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Abstract
Traditional approaches to dialogue management rely on a fixed, predefined set of state variables. For many application domains,
the dialogue state is however best described in terms of a collection of varying number of entities and relations holding between
them. These entities might correspond to objects, places or persons in the context of the interaction, or represent a set of tasks
to perform. Such formalization of the state space is well-suited for many domains, but presents some challenges for the standard
probabilistic models used in dialogue management, since these models are propositional in nature and thus unable to directly
operate on such state representation. To address this issue, we present an alternative approach based on the use of expressive
probabilistic rules that allow for limited forms of universal quantification. These rules take the form of structured mappings
between input and output variables, and function as high-level templates for the probability and utility models integrated in
the dialogue manager. We present in this abstract the general formalisation of this approach, focusing on the use of universal
quantifiers to capture the relational structure of the domain.

1. Introduction
Slot-filling applications are sometimes perceived as the
“prototypical” domain for spoken dialogue systems. Their
dialogue state is usually represented as a collection of slots
representing the user intention (such as booking a flight
ticket or getting information about bus routes), and the pur-
pose of the interaction is to fill these slots as accurately and
efficiently as possible. The state space for these applica-
tions can be large, but is strictly limited by the number of
slots and the number of values allowed for each slot.

Many dialogue domains cannot however be easily de-
scribed in such a way. This is especially the case for sit-
uated domains such as human-robot interaction (Iwahashi,
2006; Kruijff et al., 2010), , cognitive assistants and com-
panions (Cavazza et al., 2010), and tutoring systems (Es-
kenazi, 2009). These domains are not limited to the com-
pletion of a single task with predefined features but have to
represent a varying number of tasks, complex user models
and – last but not least – a rich, dynamic environment. This
external environment is often best described in terms of a
varying number of entities related to one another. Examples
of such relational structure of entities include:

• Collections of physical objects in a visual scene, each
described by specific features (colour, shape) and re-
lations with other objects (e.g. spatial relations);

• Indoor environments topologically structured in vari-
ous rooms and spaces in which to navigate;

• Stacks of tasks to complete by the agent, each task
being possibly connected to other tasks via precedence
or inclusion relationships.

This formalisation of the state space in terms of entities
related to one another is well-suited for many domains, but
is not easy to encode using classical probabilistic models.
The expressive power of such models is indeed limited to
propositional logic and thus unable to directly capture the
relational semantics of such representation. In this abstract,

we present an alternative approach we are currently devel-
oping in our research work, based on probabilistic rules
augmented with a limited form of universal quantification.
These rules provide a compact encoding for the various
probability and utility models integrated in the dialogue
manager. This abstract focuses on the integration of univer-
sal quantifiers to the rule structure, enabling us to capture
the relational structure of the domain.

2. Approach
We base our approach on the concept of probabilistic rules,
as already outlined in (Lison, 2012b; Lison, 2012a). We’ll
first briefly review this description formalism, and then ex-
plain how to extend it to handle relational domains.

2.1 Probabilistic rules
A rule is defined as a condition-effect mapping, where each
condition is mapped to a set of alternative effects. Each
effect is associated with a probability value. The list of
conditions is ordered and takes the form of a “if ... then ...
else” case expressing the distribution of the output variables
depending on the inputs.

Formally, a probability rule r is defined as an ordered
list of cases, where each case is associated with a con-
dition ci as well as a distribution over stochastic effects
{(e1i , p1i ), ..., (eki , pki )}. For each stochastic effect eji , we
have that pji = P (eji |ci), where p1...mi satisfy the usual
probability axioms. The rule reads as such:

if (c1) then

{P (e11) = p11, ... P (ek1) = pk1}
else if (c2) then

{P (e12) = p12, ... P (el2) = pl2}
...

else if (cn) then
{P (e1n) = p1n, ... P (emn ) = pmn }



The conditions ci are expressed as (propositional) log-
ical formulae grounded in the input variables. They can
be arbitrarily complex formulae connected by conjunctive,
disjunctive and negation operators. The effects are defined
in the same way and encode specific value assignments for
a set of output variables.

One can also use the framework to encode utility dis-
tributions instead of probability distributions. In such
case, the above structure remains essentially the same, with
the probability distributions P (·) over output variables re-
placed by utility distributions Q(·) over specific action(s)
that can be executed by the agent.

At runtime, these rules are then instantiated by extend-
ing the Bayesian network representing the dialogue state
with new nodes and dependencies capturing the semantics
of the rules, as illustrated in Figure 1. Rules can trigger
one another in complex chain of updates. The application
of these rules effectively updates the dialogue state as new
information becomes available, and also determines the set
of actions that can be executed at any given point in the
interaction.

This system design is directly inspired by information-
state update approaches to dialogue management (Lars-
son and Traum, 2000), with the notable difference that the
rules are in our case probabilistic rather than determinis-
tic, and include parameters that can be estimated from data.
The estimation of these rule parameters is done based on
a Bayesian approach, by integrating additional variables
in the dialogue state representing the model uncertainty.
Given some training data collected via Wizard-of-Oz ex-
periments or real interactions, it becomes possible to update
the probability distributions of these variables and narrow
down their spreads to the values providing the best fit for
this data. The interested reader is invited to consult (Lison,
2012b; Lison, 2012a) for more details.

2.2 Quantification
We now describe how to extend this framework to han-
dle relational domains. We would like to express that a
rule holds for any state variable satisfying some criteria,
something which requires some form of universal quantifi-
cation. The full expressivity of first-order logic seems how-
ever overkill for our more modest modelling needs. Our
proposed solution is therefore to extend the formalism with
a limited form of quantification, and express the rules in the
following form:

∀x = x1, ...xk :

if (c1(x)) then

{P (e11(x)) = p11, ... P (ek1(x)) = pk1}
...

else if (cn(x)) then
{P (e1n(x)) = p1n, ... P (emn (x)) = pmn }

In other words, the above formalisation allows for certain
variables x1, ...xk in the conditions and effects to be under-
specified. In such a case, the rule will be instantiated for
every possible assignment of the underspecified variables.

It has been previously shown that the probability and util-
ity parameters of such rules can be efficiently learned from
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Figure 1: Example of application of two rules rx and ry on
a dialogue state including two variables B and C, leading
to the updated variables B′ and E′.

data (Lison, 2012b). One of the key advantages of such
representation is it allows for powerful forms of parameter
sharing – for instance, the effect probabilities in the above
rule are now made independent of the actual instantiation of
the variables x1, ...xk. Quantification mechanisms are thus
more than mere “syntactic shorthands” for grounded rules,
as they allow the learning algorithm to generalise over the
observed data and therefore greatly reduce the number of
parameters to estimate.

2.3 Examples
We present here two simple examples of rules employing
the above quantification mechanism. Assume a dialogue
state containing a set of objects, each with a specific colour.
Rule r1 below states that, if the user requests the robot to
pick up the object, the robot should do so with utility 5.

r1 : ∀o :

if (au=RequestPickUp(o)) then
{Q(a′m = PickUp(o)) = 5}

In the above rule, au denotes the user dialogue act, a′m
denotes the (next) system dialogue act, and o is a reference
to an arbitrary physical object. Rule r1 is a rule specify-
ing the utility of the PickUp(o) action – the dialogue sys-
tem will then select the action a′m with the highest utility.
Thanks to the universal quantifier, we are able to express
that the utility of the PickUp(o) action does not depend on
the actual identity of the o object being referred to.

Rule r2 is another example of rule, which predicts the
next dialogue act from the user given the current dialogue
state. Rule r2 states that, if the robot utters a question such
as “What colour is the object”, the user is likely to utter a
dialogue act such as “the object is X” at the next turn, where
X is the actual colour of the object.

r2 : ∀o, c :
if (am=WhatIsColour(o) ∧ o.colour=c) then
{P (a′u = Assert(Is(o, c))) = 0.9}

If the dialogue state contains e.g. one single object o1
with P (o1.colour = blue) = 0.8, the probability of the
user uttering “the object is blue” is therefore 0.72. This
prediction can be used to e.g. prime the ASR’s language
model or rerank the output of the dialogue act classifier.



3. Conclusions and Future Work

Interactions in situated environments are both complex and
uncertain – that is, they exhibit both high degrees of struc-
tural complexity and high levels of uncertainty. Spoken di-
alogue systems operating in such conditions must therefore
address these two challenges. In our view, one promising
strategy is to rely on expressive probabilistic models able
to exploit powerful generalisations and domain knowledge
without sacrificing the model’s stochasticity.

We have presented in this abstract a simple approach for
specifying the probability and utility models of a dialogue
manager when the dialogue state is expressed as a relational
structure. The key idea is to integrate a limited form of uni-
versal quantification in the rule specification, and instanti-
ate the rules for every possible valid assignment of the un-
bound variables. The approach is currently in development
as part of an open source dialogue toolkit called openDial,
which is entirely based on probabilistic rules.

The advantages of explicitly encoding relational struc-
tures in the state space has long been recognised in A.I. and
machine learning (Getoor and Taskar, 2007; Otterlo, 2012).
The main challenge is to formalise the probabilistic models
operating on this state space to exploit this relational struc-
ture. This is often realised via abstraction mechanisms such
as first-order logic (Richardson and Domingos, 2006). In
this paper, we adopted a somewhat simpler approach based
on a restricted form of quantification.

The key question that we are currently investigating is
how to keep the formalism tractable for dialogue manage-
ment, which needs to operate in real-time. Since each rule
has to be instantiated for every possible assignment of the
underspecified variables, we need to perform some form of
aggressive pruning to quickly discard irrelevant instantia-
tions of the rules – for instance, instantiations of the rule
for which no condition applies. We are currently looking
into the best way to define such pruning heuristics.

The empirical evaluation of our approach will be realised
in a human-robot interactions scenario, involving a Nao
robot (from Aldebaran Robotics) operating in a tabletop
setting containing a few visual objects that can be picked up
and moved according to the instructions of a human user.

Figure 2: Example of interaction with the Nao robot in a
shared visual scene containing simple objects.
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