of saccadic eye movements in visual scenes [12] and
by neuroscience-based studies of event-related brain potentials [19].
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Fig. 2. Context-sensitivity in processing situated dialogue understanding

Several approaches in situated dialogue for human-robot interaction demonstrated
that a robot’s understanding can be substantially improved by relating utterances to the
situated context [17,4,13]. By incorporating contextual information at the core of our
model, our approach also seeks to exploit this important insight.

3 Approach

3.1 Grammar relaxation

Our approach to robust processing of spoken dialogue rests on the idea of grammar
relaxation: the grammatical constraints specified in the grammar are “relaxed” to han-
dle slightly ill-formed or misrecognised utterances. Practically, the grammar relaxation
is done via the introduction of non-standard CCG rules [21]2 .

2 In Combinatory Categorial Grammar, rules are used to assemble categories to form larger
pieces of syntactic and semantic structure. The standard rules are application (<, >), compo-
sition (B), and type raising (T) [18].



We describe here three families of relaxation rules: the discourse-level composition
rules, the ASR correction rules, and the paradigmatic heap rules [14].

Discourse-level composition rules In natural spoken dialogue, we may encounter ut-
terances containing several independent “chunks” without any explicit separation (or
only a short pause or a slight change in intonation), such as “yes take the ball right
and now put it in the box”. These chunks can be analysed as distinct “discourse units”.
Syntactically speaking, a discourse unit can be any type of saturated atomic categories
— from a simple discourse marker to a full sentence.

The type-changing rule T4, converts atomic categories into discourse units:

A: @zf =du: @zf (Tdu)

where A represents an arbitrary saturated atomic category (s, np, pp, etc.).
Rule T'¢ then integrates two discourse units into a single structure:

du: @,z =du:Q.z/du:Qy (Te)
where the formula Q. z is defined as:

@{c:d-units} (liSt A
((FIRST) a A )A
((NEXT) bAy)) ey

ASR error correction rules Speech recognition is highly error-prone. It is however
possible to partially alleviate this problem by inserting error-correction rules (more pre-
cisely, new lexical entries) for the most frequently misrecognised words. If we notice
for instance that the ASR frequently substitutes the word “wrong” for “round” (because
of their phonological proximity), we can introduce a new lexical entry to correct it:

round i adj : Qq4i4u4e (Wrong) @)

A small set of new lexical entries of this type have been added to our lexicon to
account for the most frequent recognition errors.

Paradigmatic heap rules The last family of relaxation rules is used to handle the nu-
merous disfluencies evidenced in spoken language. The theoretical foundations of our
approach can be found in [3,9], which offer an interesting perspective on the linguistic
analysis of spoken language, based on an extensive corpus study of spoken transcripts.
Two types of syntactic relations are distinguished: syntagmatic relations and paradig-
matic relations. Syntagmatic constructions are primarily characterized by hypotactic
(i.e. head-dependent) relations between their constituents, whereas paradigmatic ones
do not have such head-dependent asymmetry. Together, constituents connected by such
paradigmatic relations form what [3] calls a “paradigmatic heap”. A paradigmatic heap



Bob i’m at the uh
south uh

Example 1. let’s say east-southeast rim of a uh oh
thirty-meter crater
up on the uh
Example 2. Scarp and maybe three hundred
err two hundred  meters
it
Example 3. it probably shows up as a bright crater

a bright crater on your map

Table 1. Example of grid analysis for three utterances containing disfluencies.

is defined as the position in a utterance where the “syntagmatic unfolding is inter-
rupted”, and the same syntactic position hence occupied by several linguistic objects.
Disfluencies can be conveniently analysed as paradigmatic heaps.

Consider the utterances in Table 13, These utterances contain several hard-to-process
disfluencies. The linguistic analysis of these examples is illustrated on two dimensions,
the horizontal dimension being associated to the syntagmatic axis, and the vertical di-
mension to the paradigmatic axis. A vertical column therefore represents a paradigmatic
heap. The disfluencies are indicated in bold characters.

The rule T py is a type-changing rule which allows us to formalise the concept of
paradigmatic heap in terms of a CCG rule, by “piling up” two constituents on a heap.

A:Qur=A:Q.z/A:Qy (Tpr)
where the formula @,z is defined as:

@{c:heap—units} (heap A
((FIRST) a A z)A
((NEXT) bAY)) 3

The category A stands for any category for which we want to allow this piling-up
operation. For instance, the two heaps of example (3) are of category np.

3.2 Parse selection

Using more powerful rules to relax the grammatical analysis tends to increase the num-
ber of parses. We hence need a mechanism to discriminate among the possible parses.
The task of selecting the most likely interpretation among a set of possible ones is
called parse selection. Once the parses for a given utterance are computed, they are
filtered or selected in order to retain only the most likely interpretation(s). This is done
via a (discriminative) statistical model covering a large number of features.

3 Transcript excerpts from the Apollo 17 Lunar Surface Journal [http:/history.nasa.gov/alsj/a17/]



Formally, the task is defined as a function F' : X — ) where X’ is the set of possible
inputs (in our case, X is the space of word lattices), and ) the set of parses. We assume:

1. A function GEN(z) which enumerates all possible parses for an input . In our
case, the function represents the admissibles parses of the CCG grammar.

2. A d-dimensional feature vector f(z,y) € R9, representing specific features of the
pair (x, y) (for instance, acoustic, syntactic, semantic or contextual features).

3. A parameter vector w € R

The function F', mapping a word lattice to its most likely parse, is then defined as:
F(z) = argmax w’ -f(z,y) 4
yEGEN(z)
where w? - f(x,y) is the inner product Zle ws fs(z,y), and can be seen as a
measure of the “quality” of the parse. Given the parameter vector w, the optimal parse
of a given word lattice x can be therefore easily determined by enumerating all the
parses generated by the grammar, extracting their features, computing the inner product
wl - f(z,y), and selecting the parse with the highest score. The task of parse selection
is an example of a structured classification problem, which is the problem of predicting
an output y from an input x, where the output y has a rich internal structure. In the
specific case of parse selection, x is a word lattice, and y a logical form.

3.3 Learning

Training data To estimate the parameters w, we need a set of training examples. Since
no corpus of situated dialogue adapted to our task domain is available to this day — let
alone semantically annotated — we followed the approach advocated in [20] and gen-
erated a corpus from a hand-written task grammar. We first designed a small grammar
covering our task domain, each rule being associated to a HLDS representation and
a weight. Once specified, the grammar is then randomly traversed a large number of
times, resulting in a large set of utterances along with their semantic representations®.
It is worth noting that, instead of annotating entire derivations, we only specify the
resulting semantics of the utterance, ie. its logical form. The training data is thus repre-
sented by a set of examples (x;, 2;), where x; is an utterance and z; is a HLDS formula.
For a given training example (z;, z;), there may be several possible CCG parses leading
to the same semantics z;. The parameter estimation can therefore be seen as a hidden
variable problem , where the training examples contain only partial information.

Perceptron learning The algorithm we use to estimate the parameters w using the
training data is a perceptron. The algorithm is fully online - it visits each example in
turn, in an incremental fashion, and updates w if necessary. Albeit simple, the algorithm
has proven to be very efficient and accurate for the task of parse selection [8,21].

The pseudo-code for the online learning algorithm is detailed in [Algorithm 1].

* Because of its relatively artificial character, the quality of such training data is naturally lower
than what could be obtained with a genuine corpus. But, as the experimental results have
shown, it remained sufficient for our purpose. In a near future, this generated training data will
be progressively replaced by a real corpus of spoken dialogue transcripts.



Algorithm 1 Online perceptron learning

Require: - set of n training examples {(x;,2;) : i = 1..n}
- T": number of iterations over the training set
- GEN(z): function enumerating the parses for an input x according to the grammar.
- GEN(=z, z): function enumerating the parses for an input « with semantics z.
- L(y) maps a parse tree y to its logical form.
- Initial parameter vector wg

% Initialise
W <— Wp

% Loop T times on the training examples
fort=1...T do
fori=1..ndo

% Compute best parse according to current model
Lety' = argmax,cgen(s,) wl - f(xi,y)
% If the decoded parse # expected parse, update the parameters
if L(y') # 2; then
9 Search the best parse for utterance x; with semantics z;
Let y* = argmax,c geN(a,.-,) W' - £(2i,y)
% Update parameter vector w
Setw = w + f(z;,y") — f(zi,y)
end if

end for
end for

return parameter vector w

It works as follows: the parameters w are first initialised to arbitrary values. Then,
for each pair (z;, z;) in the training set, the algorithm computes the parse y’ with the
highest score according to the current model. If this parse happens to match the best
parse associated with z; (which we denote y*), we move to the next example. Else, we
perform a perceptron update on the parameters:

w=w+f(z;,y") — f(z;,9) ©)

The iteration on the training set is repeated 1" times, or until convergence.

It is possible to prove that, provided the training set (z;, z;) is separable with margin
0 > 0, the algorithm is assured to converge after a finite number of iterations to a model
with zero training errors [8]. See also [7] for convergence theorems and proofs.

3.4 Features

As we have seen, the parse selection operates by enumerating the possible parses and
selecting the one with the highest score according to the linear model parametrised
by w. The accuracy of our method crucially relies on the selection of “good” features



f(x,y) for our model - that is, features which help discriminating the parses. In our
model, the features are of four types: semantic features, syntactic features, contextual
features, and speech recognition features.

Semantic features Semantic features are defined on substructures of the logical form.
We define features on the following information sources: the nominals, the ontological
sorts of the nominals, and the dependency relations (following [6]).

want

{wantl_1:cognition}

Mood:ind
& Tense:pres

take
{i1_L:person} ( \ Patient
k{takel_l:actlnm—mn—mntmn})
Num:sg
— "/

Patient

mug

{mugl_1:thing}

you

- - - oul_l:person
Delimitation:unique {youl_1:p }

& Num:sg Num:sg
& Quantification:specific —
\—

Fig. 3. HLDS logical form for “I want you to take the mug”.

The features on nominals and ontological sorts aim at modeling (aspects of) lexical
semantics - e.g. which meanings are the most frequent for a given word -, whereas the
features on relations and sequence of relations focus on sentential semantics - which
dependencies are the most frequent. These features help us handle various forms of
lexical and syntactic ambiguities.

Syntactic features Syntactic features are features associated to the derivational history
of a specific parse. The main use of these features is to penalise to a correct extent the
application of the non-standard rules introduced into the grammar.

the red  pall
—— ball —
npin —n - the o Tn
—_— > np/n n
np >
Try np
take np/np
s/np np Z
s >

Fig. 4. CCG derivation for the utterance “fake the ball the red ball”, containing a self-correction.



To this end, we include in the feature vector f(z,y) a new feature for each non-
standard rule, which counts the number of times the rule was applied in the parse. In
the derivation shown in Figure 4, the rule Tpy (application of a paradigmatic heap
to handle the disfluency) is applied once, so the corresponding feature value is set to
1. These syntactic features can be seen as a penalty given to the parses using these
non-standard rules, thereby giving a preference to the “normal” parses over them. This
mechanism ensures that the grammar relaxation is only applied “as a last resort” when
the usual grammatical analysis fails to provide a full parse.

Contextual features As we already mentioned, one striking characteristic of spoken
dialogue is the importance of context. Understanding the visual and discourse contexts
is critical to resolve potential ambiguities and compute the most likely interpretation(s).
The feature vector f(x,y) therefore includes various features related to the context:

— Activated words: our dialogue system maintains in its working memory a list of
contextually activated words (cfr. [16]). This list is continuously updated as the di-
alogue and the environment evolves. For each context-dependent word, we include
one feature signaling its potential occurrence in the word lattice.

— Expected dialogue moves: for each dialogue move, we include one feature indicat-
ing if the move is consistent with the current discourse model. These features ensure
for instance that the dialogue move following a QuestionYN is a Accept, Reject or
another question (e.g. for clarification requests), but almost never an Opening.

Speech recognition features Finally, the feature vector f(x, y) also includes features
related to the speech recognition. The ASR module outputs a set of (partial) recognition
hypotheses, packed in a word lattice. One example is given in Figure 5. To favour the
hypotheses with high confidence scores (which are, according to the ASR statistical
models, more likely to reflect what was uttered), we introduce in the feature vector
several acoustic features measuring the likelihood of each recognition hypothesis.

mug, P=0.95 inside, P=0.7

site, P=0.2

no, P=0.4 ! :
— Side, P=1
these, P=0.4 mugs, P=1

it, P=0.8

Fig. 5. Example of word lattice

4 Evaluation

We performed a quantitative evaluation of our approach, using its implementation in
a fully integrated system (cf. Section 2). To set up the experiments for the evaluation,



we have gathered a Wizard-of-Oz corpus of human-robot spoken dialogue for our task-
domain (Figure 6), which we segmented and annotated manually with their expected
semantic interpretation. The data set contains 195 individual utterances along with their
complete logical forms.

Fig. 6. Wizard-of-Oz experiments for a task domain of object manipulation and visual learning

Three types of quantitative results are extracted from the evaluation results: exact-
match, partial-match, and word error rate. Tables 2, 3 and 4 illustrate the results, broken
down by use of grammar relaxation, use of parse selection, and number of recognition
hypotheses considered. Each line in the tables corresponds to a possible configuration.
Tables 2 and 3 give the precision, recall and F} value for each configuration (respec-
tively for the exact- and partial-match), and Table 4 gives the Word Error Rate [WER].

T

Size of word lattice’ Grammar ' Parse Precision | Recall | Fr-value
(number of NBests) ‘ relaxation ‘ selection ‘ !
(Baseline) 1 ; No ; No 40.9 ; 45.2 43.0
. 1 | No . Yes 59.0 | 543 56.6
1 | Yes | Yes 527 1 70.8 60.4
3 [ Yes [ Yes 553 1 829 66.3
. 5 ! Yes ! Yes 55.6 | 84.0 66.9
(Full approach) 10 ' Yes ' Yes 556 ' 849 67.2

Table 2. Exact-match accuracy results (in percents).

The baseline corresponds to the dialogue system with no grammar relaxation, no
parse selection, and use of the first NBest recognition hypothesis. Both the partial-,
exact-match accuracy results and the WER demonstrate statistically significants im-
provements over the baseline. We also observe that the inclusion of more ASR recog-
nition hypotheses has a positive impact on the accuracy results.



Size of word lattice’ Grammar ' Parse Precision ' Recall | F1-value
(number of NBests) ‘ relaxation ‘ selection ‘ !
(Baseline) 1 | No . No 862 | 56.2 68.0
. 1 | No . Yes 874 | 56.6 68.7
1 | Yes | Yes 88.1 | 76.2 81.7
3 [ Yes [ Yes 87.6 1 852 86.4
. 5 ‘ Yes ‘ Yes 87.6 | 86.0 86.8
(Full approach) 10 ' Yes ' Yes 877 ' 87.0 87.3
Table 3. Partial-match accuracy results (in percents).
5 Conclusions
We presented an integrated approach
to the processing of (situated) spo-
ken dialogue, suited to the specific Size of word ; Grammar ; Parse WER
needs and challenges encountered in  |lattice (NBests) | relaxation  selection
human-robot interaction. 1 . No | No 20.5
In order to handle disfluent, par- 1 o Yes | Yes 19.4
tial, ill-formed or misrecognized ut- 3 o Yes 1 Yes 16.5
’ & 5 I Yes 1 Yes ||157
terances, the grammar used by the 10 I Yes ' Yes 15.7

parser is “relaxed” via the introduc-
tion of a set of non-standard rules
which allow for the combination of
discourse fragments or the correc-

Table 4. Word error rate (in percents).

tion of speech recognition errors. The relaxed parser yields a (potentially large) set
of parses, which are then retrieved by the parse selection module. The parse selection
is based on a discriminative model exploring a set of relevant semantic, syntactic, con-
textual and acoustic features extracted for each parse.

The outlined approach is currently being extended in new directions, such as the
exploitation of parse selection during incremental parsing to improve the parsing ef-
ficiency [15], the introduction of more refined contextual features, or the use of more

sophisticated learning algorithms, such as Support Vector Machines.
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