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Abstract. We present an implemented model for speech recognition in natural en-
vironments which relies on contextual information about salient entities to prime
utterance recognition. The hypothesis underlying our approach is that, in situated
human-robot interaction, speech recognition performance can be significantly en-
hanced by exploiting knowledge about the immediate physical environment and the
dialogue history. To this end, visual salience (objects perceived in the physical scene)
and linguistic salience (previously referred-to objects within the current dialogue) are
integrated into a single cross-modal salience model. The model is dynamically up-
dated as the environment evolves, and is used to establish expectations about uttered
words which are most likely to be heard given the context. The update is realised by
continously adapting the word-class probabilities specified in the statistical language
model. The present article discusses the motivations behind our approach, describes
our implementation as part of a distributed, cognitive architecture for mobile robots,
and reports the evaluation results on a test suite.
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salience modeling, cognitive systems.

1. Introduction
Recent years have seen increasing interest in service robots endowed with communicative
capabilities. In many cases, these robots must operate in open-ended environments and
interact with humans using natural language to perform a variety of service-oriented tasks.
Developing cognitive systems for such robots remains a formidable challenge. Software
architectures for cognitive robots are typically composed of several cooperating subsys-
tems, such as communication, computer vision, navigation and manipulation skills, and
various deliberative processes such as symbolic planners (Langley, et al. 2005).

These subsystems are highly interdependent. It is not enough to equip the robot with
basic functionalities for dialogue comprehension and production to make it interact nat-
urally in situated dialogues. We also need to find meaningful ways to relate language,
action and situated reality, and enable the robot to use its perceptual experience to contin-
uously learn and adapt itself to the environment.
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The first step in comprehending spoken dialogue is automatic speech recognition
[ASR]. For robots operating in real-world noisy environments, and dealing with utter-
ances pertaining to complex, open-ended domains, this step is particularly error-prone.
In spite of continuous technological advances, the performance of ASR remains for most
tasks at least an order of magnitude worse than that of human listeners (Moore 2007).

One strategy for addressing this issue is to use context information to guide the speech
recognition by percolating contextual constraints to the statistical language model (Gru-
enstein, et al. 2005). In this paper, we follow this approach by defining a context-sensitive
language model which exploits information about salient objects in the visual scene and
linguistic expressions in the dialogue history to prime recognition. To this end, a salience
model integrating both visual and linguistic salience is used to dynamically compute lex-
ical activations, which are incorporated into the language model at runtime.

Our approach departs from previous work on context-sensitive speech recognition by
modeling salience as inherently cross-modal, instead of relying on just one particular
modality such as gesture (Chai & Qu 2005), eye gaze (Qu & Chai 2007) or dialogue state
(Gruenstein et al. 2005). The FUSE system described in (Roy & Mukherjee 2005) is a
closely related approach, but limited to the processing of object descriptions, whereas our
system was designed from the start to handle generic situated dialogues (cf. §3.3).

The structure of the paper is as follows: in the next section we briefly introduce the
software architecture in which our system has been developed. We then describe the
salience model, and explain how it is utilised within the language model used for ASR.
We finally present the evaluation of our approach, followed by conclusions.

Figure 1: Robotic platform (left) and example of a real visual scene (right)

2. Architecture
Our approach has been implemented as part of a distributed cognitive architecture (Hawes,
et al. 2007). Each subsystem consists of a number of processes, and a working memory.
The processes can access sensors, effectors, and the working memory to share information
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within the subsystem. Figure 2 illustrates the spoken dialogue comprehension. Numbers
1-11 in the figure indicate the usual sequential order for the processes..

Figure 2: Schematic view of the architecture for spoken dialogue comprehension

The speech recognition utilises Nuance Recognizer v8.5 together with a statistical
language model (§ 3.4). For the online update of word class probabilities according to the
salience model, we use the “just-in-time grammar” functionality provided by Nuance.

Syntactic parsing is based on an incremental chart parser1 for Combinatory Categorial
Grammar (Steedman & Baldridge 2003), and yields a set of interpretations – that is,
logical forms expressed as ontologically rich, relational structures (Baldridge & Kruijff
2001). Figure 3 gives an example of such logical form.

These interpretations are then packed into a single representation (Oepen & Carroll
2000, Kruijff, et al. in submission), a technique which enables us to efficiently handle
syntactic ambiguity.

Once the packed logical form is built, it is retrieved by the dialogue recognition mod-
ule, which performs dialogue-level analysis tasks such as discourse reference resolution
and dialogue move interpretation, and consequently updates the dialogue structure.

Linguistic interpretations must finally be associated with extra-linguistic knowledge
about the environment – dialogue comprehension hence needs to connect with other sub-
architectures like vision, spatial reasoning or planning. We realise this information bind-
ing between different modalities via a specific module, called the “binder”, which is re-

1Built on top of the OpenCCG NLP library: http://openccg.sf.net
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@w1:cognition(want ∧
<MOOD> ind ∧
<TENSE> pres ∧
<ACTOR>(i1 : person ∧ I ∧

<NUMBER> sg ∧
<ECOMP>(t1 : action-motion ∧ take ∧

<ACTOR>y1 : person ∧
<PATIENT>(m1 : thing ∧ mug ∧

<DELIMITATION> unique ∧
<NUMBER> sg ∧
<QUANTIFICATION> specific singular)) ∧

<PATIENT>(y1 : person ∧ you ∧
<NUMBER> sg))

Figure 3: Logical form generated for the utterance ‘I want you to take the mug’

sponsible for the ontology-based mediation accross modalities (Jacobsson, et al. 2008).

3. Approach
3.1. Motivation

As psycholinguistic studies have shown, humans do not process linguistic utterances in
isolation from other modalities. Eye-tracking experiments notably highlighted that, dur-
ing utterance comprehension, humans combine, in a closely time-locked fashion, linguis-
tic information with scene understanding and world knowledge (Henderson & Ferreira
2004, Knoeferle & Crocker 2006).

These observations – along with many others – therefore provide solid evidence for the
embodied and situated nature of language and cognition (Lakoff 1987, Barsalou 1999).

Humans thus systematically exploit dialogue and situated context to guide attention
and help disambiguate and refine linguistic input by filtering out unlikely interpretations.
Our approach is essentially an attempt to reproduce this mechanism in a robotic system.

3.2. Salience modeling

In our implementation, we define salience using two main sources of information:

1. the salience of objects in the perceived visual scene;
2. the linguistic salience or “recency” of linguistic expressions in the dialogue history.

In the future, other sources could be added, for instance the possible presence of
gestures (Chai & Qu 2005), eye gaze tracking (Qu & Chai 2007), entities in large-scale
space (Zender & Kruijff 2007), or the integration of a task model – as salience generally
depends on intentionality (Landragin 2006).

3.2.1. Visual salience

Via the “binder”, we can access the set of objects currently perceived in the visual scene.
Each object is associated with a concept name (e.g. printer) and a number of features,
for instance spatial coordinates or qualitative propreties like colour, shape or size.

Several features can be used to compute the salience of an object. The ones currently
used in our implementation are (1) the object size and (2) its distance relative to the robot
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(e.g. spatial proximity). Other features could also prove to be helpful, like the reachability
of the object, or its distance from the point of visual focus – similarly to the spread of
visual acuity across the human retina. To derive the visual salience value for each object,
we assign a numeric value for the two variables, and then perform a weighted addition.
The associated weights are determined via regression tests.

At the end of the processing, we end up with a set Ev of visual objects, each of which
is associated with a numeric salience value s(ek), with 1 ≤ k ≤ |Ev|.

3.2.2. Linguistic salience

There is a vast amount of literature on the topic of linguistic salience. Roughly speaking,
linguistic salience can be characterised either in terms of hierarchical recency, according
to a tree-like model of discourse structure, or in terms of linear recency of mention (Kelle-
her 2005). Our implementation can theorically handle both types of linguistic salience,
but, at the time of writing, only the linear recency is calculated.

To compute the linguistic salience, we extract a set El of potential referents from the
discourse structure, and for each referent ek we assign a salience value s(ek) equal to
the distance (measured on a logarithmic scale) between its last mention and the current
position in the discourse structure.

3.2.3. Cross-modal salience model

Once the visual and linguistic salience are computed, we can proceed to their integration
into a cross-modal statistical model. We define the set E as the union of the visual and
linguistic entities: E = Ev ∪ El, and devise a probability distribution P (E) on this set:

P (ek) =
δv IEv(ek) sv(ek) + δl IEl

(ek) sl(ek)

|E|
(1)

where IA(x) is the indicator function of set A, and δv, δk are factors controlling the
relative importance of each type of salience. They are determined empirically, subject to
the following constraint to normalise the distribution :

δv
∑

ek∈Ev

s(ek) + δl
∑

ek∈El

s(ek) = |E| (2)

The statistical model P (E) thus simply reflects the salience of each visual or linguistic
entity: the more salient, the higher the probability.

3.3. Lexical activation

In order for the salience model to be of any use for speech recognition, a connection
between the salient entities and their associated words in the ASR vocabulary needs to
be established. To this end, we define a lexical activation network, which lists, for each
possible salient entity, the set of words activated by it. The network specifies the words
which are likely to be heard when the given entity is present in the environment or in
the dialogue history. It can therefore include words related to the object denomination,
subparts, common properties or affordances. The salient entity laptop will activate words
like ‘laptop’, ‘notebook’, ‘screen’, ‘opened’, ‘ibm’, ‘switch on/off’, ‘close’, etc. The list
is structured according to word classes, and a weight can be set on each word to modulate
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the lexical activation: supposing a laptop is present, the word ‘laptop’ should receive a
higher activation than, say, the word ‘close’, which is less situation specific.

The use of lexical activation networks is a key difference between our model and
(Roy & Mukherjee 2005), which relies on a measure of “descriptive fitness” to modify
the word probabilities. One advantage of our approach is the possibility to go beyond
object descriptions and activate word types denoting subparts, properties or affordances
of objects2.

If the probability of specific words is increased, we need to re-normalise the proba-
bility distribution. One solution would be to decrease the probability of all non-activated
words accordingly. This solution, however, suffers from a significant drawback: our vo-
cabulary contains many context-independent words like ‘thing’, or ‘place’, whose proba-
bility should remain constant. To address this issue, we mark an explicit distinction in our
vocabulary between context-dependent and context-independent words.

In the current implementation, the lexical activation network is constructed semi-
manually, using a simple lexicon extraction algorithm. We start with the list of possible
salient entities, which is given by

1. the set of physical objects the vision subsystem can recognise ;
2. the set of nouns specified in the CCG lexicon with ‘object’ as ontological type.

For each entity, we then extract its associated lexicon by matching domain-specific syn-
tactic patterns against a corpus of dialogue transcripts.

3.4. Language modeling

We now detail the language model used for the speech recognition – a class-based trigram
model enriched with contextual information provided by the salience model.

3.4.1. Corpus generation

We need a corpus to train any statistical language model. Unfortunately, no corpus of
situated dialogue adapted to our task domain was available. Collecting in-domain data via
Wizard of Oz experiments is a very costly and time-consuming process, so we decided
to follow the approach advocated in (Weilhammer, et al. 2006) instead and generate a
class-based corpus from a task grammar we had at our disposal.

Practically, we first collected a small set of WOz experiments, totalling about 800
utterances. This set is of course too small to be directly used as a corpus for language
model training, but sufficient to get an intuitive idea of the kind of utterances we had to
deal with.

Based on it, we designed a domain-specific context-free grammar able to cover most
of the utterances. Weights were then automatically assigned to each grammar rule by
parsing our initial corpus, hence leading to a small stochastic context-free grammar.

As a last step, this grammar is randomly traversed a large number of times, which
gives us the generated corpus.

2In the context of a laptop object, ‘screen’ and ‘switch on/off’ would for instance be activated.
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3.4.2. Salience-driven, class-based language models

The objective of the speech recognizer is to find the word sequence W∗ which has the
highest probability given the observed speech signal O and a set E of salient objects:

W∗ = arg max
W

P (O|W)︸ ︷︷ ︸
acoustic model

× P (W|E)︸ ︷︷ ︸
salience-driven language model

(3)

For a trigram language model, the probability of the word sequence P (wn
1 |E) is:

P (wn
1 |E) '

n∏
i=1

P (wi|wi−1wi−2;E) (4)

Our language model is class-based, so it can be further decomposed into word-class
and class transitions probabilities. The class transition probabilities reflect the language
syntax; we assume they are independent of salient objects. The word-class probabilities,
however, do depend on context: for a given class – e.g. noun -, the probability of hearing
the word ‘laptop’ will be higher if a laptop is present in the environment. Hence:

P (wi|wi−1wi−2;E) = P (wi|ci;E)︸ ︷︷ ︸
word-class probability

× P (ci|ci−1, ci−2)︸ ︷︷ ︸
class transition probability

(5)

We now define the word-class probabilities P (wi|ci;E):

P (wi|ci;E) =
∑
ek∈E

P (wi|ci; ek)× P (ek) (6)

To compute P (wi|ci; ek), we use the lexical activation network specified for ek:

P (wi|ci; ek) =


P (wi|ci) + α1 if wi ∈ activatedWords(ek)
P (wi|ci)− α2 if wi /∈ activatedWords(ek) ∧

wi ∈ contextDependentWords
P (wi|ci) else

(7)

The optimum value of α1 is determined using regression tests. α2 is computed relative
to α1 in order to keep the sum of all probabilities equal to 1:

α2 =
|activatedWords|

|contextDependentWords| − |activatedWords|
× α1

These word-class probabilities are dynamically updated as the environment and the
dialogue evolves and incorporated into the language model at runtime.

4. Evaluation
4.1. Evaluation procedure

We evaluated our approach using a test suite of 250 spoken utterances recorded during
Wizard of Oz experiments. The participants were asked to interact with the robot while
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looking at a specific visual scene. We designed 10 different visual scenes by systematic
variation of the nature, number and spatial configuration of the objects presented. Figure
4 gives an example of a visual scene.

The interactions could include descriptions, questions and commands. No particular
tasks were assigned to the participants. The only constraint we imposed was that all
interactions with the robot had to be related to the shared visual scene.

Figure 4: Sample visual scene including three objects: a box, a ball, and a chocolate bar.

4.2. Results

Table 1 summarises our experimental results. Due to space constraints, we focus our
analysis on the WER of our model compared to the baseline – that is, compared to a
class-based trigram model not based on salience.

Word Error Rate
[WER]

Classical LM Salience-driven LM

vocabulary size 25.04 % 24.22 %
' 200 words (NBest 3: 20.72 %) (NBest 3: 19.97 %)

vocabulary size 26.68 % 23.85 %
' 400 words (NBest 3: 21.98 %) (NBest 3: 19.97 %)

vocabulary size 28.61 % 23.99 %
' 600 words (NBest 3: 24.59 %) (NBest 3: 20.27 %)

Table 1: Comparative results of recognition performance

4.3. Analysis

As the results show, the use of a salience model can enhance the recognition performance
in situated interactions: with a vocabulary of about 600 words, the WER is indeed reduced
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by 16.1 % compared to the baseline. According to the Sign test, the differences for the
last two tests (400 and 600 words) are statistically significant. As we could expect, the
salience-driven approach is especially helpful when operating with a larger vocabulary,
where the expectations provided by the salience model can really make a difference in the
word recognition.

The word error rate remains nevertheless quite high. This is due to several reasons.
The major issue is that the words causing most recognition problems are – at least in
our test suite – function words like prepositions, discourse markers, connectives, auxil-
iaries, etc., and not content words. Unfortunately, the use of function words is usually not
context-dependent, and hence not influenced by salience. We estimated that 89 % of the
recognition errors were due to function words. Moreover, our chosen test suite is con-
stituted of “free speech” interactions, which often include lexical items or grammatical
constructs outside the range of our language model.

5. Conclusion
We have presented an implemented model for speech recognition based on the concept of
salience. This salience is defined via visual and linguistic cues, and is used to compute
degrees of lexical activations, which are in turn applied to dynamically adapt the ASR
language model to the robot’s environment and dialogue state.

As future work we will examine the potential extension of our approach in three direc-
tions. First, we are investigating how to use the situated context to perform some priming
of function words like prepositions or discourse markers. Second, we wish to take other
information sources into account, particularly the integration of a task model, relying on
data made available by the symbolic planner. And finally, we want to go beyond speech
recognition, and investigate the relevance of such salience model for the development of
a robust understanding system for situated dialogue.
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