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Abstract

Neural conversational models require sub-
stantial amounts of dialogue data to es-
timate their parameters and are therefore
usually learned on large corpora such as
chat forums, Twitter discussions or movie
subtitles. These corpora are, however, of-
ten challenging to work with, notably due
to their frequent lack of turn segmentation
and the presence of multiple references ex-
ternal to the dialogue itself. This paper
shows that these challenges can be miti-
gated by adding a weighting model into the
neural architecture. The weighting model,
which is itself estimated from dialogue
data, associates each training example to a
numerical weight that reflects its intrinsic
quality for dialogue modelling. At training
time, these sample weights are included
into the empirical loss to be minimised.
Evaluation results on retrieval-based mod-
els trained on movie and TV subtitles
demonstrate that the inclusion of such a
weighting model improves the model per-
formance on unsupervised metrics.

1 Introduction

The development of conversational agents (such
as mobile assistants, chatbots or interactive robots)
is increasingly based on data-driven methods aim-
ing to infer conversational patterns from dialogue
data. One major trend in the last recent years is the
emergence of neural conversation models (Vinyals
and Le, 2015; Sordoni et al., 2015; Shang et al.,
2015; Serban et al., 2016; Lowe et al., 2017; Li
et al., 2017). These neural models can be directly
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estimated from raw (non-annotated) dialogue cor-
pora, allowing them to be deployed with a limited
amount of domain-specific knowledge and feature
engineering.

Due to their large parameter space, the es-
timation of neural conversation models requires
considerable amounts of dialogue data. They
are therefore often trained on conversations col-
lected from various online resources, such as Twit-
ter discussions (Ritter et al., 2010) online chat
logs (Lowe et al., 2017), movie scripts (Danescu-
Niculescu-Mizil and Lee, 2011) and movie and
TV subtitles (Lison and Tiedemann, 2016).

Although these corpora are undeniably useful,
they also face some limitations from a dialogue
modelling perspective. First of all, several dia-
logue corpora, most notably those extracted from
subtitles, do not include any explicit turn seg-
mentation or speaker identification (Serban and
Pineau, 2015; Lison and Meena, 2016). In other
words, we do not know whether two consecutive
sentences are part of the same dialogue turn or
were uttered by different speakers. The neural
conversation model may therefore inadvertently
learn responses that remain within the same dia-
logue turn instead of starting a new turn.

Furthermore, these dialogues contain multiple
references to named entities (in particular, person
names such as fictional characters) that are spe-
cific to the dialogue in question. These named en-
tities should ideally not be part of the conversa-
tion model, since they often draw on an external
context that is absent from the inputs provided to
the conversation model. For instance, the mention
of character names in a movie is associated with
a visual context (for instance, the characters ap-
pearing in a given scene) that is not captured in
the training data. Finally, a substantial portion of
the utterances observed in these corpora is made
of neutral, commonplace responses (“Perhaps”, “I
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don’t know”, “Err”, ...) that can be used in most
conversational situations but fall short of creating
meaningful and engaging conversations with hu-
man users (Li et al., 2016a).

The present paper addresses these limitations by
adding a weighting model to the neural architec-
ture. The purpose of this model is to associate
each 〈context, response〉 example pair to a numer-
ical weight that reflects the intrinsic “quality” of
each example. The instance weights are then in-
cluded in the empirical loss to minimise when
learning the parameters of the neural conversation
model. The weights are themselves computed via
a neural model learned from dialogue data. Exper-
imental results demonstrate that the use of instance
weights improves the performance of neural con-
versation models on unsupervised metrics. Human
evaluation results are, however, inconclusive.

The rest of this paper is as follows. The next
section presents a brief overview of existing work
on neural conversation models. Section 3 provides
a description of the instance weighting approach.
Section 4 details the experimental validation of the
proposed model, using both unsupervised metrics
and a human evaluation of the selected responses.
Finally, Section 5 discusses the advantages and
limitations of the approach, and Section 6 con-
cludes this paper.

2 Related Work

Neural conversation models are a family of neu-
ral architectures (generally based on deep convo-
lutional or recurrent networks) used to represent
mappings between dialogue contexts (or queries)
and possible responses. Compared to previous sta-
tistical approaches to dialogue modelling based on
Markov processes (Levin et al., 2000; Rieser and
Lemon, 2011; Young et al., 2013), one benefit of
these neural models is their ability to be estimated
from raw dialogue corpora, without having to rely
on additional annotation layers for intermediate
representations such as state variables or dialogue
acts. Rather, neural conversation models automat-
ically derive latent representations of the dialogue
state based on the observed utterances.

Neural conversation models can be divided into
two main categories, retrieval models and gener-
ative models. Retrieval models are used to se-
lect the most relevant response for a given con-
text amongst a (possibly large) set of predefined
responses, such as the set of utterances extracted

from a corpus (Lowe et al., 2015; Prakash et al.,
2016). Generative models, on the other hand, rely
on sequence-to-sequence models (Sordoni et al.,
2015) to generate new, possibly unseen responses
given the provided context. These models are
built by linking together two recurrent architec-
tures: one encoder which maps the sequence of
input tokens in the context utterance(s) to a fixed-
sized vector, and one decoder that generates the
response token by token given the context vec-
tor (Vinyals and Le, 2015; Sordoni et al., 2015).
Recent papers have shown that the performance
of these generative models can be improved by
incorporating attentional mechanisms (Yao et al.,
2016) and accounting for the structure of con-
versations through hierarchical networks (Serban
et al., 2016). Neural conversation models can also
be learned using adversarial learning (Li et al.,
2017). In this setting, two neural models are
jointly learned: a generative model producing the
response, and a discriminator optimised to dis-
tinguish between human-generated responses and
machine-generated ones. The discriminator out-
puts are then used to bias the generative model to-
wards producing more human-like responses.

The linguistic coherence and diversity of the
models can be enhanced by including speaker-
addressee information (Li et al., 2016b) and by ex-
pressing the objective function in terms of Max-
imum Mutual Information to enhance the diver-
sity of the generated responses (Li et al., 2016a).
As demonstrated by (Ghazvininejad et al., 2017),
neural conversation models can also be combined
with external knowledge sources in the form of
factual information or entity-grounded opinions,
which is an important requirement for developing
task-oriented dialogue systems that must ground
their action in an external context.

Dialogue is a sequential decision-making pro-
cess where the conversational actions of each par-
ticipant influence not only the current turn but
the long-term evolution of the dialogue (Levin
et al., 2000). To incorporate the prediction of
future outcomes in the generation process, sev-
eral papers have explored the use of reinforcement
learning techniques, using deep neural networks to
model the expected future reward (Li et al., 2016c;
Cuayáhuitl, 2017). In particular, the Hybrid Code
Networks model of (Williams et al., 2017) demon-
strate how a mixture of supervised learning, re-
inforcement learning and domain-specific knowl-
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edge can be used to optimise dialogue strategies
from limited amount of training data.

In contrast with the approaches outlined above,
this paper does not present a new neural architec-
ture for conversational models. Rather, it investi-
gates how the performance of existing models can
be improved “upstream”, by adapting how these
models can be trained on large, noisy corpora with
varying levels of quality. It should be noted that,
although the experiments presented in Section 4
focus on a limited range of neural models, the ap-
proach presented in this paper is designed to be
model-independent and can be applied as a prepro-
cessing step to any data-driven model of dialogue.

3 Approach

As mentioned in the introduction, the interactions
extracted from large dialogue corpora do not all
have the same intrinsic quality, due for instance to
the frequent lack of turn segmentation or the pres-
ence of external, unresolvable references to person
names. In other words, there is a discrepancy be-
tween the actual 〈context, response〉 pairs found in
these corpora and the conversational patterns that
should be accounted for in the neural model.

One way to address this discrepancy is by fram-
ing the problem as one of domain adaptation, the
source domain being the original dialogue corpus
and the target domain representing the dialogues
we want our model to produce. The target do-
main is in this case not necessarily another dia-
logue domain, but simply reflects the fact that the
distribution of responses in the raw corpus does
not necessarily reflect the distribution of responses
we ultimately wish to encode in the conversational
model.

A popular strategy for domain adaptation in nat-
ural language processing, which has notably been
used in POS-tagging, sentiment analysis, spam fil-
tering and machine translation (Bickel et al., 2007;
Jiang and Zhai, 2007; Foster et al., 2010; Xia et al.,
2013), is to assign a higher weight to training in-
stances whose properties are similar to the tar-
get domain. We present below such an instance
weighting approach tailored for neural conversa-
tional models.

3.1 Weighting model

The quality of a particular 〈context, response〉 pair
is difficult to determine using handcrafted rules
– for instance, the probability of a turn bound-

ary may depend on multiple factors such as the
presence of turn-yielding cues or the time gap be-
tween the utterances (Lison and Meena, 2016).
To overcome these limitations, we adopt a data-
driven approach and automatically learn a weight-
ing model from examples of “high-quality” re-
sponses. What constitutes a high-quality response
depends in practice on the specific criteria we wish
to uphold in the conversation model – for instance,
favouring responses that are likely to form a new
dialogue turn (rather than a continuation of the
current turn), avoiding the use of dull, common-
place responses, or disfavouring the selection of
responses that contain unresolved references to
person names.

The weighting model can be expressed
as a neural model which associates each
〈context, response〉 example pair to a numer-
ical weight. The architecture of this neural
network is depicted in Figure 1. It is composed of
two recurrent sub-networks with shared weights,
one for the context and one for the response. Each
sub-network takes a sequence of tokens as input
and pass them through an embedding layer and
a recurrent layer with LSTM or GRU cells. The
fixed-size vectors for the context and response are
then fed to a regular densely-connected layer, and
finally to the final weight value through a sigmoid
activation function. Additional features can also
be included whenever available – for instance,
timing information for movie and TV subtitles
(such as the duration gap between the context and
its response, in milliseconds), or document-level
features such as the dialogue genre or the total
duration of the dialogue.

To estimate its parameters, the neural model is
provided with positive examples of “high-quality”
responses along with negative examples sampled
at random from the corpus. Based on this training
data, the network learns to assign higher weights
to the 〈context, response〉 pairs whose output vec-
tors (combined with the additional inputs) are
close from the high-quality examples, and a lower
weight for those further away. In practice, the se-
lection of high-quality example pairs from a given
corpus can be performed through a combination of
simple heuristics, as detailed in Section 4.1.

3.2 Instance weighting

Once the weighting model is estimated, the
next step is to run it on the entire dia-
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Figure 1: Neural weighting model, taking as input the 〈context, response〉 pairs, possibly along additional
features (such as timing information for subtitles), and returning an associated weight value.

logue corpus to compute the expected weight
of each 〈context, response〉 pair. These sam-
ple weights are then included in the empiri-
cal loss that is being minimised during train-
ing. Formally, assuming a set of context-response
pairs {(c1, r1), (c2, r2), ...(cn, rn)} with associ-
ated weights {w1, ...wn}, the estimation of the
model parameters θ is expressed as a minimisa-
tion problem. For retrieval models, this minimisa-
tion is expressed as:

θ∗ = minθ

n∑
1

wi L(yi, f(ci, ri; θ)) (1)

where L is a loss function (for instance, the
cross-entropy loss), and yi is set to either 1 if ri
is the response to ci, and 0 otherwise (when ri is
a negative example). For generative models, the
minimisation is similarly expressed as:

θ∗ = minθ

n∑
1

wi L(ri, f(ci; θ)) (2)

In both cases, the loss computed from each ex-
ample pair is multiplied by the weight value deter-
mined by the weight model. Examples associated
with a larger weight wi will therefore have a larger
influence on the gradient update steps.

4 Evaluation

The approach is evaluated on the basis of retrieval-
based neural models trained on English-language
subtitles from (Lison and Tiedemann, 2016).
Three alternative models are evaluated:

1. A traditional TF-IDF model,

2. A Dual Encoder model trained directly on the
corpus examples,

3. A Dual Encoder model combined with the
weighting model from Section 3.1.

4.1 Models
TF-IDF model
The TF-IDF (Term Frequency - Inverse Document
Frequency) model computes the similarity be-
tween the context and its response using methods
from information retrieval (Ramos, 2003). TF-
IDF measures the importance of a word in a “doc-
ument” (in this case the context or response) rel-
ative to the whole corpus. The model transforms
the context and response (represented as bag-of-
words) into TF-IDF-weighted vectors. These vec-
tors are sparse vectors of a size equivalent to the
vocabulary size, where each row corresponds, if
the given word is present in the context or re-
sponse, to its TF-IDF weight, and is 0 otherwise.
The matching score between the context and its re-
sponse is then determined as the cosine similarity
between the two vectors:

similarity =
vc · vr

‖vc‖2 ‖vr‖2
(3)

where vc and vr respectively denote the TF-IDF-
weighted vectors for the context and response.

Dual Encoder
The Dual Encoder model (Lowe et al., 2017) con-
sists of two recurrent networks, one for the con-
text and one for the response. The tokens are first
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Figure 2: Dual encoder model, taking as input the 〈context, response〉 pairs and returning a score ex-
pressing the adequacy of the response given the context.

passed through an embedding layer and then to a
recurrent layer with LSTM or GRU cells. In the
original formalisation of this model (Lowe et al.,
2015), the context vector is transformed through a
dense layer of same dimension, representing the
“predicted” response. The inner product of the
predicted and actual responses is then calculated
and normalised, yielding a similarity score. This
model, however, only seeks to capture the seman-
tic similarity between the two sequences, while the
selection of the most adequate response in a given
context may also need to account for other factors
such as the grammaticality and coherence of the
response. We therefore extend the Dual Encoder
model in two ways. First, both the context and
response vectors are transformed through a dense
layer at the end of the recurrent layer (instead of
just the context vector). Second, the final predic-
tion is connected to both the inner product of the
two vectors and to the response vector itself, as
depicted in Figure 2.

Dual Encoder with instance weighting

Finally, the third model relies on the exact same
Dual Encoder model as above, but applies the
weighting model described in Section 3.1 prior
to learning in order to assign weights to each
training example. The weighting model is esti-
mated on a subset of the movie and TV subtitles
augmented with speaker information and filtered
through heuristics to ensure a good cohesion be-
tween the context and its response. These heuris-
tics are detailed in the next section.

Although the architecture of the Dual Encoder

is superficially similar to the weighting model of
Figure 1, the two models serve a different purpose:
the weighting model returns the expected quality
of a training example, while the Dual Encoder re-
turns a score expressing the adequacy between the
context and the response.

4.2 Datasets

Training data for the conversation models
The dataset used for training the three retrieval
models is the English-language portion of the
OpenSubtitles corpus of movie and TV subtitles
(Lison and Tiedemann, 2016). The full dataset is
composed of 105 445 subtitles and 95.5 million
utterances, each utterance being associated with a
start and end time (in milliseconds).

Training data for the weighting model
For training the weighting model, we extracted a
small subset of the full corpus of subtitles cor-
responding to 〈context, response〉 pairs satisfying
specific quality criteria. The first step was to align
at the sentence level the subtitles with an online
collection of movie and TV scripts (1 069 movies
and 6 398 TV episodes), following the approach
described in (Lison and Meena, 2016).

This alignment enabled us to annotate the sub-
titles with speaker names and turn boundaries.
Based on these subtitles, we then selected exam-
ple pairs with two heuristics:

1. To ensure the response constitutes an ac-
tual reply from another speaker and not sim-
ply a continuation of the current turn, the
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subtitles were segmented into sub-dialogues.
〈context, response〉 pairs including a change
of speaker from the context to the re-
sponse were then extracted from these sub-
dialogues. Since multi-party dialogues make
it harder to determine who replies to whom,
only sub-dialogues with two participants
were considered in the subset.

2. To ensure the response is intelligible given
the context (without drawing on unresolved
references to e.g. fictional person names), we
also filtered out from the subset the dialogue
turns including mentions of fictional charac-
ter names and out-of-vocabulary words.

A total of 95 624 〈context, response〉 pairs can
be extracted using these two heuristics. This cor-
responds to about 0.1 % of the total number of ex-
amples for the OpenSubtitles corpus. These pairs
are used as positive examples for the weighting
model, along with negative pairs sampled at ran-
dom from the corpus.

Test data
Two distinct corpora are used as test sets for the
evaluation. The first corpus, whose genre is rel-
atively close to the training set, is the Cornell
Movie Dialog Corpus (Danescu-Niculescu-Mizil
and Lee, 2011), which is a collection of fictional
conversations extracted from movie scripts (unre-
lated to the ones used for training the weighting
model). The transcripts from this corpus are seg-
mented into conversations. Each conversation is
represented as a sequence of dialogue turns. As
this paper concentrates on the selection of rel-
evant responses in a given context, we limited
the test pairs to the ones where the context ends
with a question, which yields a total of 67 305
〈context, response〉 pairs.

The second test set comes from a slightly dif-
ferent conversational genre, namely theatre plays.
The scripts of 62 English-language theatre plays
were downloaded from public websites. We also
limited the test pairs to the pairs where the context
ends with a question, for a total of 3 427 pairs.

4.2.1 Experimental design
Preprocessing
The utterances from all datasets were tokenised,
lemmatised and POS-tagged using the spaCy NLP
library1. We also ran the named entity recogniser

1https://spacy.io/

from the same library to extract named entities.
Since the person names mentioned in movies and
theatre plays typically refer to fictional characters,
we replaced their occurrences by tags, one distinct
tag per entity. For instance, the pair:

Dana: Frank, do you think you could give
me a hand with these bags?

Frank: I’m not a doorman, Miss Barrett.
I’m a building superintendent.

is simplified as:

Dana: <person1>, do you think you could
give me a hand with these bags?

Frank: I’m not a doorman, <person2>. I’m
a building superintendent.

Named entities of locations and numbers are
also replaced by similar tags. To account for
the turn structure, turn boundaries were annotated
with a <newturn> tag. The vocabulary is capped
to 25 000 words determined from their frequency
in the training corpus. Tokens not covered in this
vocabulary are replaced by <unknown>.

Training details

The dialogue contexts were limited to the last 10
utterances preceding the response and a maximum
of 60 tokens. The responses were defined as the
next dialogue turn after the context, and limited to
a maximum of 5 utterances and 30 tokens.

The embedding layers of the Dual Encoders
were initialised with Skip-gram embeddings
trained on the OpenSubtitles corpus. For the re-
current layers, we tested the use of both GRU and
LSTM cells, along with their bidirectional equiva-
lents (Chung et al., 2014), without noticeable dif-
ferences in accuracy. As GRU cells are faster to
train than LSTM cells, we opted for the use of
GRU-based recurrent layers. The dimensionality
of the output vectors from the recurrent layers was
400. The neural networks are trained with a batch
size of 256, binary cross-entropy as cost function
and RMSProp as optimisation algorithm. To avoid
overfitting issues, a dropout of 0.2 was applied at
all layers of the neural model.

Both the weighting model and the Dual Encoder
models were training with a 1:1 ratio between pos-
itive examples (actual 〈 context, response 〉 pairs)
and negative examples with a response sampled at
random from the training set.
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Model name Cornell Movie Dialogs Theatre plays
R10@1 R10@2 R10@5 R10@1 R10@2 R10@5

TF-IDF 0.33 0.44 0.67 0.33 0.44 0.53
Dual Encoder 0.44 0.62 0.83 0.52 0.67 0.75
Dual Encoder + weighting 0.47 0.63 0.85 0.56 0.70 0.80

Table 1: Performance of the 3 retrieval models on the two test sets, namely the Cornell Movie Dialogs
Dataset and the smaller dataset of theatre plays, using the Recall10@i metric.

4.3 Results

The three models (the TF-IDF model, the base-
line Dual Encoder and the Dual Encoder com-
bined with the weighting model) are evaluated us-
ing the Recallm@i metric, which is the most com-
mon metric for the evaluation of retrieval-based
models. Let {〈ci, ri〉, 1 ≤ i ≤ n} be the list of
m context-response pairs from the test set. For
each context ci, we create a set ofm alternative re-
sponses, one response being the actual response ri,
and them−1 other responses being sampled at ran-
dom from the same corpus. The m alternative re-
sponses are then ranked based on the output from
the conversational model, and the Recallm@imea-
sures how often the correct response appears in the
top i results of this ranked list. The Recallm@i
metric is often used for the evaluation of retrieval
models as several responses may be equally “cor-
rect” given a particular context.

The experimental results are shown in Table 1.
As detailed in the table, the Dual Encoder model
combined with the weighting model outperforms
the Dual Encoder baseline on both test sets (the
Cornell Movie Dialogs corpus and the smaller cor-
pus of theatre plays). Our hypothesis is that the
weighting model biases the responses selected by
the conversation model towards more cohesive ad-
jacency pairs between context and response2.

Figure 3 illustrates the learning curve for the
two Dual Encoder models, where the accuracy
is measured on a validation set composed of the
high-quality example pairs described in the pre-
vious section along with randomly sampled al-
ternative responses (using a 1:1 ratio of positive
vs. negative examples). We can observe that the
Dual Encoder with instance weights outperforms
the baseline model on this validation set – which
is not per se a surprising result, since the purpose

2Contrary to the OpenSubtitles corpus which is made of
subtitles with no turn segmentation, the Cornell Movie Di-
alogs corpus and the corpus of theatre plays are derived from
scripts and are therefore segmented in dialogue turns.

of the weighting model is precisely to bias the con-
versation model to give more importance to these
types of example pairs.
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Figure 3: Learning curve for the two Dual Encoder
models, showing the evolution of their accuracy
on the validation set as a function of the number
of observed training examples.

4.4 Human evaluation
To further investigate the potential of this weight-
ing strategy for neural conversational models, we
conducted a human evaluation of the responses
generated by the two neural models included in
the evaluation. We collected human judgements
on 〈context, response〉 pairs using a crowdsourc-
ing platform. We extracted 115 random con-
texts from the Cornell Movie Dialogs corpus and
used four distinct strategies to generate dialogue
responses: a random predictor (used to identify
the lower bound), the two Dual Encoder models
(both without and with instance weights), and ex-
pert responses (used to identify the upper bound).
The expert responses were manually authored
by two human annotators. The resulting 460
〈context, response〉 pairs were evaluated by 8 dis-
tinct human judges each (920 ratings per model).
The human judges were asked to rate the consis-
tency between context and response on a 5-points
scale, from Inconsistent to Consistent. In total,

390



118 individuals participated in the crowdsourced
evaluation.

The results of this human evaluation are pre-
sented in Figure 4. There is unfortunately no sta-
tistically significant difference between the base-
line Dual Encoder (M = 2.97, SD = 1.27)
and the one combined with the weighting model
(M = 3.04, SD = 1.27), as established by a
Wilcoxon rank-sum test, W (1838) = 410360,
p = 0.23. These inconclusive results are prob-
ably due to the very low agreement between the
evaluation participants (Krippendorff’s α for con-
tinuous variable = 0.36). The fact that the lower
and upper bounds are only separated by 2 standard
deviations confirms the difficulty for the raters to
discriminate between responses. We hypothesise
that the nature of the corpus, which is heavily de-
pendent on an external context (the movie scenes),
makes it particularly difficult to assess the consis-
tency of the responses.
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Figure 4: Distribution of human ratings of the re-
sponses generated by the four models tested.

Some examples of responses produced by the
two Dual Encoder models illustrate the improve-
ments brought by the weighting model. In (1), the
baseline Dual Encoder selected a turn continuation
rather than a reply, while the second model avoids
this pitfall. Both (1) and (2) also show that the dual
encoder with instance weighting tends to select ut-
terances with fewer named entities.

(1) Context of conversation:
– This is General Ripper speaking.
– Yes, sir.
– Do you recognize my voice?”
⇒ Response of Dual Encoder:
– This is General Nikolas Pherides, Com-
mander of the Third Army. I’m Oliver

Davis.
⇒ Response of Dual Encoder + weighting:
– Yes, sir. I’m Gideon.

(2) Context of conversation:
– Let me finish dinner before you eat it...
Chop the peppers...
– Are you all right?
⇒ Response of Dual Encoder:
– No thanks, not hungry. Harry Dunne.
⇒ Response of Dual Encoder + weighting:
– Yes I’m fine. Everything is ok.

5 Discussion

The limitations of neural conversational models
trained on large, noisy dialogue corpora such as
movie and TV subtitles have been discussed in
several papers. Some of the issues raised in pre-
vious papers are the absence of turn segmentation
in subtitling corpus (Vinyals and Le, 2015; Serban
and Pineau, 2015; Lison and Meena, 2016), the
lack of long-term consistency and “personality” in
the generated responses (Li et al., 2016b), and the
ubiquity of dull, commonplace responses when
training generative models (Li et al., 2016a). To
the best of our knowledge, this paper is the first to
propose an instance weighting approach to address
some of these limitations. One related approach is
described in (Zhang et al., 2017) which also relies
on domain adaptation for neural response gener-
ation, using a combination of online and offline
human judgement. Their focus is, however, on the
construction of personalised conversation models
and not on instance weighting.

The empirical results corroborate the hypothe-
sis that assigning weights to the training examples
of “noisy” dialogue corpora can boost the perfor-
mance of neural conversation models. In essence,
the proposed approach replaces a one-pass train-
ing regime with a two-pass procedure: the first
pass to determine the quality of each example pair,
and a second pass to update the model based on the
observed pair and its associated weight. We also
showed that these weights can be determined in a
data-driven manner with a neural model trained on
example pairs selected for their adherence to spe-
cific quality criteria.

Instead of this two-pass procedure, an alterna-
tive approach is to directly learn a conversation
model on the subset of example pairs that are
known to be of high-quality. However, one major
shortcoming of this approach is that it consider-
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ably limits the size of the training set that can be
exploited. For instance, the data used to estimate
the weighting model in Section 4.2 corresponds to
a mere 0.1 % of the total English-language part
of the OpenSubtitles corpus (since the utterances
had to be associated with speaker names derived
from aligned scripts in order to apply the heuris-
tics). In contract, the proposed two-pass procedure
can scale to datasets of any size.

The results from Section 4 are limited to
retrieval-based models. One important question
for future work is to investigate whether the results
carry over to generative, sequence-to-sequence
models. As generative models are more computa-
tionally intensive to train than retrieval models, the
presented approach may bring another important
benefit, namely the ability to filter out part of the
training data to concentrate the training time on
“interesting” examples with a high cohesion be-
tween the context and its response.

6 Conclusion

Dialogue corpora such as chat logs or movie subti-
tles are very useful resources for developing open-
domain conversation models. They do, however,
also raise a number of challenges for conversation
modelling. Two notable challenges are the lack
of segmentation in dialogue turns (at least for the
movie subtitles) and the presence of external con-
text that is not captured in the dialogue transcripts
themselves (leading to mentions of person names
and unresolvable named entities).

This paper showed how to mitigate these chal-
lenges through the use of a weighting model ap-
plied on the training examples. This weighting
model can be estimated in a data-driven manner,
by providing example of “high-quality” training
pairs along with random pairs extracted from the
same corpus. The criteria that determine how
these training pairs should be selected depend in
practice on the type of conversational model one
wishes to learn. This instance weighting approach
can be viewed as a form of domain adaptation,
where the data points from the source domain (in
this case, the original corpus) are re-weighted to
improve the model performance in a target domain
(in this case, the interactions in which the conver-
sation model will be deployed).

Evaluation results on retrieval-based neural
models demonstrate the potential of this approach.
The weighting model is essentially a preprocess-

ing step and can therefore be combined with any
type of conversational model.

Future work will focus on two directions. The
first is to extend the weighting model to account
for other criteria, such as ensuring diversity of re-
sponses and coherence across turns. The second is
to evaluate the approach on other types of neural
conversational models, and more particularly on
generative models.
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