
EU FP7 CogX
ICT-215181

May 1 2008 (52months)

DR 6.1:
Transparency in situated dialogue for interactive
learning (in human-robot interaction)

Geert-Jan M. Kruijff, Miroslav Janiček, Ivana Kruijff-
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A robot can use dialogue to try to learn more about the world. For this
to work, the robot and a human need to establish a mutually agreed-upon
understanding of what is being talked about, and why. Thereby it is par-
ticularly important for the human to understand what the robot is after.
The notion of transparency tries to capture this. It involves the relation
between why a question is asked, how it relates to private and shared be-
liefs, and how it reveals what the robot does or does not know. For year 1,
WP6 investigated means for establishing transparency in situated dialogue
for interactive learning. This covered two aspects: how to phrase questions
for knowledge gathering and -refinement, and how to verbalize knowledge.
Results include methods for verbalizing what the robot does and does not
know about referents and aspects of the environment, based on a mixture
of prior and autonomously acquired knowledge and basic methods for self-
understanding (Task 6.1); and, novel algorithms for determining content and
context for question subdialogues to gather more information to help resolve
misunderstandings or fill gaps (Task 6.2). WP6 also reports results on mak-
ing spoken situated dialogue more robust, employing probabilistic models
for using multi-modal information to reduce uncertainty in comprehension.



DR 6.1: Transparency in situated dialogue for interactive learning Kruijff et al

1 Tasks, objectives, results 1
1.1 Planned work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Actual work performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Verbalising categorical knowledge . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Clarification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Robust processing of spoken situated dialogue . . . . . . . . . . . . . 7

1.3 Relation to the state-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Verbalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Clarification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Robust processing of spoken situated dialogue . . . . . . . . . . . . . 14

2 Annexes 18
2.1 Verbalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Zender et al. “A Situated Context Model for Resolution and Gen-
eration of Referring Expressions” (ENLG’09) . . . . . . . . . . . . . 18

2.1.2 Zender et al. “Situated Resolution and Generation of Spatial Re-
ferring Expressions for Robotic Assistants.” (IJCAI’09) . . . . . . . 19

2.1.3 Zender and Pronobis. “Verbalizing vague scalar predicates for au-
tonomously acquired ontological knowledge” (report) . . . . . . . . . 20

2.1.4 Zender and Kruijff. “Verbalizing classes and instances in ontological
knowledge” (report) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Clarification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Kruijff and Brenner. “Phrasing Questions” (AAAI SS’09) . . . . . . 22
2.2.2 Brenner et al. “Continual Collaborative Planning for Situated In-

teraction” (report) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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Executive Summary

One of the objectives of CogX is self-extension. This requires the robot to
be able to actively gather information it can use to learn about the world.
One of the sources of such information is dialogue. But for this to work,
the robot needs to be able to establish with a human some form of mutually
agreed-upon understanding – they need to reach a common ground. The
overall goal of WP6 is to develop adaptive mechanisms for situated dialogue
processing, to enable a robot to establish such common ground in situated
dialogue.

WP6 primarily focuses on situated dialogue for continuous learning. In
continuous learning, the robot is ultimately driven by its own curiosity,
rather than by extrinsic motivations. The robot builds up its own under-
standing of the world – its own categorizations and structures, and the ways
in which it sees these instantiated in the world. While learning, the robot
can solicit help from the human, to clarify, explain, or perform something.
This is where situated dialogue can help the robot to self-extend – and which
is where transparency comes into play. The robot is acting on its own un-
derstanding, which need not be in any way similar to how a human sees
the world. There is therefore a need for the robot to make clear what it is
after: why the robot is requesting something from a human, what aspects
of a common ground it appeals to, and how the request is related to what
it does and does not know.

To achieve transparency in situated dialogue for continuous learning,
WP6 investigated two important aspects in year 1: Verbalization of knowl-
edge about classes and instances (Task 6.1), and phrasing questions as subdi-
alogues (Task 6.2). WP6 developed novel methods for context- and content-
determination in verbalizing knowledge about referents and aspects of the
environment, with the possibility to combine a priori and autonomously ac-
quired knowledge. As a result, the robot is capable to refer to instances in a
contextually appropriate way, phrase their description relative to knowledge
about other instances and classes, and talk about ontological knowledge it
has. We base some of these methods in simple ways for the robot to in-
trospect what it knows about an entity (self-understanding), and establish
gaps in its understanding of that entity relative to ontological categories.
Connected to these efforts, WP6 developed new algorithms for context- and
content-determination for question subdialogues, setting such determina-
tion against the background of context models of multi-agent beliefs and
intentions; and for realizing these dialogues with contextually appropriate
intonation. The robot can now plan for how to request information from
the user to clarify or extend its understanding. It does so in a manner
that appropriately reflects how this request relates to private and shared
beliefs, and intentions. In such a mixed-initiative dialogue, the robot can
dynamically adapt its plan to achieve its knowledge-gathering intention.
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In addition to the main focus on transparency, WP6 continued efforts
in making spoken situated dialogue more robust. Further improvements
in robustness were achieved by using context information in incremental,
distributed processing covering speech recognition, parsing, and dialogue
interpretation. This approach explicitly deals with the uncertainty in the
speech recogniser in a Bayesian way, which is part of our broader approach
in CogX to using probabilistic representations to capture uncertainty in
initial interpretations of sensory signals. By maintaining all the possible
hypotheses we can then use knowledge from other modalities to revise our
interpretation or to bias inference. This is an example of a simple kind of self-
understanding, since we are representing the possibilities and uncertainties
in our interpretations.

Role of (transparent) situated dialogue in CogX

CogX investigates cognitive systems that self-understand and self-extend.
In some of the scenarios explored within CogX such self-extension is done in
a mixed-initiative, interactive fashion (e.g. the George and Dora scenarios).
The robot interacts with a human, to learn more about the environment.
WP6 contributes situated dialogue-based mechanisms to facilitate such in-
teractive learning. Furthermore, WP6 explores several issues around the
problems of self-understanding and self-extension in the context of dialogue
processing. Dialogue comprehension and production is ultimately based in
a belief model the robot builds up. This belief model captures beliefs and
tasks, in a multi-agent fashion. We can attribute a belief/task to one agent
(private), multiple agents (shared), or have an agent attribute a belief/task
to another agent (private, attributed). Already at this level we thus see a
range of possible forms of self-understanding and self-extension. The goal
of transparency is to establish beliefs as shared, and thus, any belief that
should be shared but currently is not represents a gap of sorts. The differ-
entiation between private and shared status status is one aspect of context
that helps determine how we produce references to entities in the world,
and the way we produce questions about such entities. Furthermore, inter-
pretations leading up to these beliefs and tasks may be uncertain. We use
probabilistic models to help counter uncertainty in comprehension, fusing
information from multiple modalities to guide comprehension. Should this
fail, we can use clarification to overcome that uncertainty. Such clarification
can also be used to resolve uncertainty about situated understanding, or
in a more general way, to request information about entities in the world.
WP6 presents a first attempt at an algorithm for identifying gaps in terms
of unknown properties about an entity I relative to a category C. We use
these gaps as a basis for verbalizing what a robot does and does not know
about I, and to drive dialogue to gain more information about I.
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Contribution to the CogX scenarios and prototypes

WP6 contributes directly to the George and Dora scenarios, in relation to
work performed in WP 3 (Qualitative spatial cognition), WP 5 (Interactive
continuous learning of cross-modal concepts), and WP 7 (Scenario-based
integration). Robust dialogue processing, clarification, and verbalization
are in principle used in both scenarios. In George we provide the possibility
for the robot to ask about visual properties it is uncertain about, and to use
verbalization and referencing to describe what it sees:

• Human places a red box on the table

• Robot Vision recognizes the object as a box, but is unsure about the
color. A clarification request is triggered, handled by dialogue.

• Robot “Is that box red?” – dialogue provides indirect feedback it
has recognized the object as a box, while at the same time asking for
confirmation on the color.

• Human “Yes, this box is red.”

• Robot Vision is provided with the information that the box is indeed
red, and so can update its models.

In Dora we also explore the introspection on what the robot does and
does not know about an area, to drive information requests to the user.
(The method is in fact general enough to also drive active visual search in
the environment.)

• Human guides the robot to a new area, and says “Here we are in the
kitchen.” This the second kitchen the human and the robot visit.

• Robot Place categorization can determine the area as a kitchen, with
a particular size. Vision perceives a water cooker.

• Robot “Ok, this looks like a larger kitchen.” – the robot can compare
to other kitchen instances it has seen so far.

• Robot The robot can infer that kitchens typically have several objects,
not only a water cooker but also a coffee machine. It understands that
it does not know of a coffee machine here, though.

• Robot “I can see a water cooker. Is there also a coffee machine?” –
the robot indicates what it does and does not know, and uses this as
the background for extending its knowledge about the area.
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1 Tasks, objectives, results

1.1 Planned work

Robots, like humans, do not always know or understand everything. Situ-
ated dialogue is a means for a robot to extend or refine its knowledge about
the environment. For this to work, the robot needs to be able to establish
with a human some form of mutually agreed-upon understanding – they
need to reach a common ground. The overall goal of WP6 is to develop
adaptive mechanisms for situated dialogue processing, to enable a robot to
establish such common ground in situated dialogue.

WP6 primarily focuses on situated dialogue for continuous learning. In
continuous learning, the robot is ultimately driven by its own curiosity,
rather than by extrinsic motivations. The robot builds up its own under-
standing of the world – its own categorizations and structures, and the ways
in which it sees these instantiated in the world. While learning, the robot
can solicit help from the human, to clarify, explain, or perform something.
This is where transparency comes into play. The robot is acting on its own
understanding, which need not be in any way similar to how a human sees
the world. There is therefore a need for the robot to make clear what it is
after: why the robot is requesting something from a human, what aspects
of a common ground it appeals to, and how the request is related to what
it does and does not know. To achieve transparency in situated dialogue
for continuous learning, WP6 investigated two important aspects in year
1: Verbalization of knowledge about classes and instances (Task 6.1), and
phrasing questions as subdialogues (Task 6.2).

Task 6.1: Verbalising categorical knowledge The goal is to enable the
robot to verbalize its own categorical knowledge (or lack thereof) rela-
tive to a situation, and understand situated references. We will extend
existing methods for comprehending and producing referring expres-
sions to cover verbalization of relevant information from singular visual
categories (WP5) and contextual reference.

Task 6.2: Continual planning for clarification and explanation We
will extend strategies for planning clarification- and explanation dia-
logues using a continual planning approach. This offers the necessary
flexibility to adjust a plan when interactively setting up an appro-
priate context, and provides a model of common ground in dialogue.
These methods will be based in means for grounding the information
expressed by clarifications and explanations in situated understanding.

The intention behind Tasks 6.1 and 6.2 was to achieve that the robot
would be able to enter into a dialogue with a human, to clarify something
or to request more information. This could be either about dialogue itself,
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or regard the situated context being talked about – thus spanning the en-
tire range of Clark’s grounding levels [11]. The robot uses belief models to
represent private and shared beliefs, including private beliefs the robot at-
tributes to other agents, and ontologies to capture its categorical knowledge
about the world. Together, belief models and ontologies provide a rich epis-
temological background against which the robot can introspect what it does
or does not know (e.g. whether another agent does understand something,
or whether an observed instance is of a particular category). We use such
self-understanding to guide verbalization and clarification, two interrelated
functions to help the robot gather more information to self-extend. The role
of verbalization in this process is to ensure that the why what and how of
the question is clear to the human: why the robot asks, what it does and
does not know, and how that gap should be addressed. The planning part
is to take care of the planning and execution of the actual dialogue, to en-
sure human and robot eventually do achieve a common ground. In §1.2 we
describe how we achieved these goals.

1.2 Actual work performed

Below we succinctly describe the achievements for the individual tasks. The
descriptions refer to the relevant papers and reports in the annexes, for more
technical detail. In §1.3 we place these achievements in the context of the
state-of-the-art.

1.2.1 Verbalising categorical knowledge

The goal of Task 6.1 was to develop methods for the robot to verbalize its
own categorical knowledge, or lack thereof. We have achieved the following:

Context-determination, bi-directionality in referencing A robot typ-
ically acts in an environment larger than the immediately perceivable
situation. The challenge in referring to objects and places in such a
large environment is to ensure that the agents participating in the di-
alogue can identify the appropriate context against which the resolve
a reference. Zender et al (§2.1.1, §2.1.2) have developed novel meth-
ods for determining the appropriate context for comprehending and
producing referring expressions.

A typical example Zender et al address is when the robot needs to refer
to an object in a place other then where the robot currently is, talking to
a human. Or when it needs to understand such a reference. For example,
the robot has been sent to fetch a person to take a phone call in somebody
else’s office (e.g. GJ’s). If this person is currently in her office, it would
not do to say “there’s a call for you on the phone.” This could incorrectly
identify the phone on that person’s desk as the one to pick up, whereas the
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point is to go to the GJ’s office to take the call there. What Zender et al do
is to use topological structure of the environment, to –literally– determine
the appropriate context for identifying the object it needs to refer to. So,
instead of just saying ”the phone,” the robot is able to say “there is a call
for you on the phone on the desk in GJ’s office.” It uses the context to
direct the human’s attention to the appropriate location, where it can then
identify the intended referent.

Verbalization of acquired properties Typically a robot is provided with
an initial ontology, outlining the concepts and their relations consid-
ered relevant for understanding the environment in which the robot
is to act. Over time, the robot can extend this ontology, for example
with instances and properties that hold for these. Zender and Prono-
bis (§2.1.3) have developed a new method for verbalizing knowledge
about autonomously acquired scalar properties for instances and their
classes. The distributions of property values across instances, within
a class, and across classes help define contextual standards [34, 15]
against which the verbalization of scalar properties as comparatives
can be determined in a contextually appropriate manner.

A scalar property is, simply, a property with values that are on a scale
that makes them comparable. An example of a scalar property is size:
A room can be smaller or larger than some other room, or of the same
size. Scalars are typical material properties for the kinds of entities we
want the robot to talk about. And, they are properties for which the robot
can autonomously acquire quantitative models. The problem is, how to
then talk about them. We cannot simply verbalize such a property at face
value, e.g. as “the room is 14.67m2.” Humans prefer more qualitative
descriptions, like “large” or “smaller.” Such qualitative descriptions are
called vague scalar predicates. Their exact interpretation is left vague –
that is to say, their exact interpretation is relative to a particular contextual
standard which defines the scale along which comparisons are to be made.
Zender and Pronobis propose a method to make it possible for the robot to
introspect what variation it has perceived for a particular scalar property
among instances of a class, or among classes as such. This form of self-
understanding enables the robot to talk in a human-like, qualitative fashion
about scalar properties, while at the same time (indirectly) indicating to the
human what it considers as prototypical values (by comparison).

Verbalization of categorical knowledge Sometimes it is more impor-
tant for the robot to make clear what it does not understand, than
to say what it does know about. This helps the human to figure out
what the robot might be after. Zender and Kruijff (§2.1.4) discuss
a preliminary method for a robot to introspect the knowledge it has
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about an entity in the world. The method establishes what the robot
does and does not know about that entity relative to one or more
categories in a known ontology. The resulting identified “gaps” are
those properties for the entity that the robot does not know about,
but which it would need to know to establish the entity as an instance
of a particular category. Zender and Kruijff subsequently discuss how
the robot can then verbalize this self-understanding, in terms of what
the category, the instance and its known properties, and the missing
properties identified as gaps.

Zender and Kruijff consider a simple, but often occurring form of “gap”:
namely, when a robot is lacking property information about an object or an
area to fully determine whether it is an instance of a particular category.
Consider again the example given earlier. A human and a robot enter a new
room, which the human indicates is a kitchen. The robot can categorize
the place as such, and even sees a water cooker. However, based on the
knowledge it has about kitchens, it would also expect a coffee machine to
be there. Zender and Kruijff show how the robot can determine such a
property of “having a coffee machine” as a gap in its knowledge about this
area (as being a kitchen). To convey this self-understanding, Zender and
Kruijff discuss how the robot can then verbalize this gap, together with a
description of what it does know about the area-as-a-kitchen. “Ok, this
looks like a larger kitchen. [... ] I can see a water cooker. Is there also a
coffee machine?”

The novelty in all these methods is the role context plays in determin-
ing how a robot should understand or verbalize a reference, or what it
knows about something (be that an instance or a class). Traditional meth-
ods focus primarily on content-determination, typically assuming a context
to be given. Our methods combine content-determination with context-
determination. Context-determination can thereby mean both situated con-
text (e.g. references in large-scale space) and epistemological context (e.g.
what beliefs a robot has, or attributes to other agents, or what it knows
about how to compare across classes). With that we go beyond the original
objectives of Task 6.1, which focused only on verbalizing knowledge about
visual objects in a current scene.

1.2.2 Clarification

The goal of Task 6.2 was to develop methods so a robot could clarify or
expand what it understands about the environment. These methods were to
be continual, in the sense that it should be possible to monitor the execution
of a plan, and where necessary adapt or expand it. We have achieved this
goal in the following ways.
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Determining epistemological context in questions Transparency and
scaffolding in dialogue for learning depend on epistemological context:
how questions appeal to common ground, what private beliefs they are
based in – and what answers an interlocutor would like to have. Kruijff
& Brenner (§2.2.1) explore methods for determining such appropriate
epistemological contexts, considering transparency and scaffolding ex-
plicitly as referential qualities of a question. These contexts are then
connected in a notion of question nucleus which reflects what is being
asked after, in reference to beliefs (aboutness, transparency) and in-
tentions (resolvedness, scaffolding). A question nucleus provides the
basis for formulating a question as a dialogue.

A robot should not just go and blurt out a question – this may not lead
to the human given the desired answer. A nice example of this is provided
by the former CoSy Explorer system [37]. The robot classified every narrow
passage it went through (< 70cm) as a door. Sometimes it would realize that
some previous passage probably wasn’t a door, just an artifact of driving
around in a cluttered environment. At that point of realization, the robot
would just ask “Is there a door here?” Out of the blue, without further
indication of where there ought to be a door, a human would typically say
“yes” – understanding the robot to mean, whether there would be a door to
this room. Which, of course, was not what the robot meant. But what it
failed to do was to properly take into account what the human would know
(she didn’t know that “here” was supposed to refer to that narrow passage),
and how to formulate its question accordingly. Kruijff and Brenner look
into how the robot could use its multi-agent belief models to determine how
to best pose a question. They start by formulating ways for the robot to
introspect its beliefs to determine what the human knows about something
the robot wants to ask a question about. This determines how to refer the
entity under discussion – making it transparent what the robot is talking
about. A second step is to use what the robot holds as private knowledge
and beliefs about the entity, to properly indicate what it would like to know
more about.

Continual comprehension and production of clarification Brenner et
al (§2.2.2) consider how a continual approach for planning and execut-
ing dialogues can be applied to human-robot interaction, in general.
Kruijff & Janiček (§2.2.3) combine these insights with weighted abduc-
tion. The approach covers comprehending and producing dialogue and
combines intention, attentional state, and multi-agent belief modeling.
Kruijff & Janiček focus on clarification dialogues, covering Clark-style
grounding from communicative levels to information requests concern-
ing situated understanding.
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Robots don’t always understand everything. Sometimes they realize
that, but sometimes they don’t, and attribute some property to an object
that is just plain wrong. Kruijff & Janiček try to capture such forms of
collaboration between a human and a robot, dealing explicitly with the
continual nature of such collaboration – things may go wrong and then need
to be corrected. A typical example that they try to capture is the following:

(1) Human places an object on the table

(2) Robot: ”That is a brown object.”

(3) Human: ”It is a red object.”

(4) Robot: ”Ok. What kind of object is it?”

(5) Human: ”Yes.”

(6) Robot: ”Aha. But what KIND of object is it?”

(7) Human: ”It is a box.”

Kruijff & Janiček explicitly use the belief models of the robot, for the
robot to figure out how it could use beliefs and observations to establish
why a human may have said something, and how to best achieve what the
robot itself is after (in terms of updating its beliefs). They make it possible
for the robot to assert a belief (“this is a brown object”) but then having
to retract it when being corrected by a human (”it is a red object”) and
establishing the corrected belief as a shared belief about the scene (”ok”).
At the same time, using what it understands to be shared, the robot can
make safe assumptions about how it can refer to objects. Attributed beliefs
also make it possible for the robot to assume that the human may know
an answer to a question. In its reasoning the robot can then assert that
the human will provide it with that information (“what kind of object is
it?”). With that the robot first of all explicitly represents the gap in its
knowledge (what it would like to know). But this also provides a level at
which introspection can track the extent to which the gap has actually been
resolved. The robot checks the updates it can make to its belief model
in response to its question, and can use the “self”-understood failure to
do so to persist in trying to get an appropriate answer from the human.
Humans are not always fully cooperative, so when the human replies with
“yes” (as in “coffee or tea? yes please”) she does not provide an answer
to the question. (Non-cooperative behavior is a problem usually “assumed
away” in approaches to dialogue; Kruijff & Janiček don’t, dealing with it
in a continual way as argued for in Brenner et al, §2.2.2.) The robot can
figure this out (using the approach of Kruijff & Brenner, §2.2.1), repeat the
question, to then finally get the desired kind of answer (“it is a box.”).

Contextually appropriate intonation for questions Kruijff-Korbayová
et al (§2.2.4) develop new methods for determining information struc-
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ture and intonation for a range of utterance types, including com-
mands, assertions, and -most importantly- questions. Information
structure and its reflection through e.g. intonation can make it clear
to the hearer how the utterance relates to the preceding context, and
what it focuses on. As with assertions, where intonation can change
the dynamic potential of their interpretation, intonation in a ques-
tion indicates its dynamics in terms of what it is after: what type of
answers is expected. Kruijff-Korbayová et al outline experiments to
verify these theoretical insights in an empirical way.

There is more to saying something than simply uttering a sequence of
words. In English, the intonation of an utterance reflects what it is that
someone is talking about, and what she would like to focus on. There is a
marked difference between assertions like “this is a RED box” (capitalization
indicating stress) versus “this is a red BOX,” or questions like “is this a red
BOX?” or “is this is a RED box?” Getting this right is crucial for the robot
to convey what it is after. Kruijff-Korbayová et al (§2.2.4) describe how the
robot can use private and shared beliefs, and what is currently attended to,
to help drive how to formulate a contextually appropriate intonation for an
utterance. In combination with the previous achievements, this rounds it
all off: We can determine what beliefs and gaps play a role in formulating
e.g. a question, we can manage a dialogue around that question, we can
verbalize its content and references in a contextually appropriate way, and
formulate all that with the right intonation.

The novelty in all these methods is thus how they achieve to flexibly
combine intention, multi-agent beliefs and attentional state in continual pro-
cessing of dialogue. Based on existing approaches, these methods explore
how the robot can introspect the private and shared beliefs it entertains, sit-
uate beliefs and intentions, and then use that as a background against which
it can handle and overcome pervasive aspects such as uncertainty, and the
typically large-scale spatiotemporal nature of action and interaction.

1.2.3 Robust processing of spoken situated dialogue

The success of dialogue-based human-robot interaction ultimately stands or
falls with how well a robot understands what a human says. Unfortunately,
spoken dialogue is difficult to understand. Utterances are typically incom-
plete or contain disfluencies, they may be ungrammatical, or a speaker may
correct herself and restart part of an utterance. This requires processing of
spoken dialogue to be robust. At the same time, we cannot sacrifice deep
understanding for robustness, as is often done. In the end a robot needs to
understand what a human said, to be able to act on it. That is the whole
point of situated dialogue as we consider it here.

In addition to Tasks 6.1 and 6.2, we have continued our efforts in robust
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processing of spoken situated dialogue. These efforts started already in
CoSy; the results reported here build up on these previous efforts but have
been achieved entirely during year 1 in CogX.

Integration of context in speech recognition and incremental parsing
Lison & Kruijff (§2.3.1) present a novel approach in which context in-
formation is used in a process combining speech recognition and in-
cremental parsing. The approach considers the entire processing from
incoming audio signal to establishing a contextually appropriate in-
terpretation of an utterance. Lison & Kruijff show that substantial
improvements on robustness in processing can be achieved (measured
against a WoZ corpus) by including context information (e.g. salient
objects, actions). This information is used to bias lexical activation
probabilities in the language model for speech recognition, and to guide
discriminative models for parse ranking applied at the end of an in-
cremental parsing process.

Incremental contextual pruning in parsing Lison & Kruijff (§2.3.2) con-
sider the application of discriminative models during incremental pars-
ing. After each step, context-sensitive discriminative models are ap-
plied to rank analyses. Using a beam of width 30, Lison & Kruijff
show how parsing time can be reduced by 50% without suffering any
significant reduction in performance (measured on a WoZ corpus).

When a human processes visually situated dialogue, she uses what she
sees in the scene and how she knows that scene to help her understand what
someone else might be saying about that scene. Lison & Kruijff explore
how this idea can be used to make spoken dialogue processing in human-
robot interaction more robust. When a robot perceives objects in a scene,
it uses that information to activate expressions it could associate with such
objects. For example, if it sees a ball, it would activate expressions like
“round,” “pick up,” etcetera. These expressions are phrases the robot ex-
pects to hear. They help the robot to anticipate what a human is likely to
say, when talking about that scene. Lison & Kruijff show that the robot can
use this information to deal with the uncertainty inherent to speech recog-
nition. Doing it in a probabilistic way, it is part of the broader approach in
CogX to using probabilistic representations to capture uncertainty in initial
interpretations of sensory signals. By maintaining all the possible hypothe-
ses we can then use knowledge from other modalities to bias how the audio
signal is interpreted in terms of possible word sequences. This is an exam-
ple of a very simple kind of self-understanding, since we are representing
the possibilities and uncertainties in our interpretations. Lison & Kruijff
take this even further, by using the same information about the context
to then help parsing to discriminate between possible analyses, to end up
with a parse that represents the most likely semantic interpretation of the
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audio signal in the given context. Using this sort of discrimination-based-
on-context during parsing actually helps to reduce the time needed to parse
an utterance.

1.3 Relation to the state-of-the-art

Below we briefly discuss how the obtained results relate to the current state-
of-the-art. We refer the reader to the annexes for more in-depth discussions.

1.3.1 Verbalisation

Task 6.1 considered the use of methods for comprehending and producing
referring expressions to cover verbalization of knowledge, and contextual ref-
erence. For such expressions to appropriately refer to the intended referent,
they need to meet a number of constraints, to help a hearer identify what is
being talked about. First, an expression needs to make use of concepts that
can be understood by the hearer. This becomes an important considera-
tion when we are dealing with a robot which acquires its own models of the
environment and is to talk about the contents of these. Second, the expres-
sion needs to contain enough information so that the hearer can distinguish
the intended referent from other entities in the world or a belief state, the
so-called potential distractors. For this it is necessary that the robot takes
the differentiation between private and shared beliefs into account, as we
already saw earlier. Finally, this needs to be balanced against the third con-
straint: Inclusion of unnecessary information should be avoided so as not to
elicit false implications on the part of the hearer.

Zender & Pronobis (§2.1.3) particularly deal with the first aspect. Given
that a robot autonomously acquires knowledge about the world, how can
such properties be used to verbalize what the robot knows? Existing work
on modeling scalar properties considers the use of contextual standards, to
determine how to realize such properties as “vague” expressions involving
gradable adjectives [15, 34]. This research primarily focuses on instances
– in a given visual setting. Zender & Pronobis move beyond this, by con-
sidering how scalar properties can be modeled as probabilistic distributions
over their values – and then use these distributions to construct contextual
standards. This makes it possible to consider distributions solely across
observed instances (like [15]), and also across instances within a class (con-
sidering values to be prototypical values within a class), and across classes.
Within-class and across-class contextual standards are not considered (nor
immediately possible) in [15]. They are, however, necessary to generate
contextually appropriate verbalizations using comparatives. For example,
consider the average office to have 8m2. Talking about two offices, with
office1 measuring 12m2 and office2 18m2, it would be more appropriate to
talk about office1 as “the smaller office,” not as “the small office.” The rea-
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son being that it is still bigger than the average office. These ideas are based
on insights in categorization and prototypicality originating with Brown [7]
and Rosch [53]: some instances in a category are more prototypical of that
category than others.

Zender et al (§2.1.1, §2.1.2) focus on the second and third aspect, namely
the problem of including the right amount of information that allows the
hearer to identify the intended referent. According to the seminal work on
generating referring expressions (GRE) by Dale and Reiter [14], one needs
to distinguish whether the intended referent is already in the hearer’s focus
of attention or not. This focus of attention can consist of a local visual
scene (visual context) or a shared workspace (spatial context), but also
contains recently mentioned entities (modeled as beliefs in the belief model
associated with the dialogue context). If the intended referent is already
part of the current context, the GRE task merely consists of singling out the
referent among the other members of the context, which act as distractors.
In this case the generated referring expression (RE) contains discriminatory
information, e.g. “the red ball” if several kinds of objects with different
colors are in the current context. If, on the other hand, the referent is not
in the hearer’s focus of attention, an RE needs to contain what Dale and
Reiter call navigational, or attention-directing information. The example
they give is “the black power supply in the equipment rack,” where “the
equipment rack” is supposed to direct the hearers attention to the rack and
its contents.

While most existing GRE approaches assume that the intended referent
is part of a given scene model, the context set, very little research has inves-
tigated the nature of references to entities that are not part of the current
context. The domain of such systems is usually a small visual scene, e.g. a
number of objects, such as cups and tables, located in the same room, other
closed-context scenarios, including a human-robot collaborative table-top
scenario [14, 31, 35, 33]. What these scenarios have in common is that they
focus on a limited part of space, which is immediately and fully observable:
small-scale space.

In contrast, mobile robots typically act in more complex environments.
They operate in large-scale space, i.e. space “larger than what can be per-
ceived at once” [39]. At the same time they do need the ability to understand
and produce verbal references to things that are beyond the current visual
and spatial context. When talking about remote places and things outside
the current focus of attention, the task of extending the context becomes
key.

Paraboni et al. [46] are among the few to address this problem. They
present an algorithm for context determination in hierarchically ordered do-
mains, e.g. a university campus or a document structure. Their approach is
mainly targeted at producing textual references to entities in written docu-
ments (e.g. figures and tables in book chapters), and consequently they do
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not touch upon the challenges that arise in a physically and perceptually
situated dialogue setting. Nonetheless the approach presents a number of
contributions towards GRE for situated dialogue in large-scale space. An
appropriate context, as a subset of the full domain, is determined through
Ancestral Search. This search for the intended referent is rooted in the
“position of the speaker and the hearer in the domain” (represented as d),
a crucial first step towards situatedness. Their approach suffers from the
shortcoming that their GRE algorithm treats spatial relationships as one-
place attributes. For example a spatial containment relation that holds
between a room entity and a building entity (“the library in the Cockroft
building”) is given as a property of the room entity (building name = Cock-

roft), rather than a two-place relation (in(library,Cockroft)). Thereby
they avoid recursive calls to the GRE algorithm, which would be necessary
if the intended referent is related to another entity that needs to be properly
referred to. Zender et al argue that this imposes an unnecessary restriction
onto the design of the knowledge base. Moreover, it makes it hard to use
their context determination algorithm as a sub-routine of any of the many
existing GRE algorithms. They show how these shortcomings can be over-
come, in an approach that integrates context- and content-determination as
separate routines. The approach is furthermore bi-directional, meaning it
can be used for both producing and comprehending referring expressions.

Zender & Kruijff (§2.1.4) present preliminary research on a method that
enables a robot to introspect what it knows and doesn’t know about an
instance, relative to a given category. The method is based on the idea of
querying the robot’s ontological knowledge to retrieve the properties that
an entity would need to fulfill to be an instance of that given category. The
robot can then compare these properties to those that it already knows
for the instance. Working under an open world assumption, the robot can
then consider any remaining properties as gaps, indicating ignorance. This
basic idea is similar to slot-filling strategies in information states-based dia-
logue management [63]. An information state is a set of records of what we
would like to know, and what we already know. Any open records identify
“gaps” that we need to fill next – for example, if our state reflects book-
ing a train ticket, records may indicate departure, arrival, destination, etc.
A dialogue system for booking a ticket then will ask the user for all these
bits of information, to ensure it can get the user the right ticket. Here we
face something similar: obtain all the information for a set of properties so
that we can establish the entity as an instance of a given category. Hav-
ing said that, Zender & Kruijff indicate how the method has the potential
to go beyond a slot-filling strategy, in several ways. They argue how the
method can extended to deal with uncertainty in categorization, and use
weighted abduction of the kind proposed by Kruijff & Janiček (§2.2.3) to
provide a “lowest-cost” way of establishing the right category for the entity.
This again follows up on the general CogX perspective, integrating different
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sources of information to help overcome uncertainty in understanding (per-
ceptual data, ontological knowledge) to drive inferences towards establishing
an interpretation (weighted abduction). Zender & Kruijff extend a recent
method for verbalizing ontological structure [55] to properly reflect what the
robot knows about the category, the instance, and the gaps it has identified.

1.3.2 Clarification

Kruijff & Brenner (§2.2.1) propose the notion of question nucleus. This
notion captures the information pertaining to a question. A description
logic-like formalism is used to represent such information, as a conceptual
structure in which propositions have ontological sorts and unique indices,
and can be related through named relations. A question can then be repre-
sented as a structure in which we are querying one or more aspects of such a
representation [23, 36]. The formalism allows everything to be queried: re-
lations, propositions, sorts. The nucleus altogether comprises the situation
(the ”facts”) and the beliefs that have led up to the question, the question
itself, and the goal content which would resolve the question. The question
nucleus thus integrates Ginzburg’s notions of aboutness and (potential) re-
solvedness, and includes an explicit notion of what information is shared,
and what is privately held information (cf. [42, 26]). Intuitively, it thus
represents what the robot is asking about (aboutness), what it would like
to know (resolvedness), and how it can appeal to shared beliefs or needs to
make clear private beliefs when raising the question. The contributions the
approach aims for are, briefly, as follows. Purver and Ginzburg develop an
account for generating questions in a dialogue context [51, 50]. Their focus
was, however, on clarification for the purpose of dialogue grounding. A sim-
ilar observation can be made for recent work in HRI [41]. Kruijff & Brenner
are more interested in formulating questions regarding issues in building up
situation awareness, including the acquisition of new ways of understand-
ing situations (cf. also [36]). In issue-based (or information state-based)
dialogue systems [40], the problem of how to phrase a question is greatly
simplified because the task domain is fixed. There is little need for paying
attention to transparency or scaffolding, as it can be assumed the user un-
derstands the task domain. This is however an assumption that cannot be
made for our setting.

Kruijff & Janiček (§2.2.3) provide a model for capturing the continual
nature of collaborative activity. They base their approach on an algorithm
in which a form of weighted abduction plays a core role. Weighted abduction
is “inference to the best explanation” – meaning, in this context, the best
explanation for why someone is saying something, and formulating that ex-
planation in terms of an intention, an update to a belief model, and possible
updates to an attentional state. Using weighted abduction for interpreta-
tion of natural language was introduced by Hobbs et al in [30]. Kruijff &
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Janiček use an extended form, proposed by Stone & Thomason [60, 61, 62].
Stone & Thomason’s approach integrates attentional state, intention, and
beliefs. Their attentional state captures those entities that are currently “in
focus” or highly salient in the context. (Kruijff & Janiček turn this into
beliefs about such entities.) The approach is related to other collaborative
models of dialogue [27, 42, 26], and provides a single model for both compre-
hension and production. Stone & Thomason’s notion of “context” provides
for a more flexible way of resolving contextual references than classical dis-
course theories, though. Beliefs, intentions, and attentional state can all
co-determine the conditions on resolving a reference – rather than that res-
olution is solely determined by structural aspects of discourse (like in e.g.
SDRT [2]). This provides a suitable bridge to the continuum between action
and interaction, which Kruijff & Brenner have argued for, cf. Brenner et al
§2.2.2. Kruijff & Janiček propose to extend Stone & Thomason’s approach
with a more explicit notion of situated multi-agent belief models, and they
introduce assertions into proofs. An assertion is a statement whose “future
necessary truth” needs to be assumed for a proof to conclude. This notion
of assertion is taken from continual planning [6] where it is used to state the
necessity of a future observation. Depending on the verification of the obser-
vation, an assertion triggers explicit expanding or revision of a plan. Within
an abductive proof, an assertion turns the corresponding action plan into
a continual plan, to achieve the inferred update to the agent’s belief model
and attentional state. Assertions thus make Stone & Thomason’s intuitive
idea of “checkpoints” more precise. Kruijff & Janiček explore the use of as-
sertions in abductive proofs in the context of producing and comprehending
clarification dialogues.

Kruijff-Korbayová et al (§2.2.4) explore intonation in situated dialogue,
with a particular focus on intonation in questions like clarification requests.
Intonation of clarification requests has so far received relatively little atten-
tion in the literature. Previous work on controling accent placement and
type in dialogue system output based on information structure assigment
w.r.t. the context all concentrated on the assignment of intonation in state-
ments [49, 38, 4]. The seminal work of [51] which laid out a classification of
the forms and functions of clarification requests based on extensive corpus
analysis does not take intonation into account. Pioneering in this respect
is the study of CRs in German task-oriented human-human dialogues in
[52], who found that the use of intonation seemed to disambiguate clarifica-
tion types, with rising boundary tones used more often to clarify acoustic
problems than to clarify reference resolution. A series of production and
perception experiments with one-word grounding utterances in Swedish has
also shown differences in prosodic features depending on meaning (acknowl-
edgment vs. clarification of understanding or perception), and that sub-
jects differentiate between the meanings accordingly, and respond differently
[17, 58]. The work by Kruijff-Korbayová et al extends the use of information
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structure to control the intonation of dialogue system output beyond answers
to information-seeking questions: they include acknowledgments as well as
clarification requests, and ultimately other types of questions. They include
both fragmentary grounding feedback and full utterances, and address vary-
ing placement of pitch accents depending on context and communicative
intention.

1.3.3 Robust processing of spoken situated dialogue

Lison & Kruijff’s work on robust processing (§2.3.1, §2.3.2) aims to address
two central issues in spoken dialogue processing: (1) disfluencies in verbal
interaction and (2) speech recognition errors.

We know from everyday experience that spoken language behaves quite
differently from written language. We do not speak the way we write. The
difference of communicative medium plays a major role in this discrepancy.
A speech stream offers for instance no possibility for “backtracking” – once
something has been uttered, it cannot be erased anymore. And, contrary
to written language, the production of spoken language is strongly time-
pressured. The pauses which are made during the production of an utterance
do leave a trace in the speech stream. As a consequence, spoken dialogue
is replete with disfluencies such as filled pauses, speech repairs, corrections
or repetitions [56]. A speech stream is also more difficult to segment and
delimitate than a written sentence with punctuation and clear empty spaces
between words. In fact, the very concepts of “words” and “sentences”, which
are often taken as core linguistic objects, are much more difficult to define
with regard to spoken language. When we analyse spoken language, we ob-
serve a continuous speech stream, not a sequence of discrete objects. Hence
the presence of many discourse markers in spoken dialogue, which play an
important role in determining discourse structure. A final characteristic of
spoken dialogue which is worth pointing out is that few spoken utterances
take the form of complete sentences. The most prototypical example is the
“short answer” in response to queries, but many other types of fragments or
non-sentential utterances can be found in real dialogues [19]. This is mainly
due to the interactive nature of dialogue – dialogue participants heavily rely
on what has been said previously, and seek to avoid redundancies. As a
result of all these factors, spoken language contains much more disfluent,
partial, elided or ungrammatical utterances than written language. The
question of how to accommodate these types of ill-formed input is a major
challenge for spoken dialogue systems.

A second, related problem is automatic speech recognition (ASR). Speech
recognition is the first step in comprehending spoken dialogue, and a very
important one. For robots operating in real-world, noisy environments, and
dealing with utterances pertaining to complex, open-ended domains, this
step is also highly error-prone. In spite of continuous technological advances,
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the performance of ASR indeed remains for most tasks at least an order
of magnitude worse than that of human listeners [44]. And contrary to
human performance, ASR accuracy is usually unable to degrade gracefully
when faced with new conditions in the environment (ambient noise, bad
microphone, non-native or regional accent, variations in voice intensity, etc.)
[12]. This less-than-perfect performance of ASR technology seriously hinders
the robustness of dialogue comprehension systems, and new techniques are
needed to alleviate this problem1.

The papers included in this deliverable present an integrated approach
to dealing with these problems. The approach has three defining character-
istics:

1. It is a hybrid approach, combining symbolic and statistical methods
to process spoken dialogue. The implemented mechanisms combine
fine-grained linguistic resources (a CCG lexicon) with statistical infor-
mation (the ASR language model and the discriminative model). The
resulting system therefore draws from the best of both worlds and is
able to deliver both deep and robust language processing.

2. It is also an integrated approach to spoken dialogue comprehension.
It goes all the way from the signal processing of the speech input
up to the logical forms and the pragmatic interpretation. The various
components involved in dialogue processing interact with each other in
complex ways to complement, coordinate and constrain their internal
representations.

3. Finally, it is also a context-sensitive approach. Contextual information
is used at each processing step, either as an anticipatory mechanism
(to guide expectations about what is likely to be uttered next), or as a
discriminative mechanism (to prune interpretations which are contex-
tually unlikely). These mechanisms are implemented by the dynamic
adaptation of the ASR language model and the use of contextual fea-
tures in the discriminative model for robust parsing.

This approach compares to the state of the art in robust processing of
spoken dialogue, as follows. Commercial spoken dialogue systems tradition-
ally rely on shallow parsing techniques such as “concept spotting”. In this
approach, a small hand-crafted, task-specific grammar is used to extract
specific constituents, such as locative phrases or temporal expressions, and
turn these into basic semantic concepts [65, 32, 3, 16, 1]. These techniques
are usually very efficient, but also present several important shortcomings,

1The speech recogniser included into our robotic platform – Nuance Recognizer v8.5
with statistical language models – yields for instance a word error rate (WER) of about
20 % when evaluated on real spoken utterances. Thus, more than one word out of five in
each utterance is actually misrecognised by the system.

EU FP7 CogX 15



DR 6.1: Transparency in situated dialogue for interactive learning Kruijff et al

as they are often highly domain-specific, fragile, and require a lot of devel-
opment and optimisation effort to implement. In more recent years, several
new techniques emerged, mainly based on statistical approaches. In the
CHORUS system [47], the utterances are modeled as Hidden Markov Mod-
els [HMMs], in which hidden states correspond to semantic concepts and
the state outputs correspond to the individual words. HMMs are however
a flat-concept model – the semantic representation is just a linear sequence
of concepts with no internal structure. To overcome this problem, various
stochastic parsing techniques have been proposed, based either on Proba-
bilistic Context Free Grammars [43, 20], lexicalised models [13, 10], data-
oriented parsing [5, 57], or constrained hierarchical models [29]. A few recent
systems, such as the SOUP parser, also attempt to combine shallow pars-
ing with statistical techniques, based on a hand-crafted grammar associated
with probabilistic weights [22]. More rarely, we can also find in the literature
some descriptions of spoken dialogue systems performing a real grammatical
analysis, usually along with a “robustness” mechanism to deal with speech
recognition errors, extra-grammaticality [64, 9] or ill-formed inputs [66].

Compared to the state of the art, our approach is unique in the sense
that it is, to the best of our knowledge, the only one which attempts to
combine deep grammatical analysis together with statistical discriminative
models exploiting both linguistic and contextual information. This has ar-
guably several advantages. Using a deep processing approach, we are able
to extract full, detailed semantic representations, which can then be used
to draw inferences and perform sophisticated dialogue planning. This is not
possible with shallow or statistical methods. At the same time, due to the
grammar relaxation mechanism and the discriminative model, we do not
suffer from the inherent fragility of purely symbolic methods. Our parsing
method is particularly robust, both to speech recognition errors and to ill-
formed utterances. Finally, contrary to “concept spotting” techniques, our
approach is much less domain-specific: the parser relies on a general-purpose
lexicalised grammar which can be easily reused in other systems.

Our approach is also original in its tight integration of multiple knowl-
edge sources – and particularly contextual knowledge sources – all through
the utterance comprehension process. Many dialogue systems are designed
in a classical modular fashion, where the output of a component serves as
direct input for the next component, with few or no interactions other than
this pipelined exchange of data2. Our strategy, however, is to put the tight,
multi-level integration of linguistic and contextual information at the very
center of processing.

As a final note, we would like to stress that our dialogue comprehension
system also departs from previous work in the way we define “context”.

2Some interesting exceptions to this design include integrated approaches such as [45,
21].
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Many recent techniques have been developed to take context into account
in language processing (see e.g. [28]). But the vast majority of these ap-
proaches take a rather narrow view of context, usually restricting it to the
mere dialogue/discourse context. Our dialogue comprehension system is one
of the only ones (with the possible exceptions of [54, 8, 25]) to define context
in a multimodal fashion, with a special focus on situated context.
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2 Annexes

2.1 Verbalization

2.1.1 Zender et al. “A Situated Context Model for Resolution
and Generation of Referring Expressions” (ENLG’09)

Bibliography H. Zender, G.J.M. Kruijff, and I. Kruijff-Korbayová. “A
Situated Context Model for Resolution and Generation of Referring Ex-
pressions.” In: Proceedings of the 12th European Workshop on Natural
Language Generation (ENLG 2009). pp. 126–129. Athens, Greece. March
2009.

Abstract The background for this paper is the aim to build robotic assis-
tants that can naturally interact with humans. One prerequisite for this is
that the robot can correctly identify objects or places a user refers to, and
produce comprehensible references itself. As robots typically act in envi-
ronments that are larger than what is immediately perceivable, the problem
arises how to identify the appropriate context, against which to resolve or
produce a referring expression (RE). Existing algorithms for generating REs
generally by-pass this problem by assuming a given context. In this paper,
we explicitly address this problem, proposing a method for context determi-
nation in large-scale space. We show how it can be applied both for resolving
and producing REs.

Relation to WP The paper makes it possible for the robot to discuss
objects and places beyond the currently perceivable situation. That makes
it unnecessary for a robot and a human to be in the very place where there
is something a robot needs to be explained.
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2.1.2 Zender et al. “Situated Resolution and Generation of Spa-
tial Referring Expressions for Robotic Assistants.” (IJ-
CAI’09)

Bibliography H. Zender, G.J.M. Kruijff, and I. Kruijff-Korbayová. ”Situ-
ated Resolution and Generation of Spatial Referring Expressions for Robotic
Assistants.” In: Proceedings of the Twenty-first International Joint Confer-
ence on Artificial Intelligence (IJCAI-09). Pasadena, CA, USA. July 2009.

Abstract In this paper we present an approach to the task of gener-
ating and resolving referring expressions (REs) for conversational mobile
robots. It is based on a spatial knowledge base encompassing both robot-
and human-centric representations. Existing algorithms for the generation
of referring expressions (GRE) try to find a description that uniquely identi-
fies the referent with respect to other entities that are in the current context.
Mobile robots, however, act in large-scale space, that is environments that
are larger than what can be perceived at a glance, e.g. an office building
with different floors, each containing several rooms and objects. One chal-
lenge when referring to elsewhere is thus to include enough information so
that the interlocutors can extend their context appropriately. We address
this challenge with a method for context construction that can be used for
both generating and resolving REs two previously disjoint aspects. Our
approach is embedded in a bi-directional framework for natural language
processing for robots.

Relation to WP The paper further explores how a robot can discuss
objects and places outside the current situation (cf. also §2.1.1). The pa-
per shows how determining the appropriate context for a reference can be
integrated in a bi-directional approach, to enable the robot to both produce
and comprehend contextually appropriate references.
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2.1.3 Zender and Pronobis. “Verbalizing vague scalar predicates
for autonomously acquired ontological knowledge” (report)

Bibliography H. Zender and A. Pronobis. “Verbalizing vague scalar pred-
icates for autonomously acquired ontological knowledge” (report)

Abstract The paper reports on ongoing research in generating and under-
standing verbal references to entities in the robot’s environment. The paper
focuses on features of spatial entities that are commonly expressed as vague
scalar predicates in natural language, such as, e.g., size. The paper proposes
an approach for characterizing such features in terms of properties and dis-
tributions over their values. This leads to a basic notion of prototypicality
of property-values. Using this notion, the paper shows how different types
of contextual standards can be defined, which determine the contextually
appropriate use of a vague scalar predicate in linguistically describing a fea-
ture of a spatial entity. The approach goes beyond existing work in that it
allows for a variety of contextual standards (in class, across classes, across in-
stances) in describing features as vague scalar predicates, and by ultimately
basing these standards in models of the robot’s perceptual experience.

Relation to WP Typically a robot is provided with an initial ontology,
outlining the concepts and their relations considered relevant for understand-
ing the environment in which the robot is to act. Over time, the robot can
extend this ontology, for example with instances and properties that hold for
these. The report develops a new method for verbalizing knowledge about
autonomously acquired scalar properties for instances and their classes.
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2.1.4 Zender and Kruijff. “Verbalizing classes and instances in
ontological knowledge” (report)

Bibliography H. Zender and G.J.M. Kruijff. “Verbalizing classes and
instances in ontological knowledge” (report)

Abstract The paper reports preliminary research on verbalizing a robot’s
knowledge about an instance I of a particular category C. This covers both
what a robot knows, and what it does not (yet) know about the instance.
The paper considers a “gap” to be that information the robot misses to
establish a given property P for I, knowing that that property typically
applies to instances of C. The paper proposes a method for determining
which properties are classifiable as gaps for an instance relative to a cate-
gory. This method operates on the T- and A-box of an ontology. It provides
a general method for determining gaps, and is not specific to situated dia-
logue. The paper shows how the resulting characterization of available and
missing knowledge about I relative to C can then be verbalized, following
up an approach recently presented in [55]. The paper illustrates the method
on an example involving spatial entities, and discusses further research on
extending the method.

Relation to WP The report provides a first attempt at verbalizing on-
tological knowledge about classes and instances, with a particular focus on
verbalizing what a robot does not yet know about a particular instance (i.e.
a “gap”).
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2.2 Clarification

2.2.1 Kruijff and Brenner. “Phrasing Questions” (AAAI SS’09)

Bibliography G.J.M. Kruijff and M. Brenner. “Phrasing Questions.” In:
Proceedings of the AAAI 2009 Spring Symposium on Agents that Learn
from Human Teachers. Stanford, CA. March 2009.

Abstract In a constructive learning setting, a robot builds up beliefs
about the world by interacting – interacting with the world, and with other
agents. Asking questions is key in such a setting. It provides a mechanism
for interactively exploring possibilities, to extend and explain the robot’s
beliefs. The paper focuses on how to linguistically phrase questions in dia-
logue. How well the point of a question gets across depends on how it is put.
It needs to be effective in making transparent the agent’s intentions and be-
liefs behind raising the question, and in helping to scaffold the dialogue such
that the desired answers can be obtained. The paper proposes an algorithm
for deciding what to include in formulating a question. Its formulation is
based on the idea of considering transparency and scaffolding as referential
aspects of a question.

Relation to WP The paper considers what beliefs to use as context for
a question (considered as a subdialogue). The paper defines the notion of a
question nucleus. This structure identifies beliefs that provide a background
for the question, the expected answers to the question, and a plan for formu-
lating the question. The identified beliefs provide the basis for determining
how to achieve transparency in phrasing the question, by relating aspects of
the question nucleus to private and shared beliefs.
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2.2.2 Brenner et al. “Continual Collaborative Planning for Sit-
uated Interaction” (report)

Bibliography M. Brenner, G.J.M. Kruijff, I. Kruijff-Korbayová, and N.A.
Hawes. “Continual Collaborative Planning for Situated Interaction.”

Abstract When several agents are situated in a common environment
they usually interact both verbally and physically. Human-Robot Interac-
tion (HRI) is a prototypical case of such situated interaction. It requires
agents to closely integrate dialogue with behavior planning, physical ac-
tion execution, and perception. The paper describes a framework called
Continual Collaborative Planning (CCP) and its application to HRI. CCP
enables agents to autonomously plan and realise situated interaction that
intelligently interleaves planning, acting, and communicating. The paper
analyses the behavior and efficiency of CCP agents in simulation, and on
two robot implementations.

Relation to WP The paper argues for the continual nature of dialogue
processing, reacting to the dynamics of the collaborative activity encom-
passing the actions of the different agents, and their interaction.
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2.2.3 Kruijff and Janiček. “Abduction for clarification in situ-
ated dialogue” (report)

Bibliography G.J.M. Kruijff and M. Janiček. “Abductive inference for
clarification in situated dialogue” (report)

Abstract A robot can use situated dialogue with a human, in an effort
to learn more about the world it finds itself in. When asking the human
for more information, it needs to be clear to the human, what the robot
is talking about. The robot needs to make transparent what it would like
to know more about, what it does know (or doesn’t), and what it is after.
Otherwise, the human is less likely to provide a useful answer to the robot.
They need to establish a common ground in. The paper presents ongoing
research on developing an approach for comprehending and producing (sub-
)dialogues for clarifying or requesting information about the world in which
establishing common ground in beliefs, intentions, and attention plays an
explicit role. The approach is based on Stone & Thomason’s abductive
framework [60, 61, 62]. This framework integrates intention, attentional
state, and dynamic interpretation to abductively derive an explanation on
what assumptions and intentions communicated content can be interpreted
as updating a belief context. The approach extends the framework of Stone
& Thomason with assertions, to provide an explicit notion of checkpoint,
and a more explicit form of multi-agent beliefs [6]. The approach uses these
notions to formulate clarification as continual process of comprehension and
production set in dialogue as a collaborative activity.

Relation to WP The report details a continual approach for managing
clarification dialogues, based on an extended form of weighted abductive in-
ference. The inference process covers both comprehension and production,
in an interleaved fashion. The approach integrates intention, attentional
state, and multi-agent belief models in a continual way of dealing with dia-
logue as a collaborative activity.
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2.2.4 Kruijff-Korbayová et al. “Contextually appropriate into-
nation of clarification in situated dialogue” (report)

Bibliography I. Kruijff-Korbayová, R. Meena, and G.J.M. Kruijff. “Con-
textually appropriate intonation of clarification in situated dialogue.” Re-
port.

Abstract When in doubt, ask. This paradigm very much applies to au-
tonomous robots which self-understand and self-extend in the environment
they find themselves. For this, it is essentially for these systems to learn
continuously, driven mainly by their own curiosity about the surroundings.
Spoken dialogue is a means through which a robot can clarify or extend
the acquired knowledge about the situated environment. This ability to
self-initiate a dialogue to actively seek information or clarifications besides
adding autonomy to a robot’s behavior also allows the robot to connect its
belief system to that of its listener. This access to respective belief systems
in a dialogue helps the participating agents in dialogue grounding. However,
for conversational robots raising clarification requests to seeking information
is not only limited to contextually appropriate lexical selection and utter-
ance content planning, but extends further to the generation of contextually
appropriate intonation. In the absence of contextually appropriate into-
nation, dialogue participants might be lead to maintain incongruous belief
state in wake of situational ambiguities that may arise in situated dialogue.
Use of contextually appropriate intonation in clarification statements will
enable the robot to rightly express its intentions to the human interlocutor.
In this work we develop an approach for determining contextually appropri-
ate intonation in clarification statements, for resolving situated ambiguities.
Following the approaches [24, 50, 51] to clarification in human dialogue,
we develop clarification strategies in human-robot dialogue for continuous
and cross-modal learning. Working in the lines of Steedman’s theory of in-
formation structure [59, 48] and [18], we propose and develop the notion
of information packaging in our clarification statements. We evaluate our
approach to generation of contextually appropriate intonations using psy-
cholinguistically plausible experimental setup.

Relation to WP When a robot raises a question, or more in general
says something in a given context, it is important for it to be clear how
the utterance relates to the preceding context – and what it focuses on.
Intonation is one such means to indicate this relation to context.

EU FP7 CogX 25



DR 6.1: Transparency in situated dialogue for interactive learning Kruijff et al

2.3 Robust processing of spoken situated dialogue

Increased robustness, ultimately reflected as an improvement in understand-
ing what the user has said, contributes to efficient and effective dialogue:
the better the understanding, the less need for corrective measures (e.g.
clarification).

2.3.1 Lison and Kruijff. “An integrated approach to robust pro-
cessing of situated spoken dialogue.” (SRSL’09)

Bibliography P. Lison and G.J.M. Kruijff. “An integrated approach to
robust processing of situated spoken dialogue.” In: Proceedings of the Sec-
ond International Workshop on the Semantic Representation of Spoken Lan-
guage (SRSL’09). Athens, Greece. April 2009

Abstract Spoken dialogue is notoriously hard to process with standard
NLP technologies. Natural spoken dialogue is replete with disfluent, par-
tial, elided or ungrammatical utterances, all of which are difficult to accom-
modate in a dialogue system. Furthermore, speech recognition is known to
be a highly error-prone task, especially for complex, open-ended domains.
The combination of these two problems - ill-formed and/or misrecognised
speech inputs - raises a major challenge to the development of robust dia-
logue systems. We present an integrated approach for addressing these two
issues, based on an incremental parser for Combinatory Categorial Gram-
mar. The parser takes word lattices as input and is able to handle ill-formed
and misrecognised utterances by selectively relaxing its set of grammatical
rules. The choice of the most relevant interpretation is then realised via
a discriminative model augmented with contextual information. The ap-
proach is fully implemented in a dialogue system for autonomous robots.
Evaluation results on a Wizard of Oz test suite demonstrate very significant
improvements in accuracy and robustness compared to the baseline.

Relation to WP The paper describes an approach in which context in-
formation (salient entities, properties, and actions) is used to anticipate
likely word sequences (biasing the lexical activations of words in a language
model), and to discriminate (complete) parses. This yields improvements in
robustness, resulting in a lower word error rate (WER) and an improvement
in partial- and exact-matches of semantic representations against a WoZ
corpus.
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2.3.2 Lison and Kruijff, “Efficient parsing of spoken inputs for
human-robot interaction” (RO-MAN’09)

Bibliography P. Lison and G.J.M. Kruijff. “Efficient parsing of spoken
inputs for human-robot interaction.” In: Proceedings of the 18th IEEE
International Symposium on Robot and Human Interactive Communication
(RO-MAN’09). Toyama, Japan. September 2009.

Abstract The use of deep parsers in spoken dialogue systems is usually
subject to strong performance requirements. This is particularly the case
in human-robot interaction, where the computing resources are limited and
must be shared by many components in parallel. A real-time dialogue sys-
tem must be capable of responding quickly to any given utterance, even
in the presence of noisy, ambiguous or distorted input. The parser must
therefore ensure that the number of analyses remains bounded at every pro-
cessing step. The paper presents a practical approach to address this issue
in the context of deep parsers designed for spoken dialogue. The approach
is based on a word lattice parser combined with a statistical model for parse
selection. Each word lattice is parsed incrementally, word by word, and a
discriminative model is applied at each incremental step to prune the set of
resulting partial analyses. The model incorporates a wide range of linguis-
tic and contextual features and can be trained with a simple perceptron.
The approach is fully implemented as part of a spoken dialogue system for
human-robot interaction. Evaluation results on a Wizard-of-Oz test suite
demonstrate significant improvements in parsing time.

Relation to WP Whereas the (SRSL’09) paper only considers the uses
of discriminative models at the end of the parsing process, the current paper
employs discriminative models after each incremental step during parsing.
A discriminative models ranks all partial analyses, after which the top-30
ranked analyses are selected for further processing. The paper shows a 50%
improvement in parsing time, without any significant loss in performance
(partial/exact match). Improvements in processing time make it possible
for the system to have a faster response-time.
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[41] S. Li, B. Wrede, and G. Sagerer. A computational model of multi-modal
grounding. In Proceedings of the ACL SIGdial workshop on discourse
and dialog, pages 153–160, 2006.

[42] K. Lochbaum, B.J. Grosz, and C.L. Sidner. Discourse structure and
intention recognition. In R. Dale, H. Moisl, , and H. Somers, editors, A
Handbook of Natural Language Processing: Techniques and Applications
for the Processing of Language as Text. Marcel Dekker, New York, 1999.

[43] Scott Miller, Richard Schwartz, Robert Bobrow, and Robert Ingria.
Statistical language processing using hidden understanding models. In
HLT ’94: Proceedings of the workshop on Human Language Technology,
pages 278–282, Morristown, NJ, USA, 1994. Association for Computa-
tional Linguistics.

[44] R. K. Moore. Spoken language processing: piecing together the puzzle.
Speech Communication: Special Issue on Bridging the Gap Between
Human and Automatic Speech Processing, 49:418–435, 2007.

[45] Robert Moore, John Dowding, J. M. Gawron, and Douglas Moran.
Combining linguistic and statistical knowledge sources in natural-
language processing for atis. In ARPA Spoken Language Technology
Workshop, 1995.

[46] I. Paraboni, K. van Deemter, and J. Masthoff. Generating referring ex-
pressions: Making referents easy to identify. Computational Linguistics,
33(2):229–254, June 2007.

[47] Roberto Pieraccini, Evelyne Tzoukermann, Zakhar Gorelov, Esther
Levin, Chin-Hui Lee, and Jean-Luc Gauvain. Progress report on the
Chronus system: ATIS benchmark results. In HLT ’91: Proceedings

EU FP7 CogX 31



DR 6.1: Transparency in situated dialogue for interactive learning Kruijff et al

of the workshop on Speech and Natural Language, pages 67–71, Morris-
town, NJ, USA, 1992. Association for Computational Linguistics.

[48] Scott A. Prevost. An information structural approach to spoken lan-
guage generation. In Proceedings of the 34th annual meeting on Asso-
ciation for Computational Linguistics, pages 294–301, Morristown, NJ,
USA, 1996. Association for Computational Linguistics.

[49] Scott A. Prevost. A Semantics of Contrast and Information Structure
for Specifying Intonation in Spoken Language Generation. Phd thesis,
University of Pennsylvania, Institute for Research in Cognitive Science
Technical Report, Pennsylvania, USA, 1996.

[50] M. Purver. The Theory and Use of Clarification Requests in Dialogue.
PhD thesis, King’s College, University of London, 2004.

[51] M. Purver, J. Ginzburg, and P. Healey. On the means for clarification
in dialogue. In R. Smith and J. van Kuppevelt, editors, Current and
New Directions in Discourse and Dialogue, volume 22 of Text, Speech
and Language Technology, pages 235–255. Kluwer Academic Publishers,
2003.
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Abstract

The background for this paper is the aim
to build robotic assistants that can “natu-
rally” interact with humans. One prereq-
uisite for this is that the robot can cor-
rectly identify objects or places a user
refers to, and produce comprehensible ref-
erences itself. As robots typically act
in environments that are larger than what
is immediately perceivable, the problem
arises how to identify the appropriate con-
text, against which to resolve or produce
a referring expression (RE). Existing al-
gorithms for generating REs generally by-
pass this problem by assuming a given
context. In this paper, we explicitly ad-
dress this problem, proposing a method for
context determination in large-scale space.
We show how it can be applied both for re-
solving and producing REs.

1 Introduction

The past years have seen an extraordinary increase
in research on robotic assistants that help users
perform daily chores. Autonomous vacuum clean-
ers have already found their way into people’s
homes, but it will still take a while before fully
conversational robot “gophers” will assist people
in more demanding everyday tasks. Imagine a
robot that can deliver objects, and give directions
to visitors on a university campus. This robot must
be able to verbalize its knowledge in a way that is
understandable by humans.

A conversational robot will inevitably face sit-
uations in which it needs to refer to an entity (an
object, a locality, or even an event) that is located
somewhere outside the current scene, as Figure 1
illustrates. There are conceivably many ways in
which a robot might refer to things in the world,
but many such expressions are unsuitable in most

Where is the 

IT Help desk? It is on the 

1st floor in 

building 3b.

it is at
<45.56, -3.92, 10.45>

Where is the 
IT help desk? It is on the 1st 

floor in building 
3B.

It is at

Figure 1: Situated dialogue with a service robot

human-robot dialogues. Consider the following
set of examples:

1. “position P = 〈45.56,−3.92, 10.45〉”
2. “Peter’s office no. 200 at the end of the cor-

ridor on the third floor of the Acme Corp.
building 3 in the Acme Corp. complex, 47
Evergreen Terrace, Calisota, Earth, (...)”

3. “the area”
These REs are valid descriptions of their respec-
tive referents. Still they fail to achieve their com-
municative goal, which is to specify the right
amount of information that the hearer needs to
uniquely identify the referent. The next REs might
serve as more appropriate variants of the previous
examples (in certain contexts! ):

1. “the IT help desk”
2. “Peter’s office”
3. “the large hall on the first floor”

The first example highlights a requirement on the
knowledge representation to which an algorithm
for generating referring expressions (GRE) has ac-
cess. Although the robot needs a robot-centric rep-
resentation of its surrounding space that allows it
to safely perform actions and navigate its world,
it should use human-centric qualitative descrip-
tions when talking about things in the world. We



do not address this issue here, but refer the inter-
ested reader to our recent work on multi-layered
spatial maps for robots, bridging the gap between
robot-centric and human-centric spatial represen-
tations (Zender et al., 2008).

The other examples point out another impor-
tant consideration: how much information does the
human need to single out the intended referent
among the possible entities that the robot could be
referring to? According to the seminal work on
GRE by Dale and Reiter (1995), one needs to dis-
tinguish whether the intended referent is already
in the hearer’s focus of attention or not. This focus
of attention can consist of a local visual scene (vi-
sual context) or a shared workspace (spatial con-
text), but also contains recently mentioned entities
(dialogue context). If the referent is already part
of the current context, the GRE task merely con-
sists of singling it out among the other members
of the context, which act as distractors. In this
case the generated RE contains discriminatory in-
formation, e.g. “the red ball” if several kinds of ob-
jects with different colors are in the context. If, on
the other hand, the referent is not in the hearer’s fo-
cus of attention, an RE needs to contain what Dale
and Reiter call navigational, or attention-directing
information. The example they give is “the black
power supply in the equipment rack,” where “the
equipment rack” is supposed to direct the hearers
attention to the rack and its contents.

In the following we propose an approach for
context determination and extension that allows a
mobile robot to produce and interpret REs to enti-
ties outside the current visual context.

2 Background

Most GRE approaches are applied to very lim-
ited, visual scenes – so-called small-scale space.
The domain of such systems is usually a small vi-
sual scene, e.g. a number of objects, such as cups
and tables, located in the same room), or other
closed-context scenarios (Dale and Reiter, 1995;
Horacek, 1997; Krahmer and Theune, 2002). Re-
cently, Kelleher and Kruijff (2006) have presented
an incremental GRE algorithm for situated di-
alogue with a robot about a table-top setting,
i.e. also about small-scale space. In all these cases,
the context set is assumed to be identical to the
visual scene that is shared between the interlocu-
tors. The intended referent is thus already in the
hearer’s focus of attention.

In contrast, robots typically act in large-scale
space, i.e. space “larger than what can be per-
ceived at once” (Kuipers, 1977). They need the
ability to understand and produce references to
things that are beyond the current visual and spa-
tial context. In any situated dialogue that involves
entities beyond the current focus of attention, the
task of extending the context becomes key.

Paraboni et al. (2007) present an algorithm for
context determination in hierarchically ordered
domains, e.g. a university campus or a document
structure. Their approach is mainly targeted at
producing textual references to entities in written
documents (e.g. figures, tables in book chapters).
Consequently they do not address the challenges
that arise in physically and perceptually situated
dialogues. Still, the approach presents a num-
ber of good contributions towards GRE for situ-
ated dialogue in large-scale space. An appropriate
context, as a subset of the full domain, is deter-
mined through Ancestral Search. This search for
the intended referent is rooted in the “position of
the speaker and the hearer in the domain” (repre-
sented as d), a crucial first step towards situated-
ness. Their approach suffers from the shortcom-
ing that spatial relationships are treated as one-
place attributes by their GRE algorithm. For ex-
ample they transform the spatial containment re-
lation that holds between a room entity and a
building entity (“the library in the Cockroft build-
ing”) into a property of the room entity (BUILDING
NAME = COCKROFT) and not a two-place relation
(in(library,Cockroft)). Thus they avoid
recursive calls to the algorithm, which would be
needed if the intended referent is related to another
entity that needs to be properly referred to.

However, according to Dale and Reiter (1995),
these related entities do not necessarily serve as
discriminatory information. At least in large-scale
space, in contrast to a document structure that is
conceivably transparent to a reader, they function
as attention-directing elements that are introduced
to build up common ground by incrementally ex-
tending the hearer’s focus of attention. Moreover,
representing some spatial relations as two-place
predicates between two entities and some as one-
place predicates is an arbitrary decision.

We present an approach for context determina-
tion (or extension), that imposes less restrictions
on its knowledge base, and which can be used as a
sub-routine in existing GRE algorithms.



3 Situated Dialogue in Large-Scale Space

Imagine the situation in Figure 1 did not take place
somewhere on campus, but rather inside building
3B. Certainly the robot would not have said “the
IT help desk is on the 1st floor in building 3B.”
To avoid confusing the human, an utterance like
“the IT help desk is on the 1st floor” would have
been appropriate. Likewise, if the IT help desk
happened to be located on another site of the uni-
versity, the robot would have had to identify its lo-
cation as being “on the 1st floor in building 3B on
the new campus.” The hierarchical representation
of space that people are known to assume (Cohn
and Hazarika, 2001), reflects upon the choice of
an appropriate context when producing REs.

In the above example the physical and spatial
situatedness of the dialogue participants play an
important role in determining which related parts
of space come into consideration as potential dis-
tractors. Another important observation concerns
the verbal behavior of humans when talking about
remote objects and places during a complex dia-
logue (i.e. more than just a question and a reply).
Consider the following example dialogue:

Person A: “Where is the exit?”
Person B: “You first go down this corridor.
Then you turn right. After a few steps you
will see the big glass doors.”
Person A: “And the bus station? Is it to the
left?”

The dialogue illustrates how utterances become
grounded in previously introduced discourse ref-
erents, both temporally and spatially. Initially,
the physical surroundings of the dialogue partners
form the context for anchoring references. As a di-
alogue unfolds, this point can conceptually move
to other locations that have been explicitly intro-
duced. Discourse markers denoting spatial or tem-
poral cohesion (e.g. “then” or “there”) can make
this move to a new anchor explicit, leading to a
“mental tour” through large-scale space.

We propose a general principle of Topological
Abstraction (TA) for context extension which is
rooted in what we will call the Referential Anchor
a.1 TA is designed for a multiple abstraction hier-
archy (e.g. represented as a lattice structure rather
than a simple tree). The Referential Anchor a, cor-
responding to the current focus of attention, forms
the nucleus of the context. In the simple case, a

1similar to Ancestral Search (Paraboni et al., 2007)
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Figure 2: Incremental TA in large-scale space
corresponds to the hearer’s physical location. As
illustrated above, a can also move along the “spa-
tial progression” of the most salient discourse en-
tity during a dialogue. If the intended referent is
outside the current context, TA extends the context
by incrementally ascending the spatial abstraction
hierarchy until the intended referent is an element
of the resulting sub-hierarchy, as illustrated in Fig-
ure 2. Below we describe two instantiations of the
TA principle, a TA algorithm for reference gener-
ation (TAA1) and TAA2 for reference resolution.

Context Determination for GRE TAA1 con-
structs a set of entities dominated by the Referen-
tial Anchor a (and a itself). If this set contains the
intended referent r, it is taken as the current utter-
ance context set. Else TAA1 moves up one level
of abstraction and adds the set of all child nodes to
the context set. This loop continues until r is in the
context set. At that point TAA1 stops and returns
the constructed context set (cf. Algorithm 1).

TAA1 is formulated to be neutral to the kind of
GRE algorithm that it is used for. It can be used
with the original Incremental Algorithm (Dale and
Reiter, 1995), augmented by a recursive call if a
relation to another entity is selected as a discrim-
inatory feature. It could in principle also be used
with the standard approach to GRE involving re-
lations (Dale and Haddock, 1991), but we agree
with Paraboni et al. (2007) that the mutually qual-
ified references that it can produce2 are not easily
resolvable if they pertain to circumstances where
a confirmatory search is costly (such as in large-
scale space). More recent approaches to avoid-
ing infinite loops when using relations in GRE
make use of a graph-based knowledge represen-
tation (Krahmer et al., 2003; Croitoru and van
Deemter, 2007). TAA1 is compatible with these
approaches, as well as with the salience based ap-
proach of (Krahmer and Theune, 2002).

2An example for such a phenomenon is the expression
“the ball on the table” in a context with several tables and
several balls, but of which only one is on a table. Humans
find such REs natural and easy to resolve in visual scenes.



Algorithm 1 TAA1 (for reference generation)
Require: a = referential anchor; r = intended referent

Initialize context: C = {}
C = C ∪ topologicalChildren(a) ∪ {a}
if r ∈ C then

return C
else

Initialize: SUPERNODES = {a}
for each n ∈ SUPERNODES do

for each p ∈ topologicalParents(n) do
SUPERNODES = SUPERNODES ∪ {p}
C = C ∪ topologicalChildren(p)

end for
if r ∈ C then

return C
end if

end for
return failure

end if

Algorithm 2 TAA2 (for reference resolution)
Require: a = ref. anchor; desc(x) = description of referent

Initialize context: C = {}
Initialize possible referents: R = {}
C = C ∪ topologicalChildren(a) ∪ {a}
R = desc(x) ∩ C
if R $= {} then

return R
else

Initialize: SUPERNODES = {a}
for each n ∈ SUPERNODES do

for each p ∈ topologicalParents(n) do
SUPERNODES = SUPERNODES ∪ {p}
C = C ∪ topologicalChildren(p)

end for
R = desc(x) ∩ C
if R $= {} then

return R
end if

end for
return failure

end if

Resolving References to Elsewhere Analogous
to the GRE task, a conversational robot must be
able to understand verbal descriptions by its users.
In order to avoid overgenerating possible refer-
ents, we propose TAA2 (cf. Algorithm 2) which
tries to select an appropriate referent from a rel-
evant subset of the full knowledge base. It is ini-
tialized with a given semantic representation of the
referential expression, desc(x), in a format com-
patible with the knowledge base. Then, an appro-
priate entity satisfying this description is searched
for in the knowledge base. Similarly to TAA1,
the description is first matched against the current
context set C consisting of a and its child nodes. If
this set does not contain any instances that match
desc(x), TAA2 increases the context set along the
spatial abstraction axis until at least one possible
referent can be identified within the context.

4 Conclusions and Future Work
We have presented two algorithms for context de-
termination that can be used both for resolving and
generating REs in large-scale space.

We are currently planning a user study to evalu-
ate the performance of the TA algorithms. Another
important item for future work is the exact nature
of the spatial progression, modeled by “moving”
the referential anchor, in a situated dialogue.
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Abstract
In this paper we present an approach to the task
of generating and resolving referring expressions
(REs) for conversational mobile robots. It is based
on a spatial knowledge base encompassing both
robot- and human-centric representations. Existing
algorithms for the generation of referring expres-
sions (GRE) try to find a description that uniquely
identifies the referent with respect to other enti-
ties that are in the current context. Mobile robots,
however, act in large-scale space, that is, environ-
ments that are larger than what can be perceived at a
glance, e.g., an office building with different floors,
each containing several rooms and objects. One
challenge when referring to elsewhere is thus to in-
clude enough information so that the interlocutors
can extend their context appropriately. We address
this challenge with a method for context construc-
tion that can be used for both generating and resolv-
ing REs – two previously disjoint aspects. Our ap-
proach is embedded in a bi-directional framework
for natural language processing for robots.

1 Introduction
The past years have seen an extraordinary increase in research
on robotic assistants that help the users perform their daily
chores. Although the autonomous vacuum cleaner “Roomba”
has already found its way into people’s homes and lives, there
is still a long way until fully conversational robot “gophers”
will be able to assist people in more demanding everyday
tasks. For example, imagine a robot that can deliver objects
and give directions to visitors on a university campus. Such a
robot must be able to verbalize its knowledge in a way that is
understandable by humans, as illustrated in Figure 1.

A conversational robot will inevitably face situations in
which it needs to refer to an entity (e.g., an object, a locality,
or even an event) that is located somewhere outside the cur-
rent scene. There are conceivably many ways in which a robot
might refer to things in the world, but many such expressions
are unsuitable in most human-robot dialogues. Consider the
following set of examples:

∗Supported by the EU FP7 Project “CogX” (FP7-ICT-215181).

Where is the 

IT Help desk? It is on the 

1st floor in 

building 3b.

it is at
<45.56, -3.92, 10.45>

Where is the 
IT help desk? It is on the 1st 

floor in building 
3B.

It is at

Figure 1: Situated dialogue with a campus service robot

1. “position P = 〈45.56,−3.92, 10.45〉”
2. “the area”
3. “Peter’s office at the end of the corridor on the third floor

of the Acme Corp. building 7 in the Acme Corp. com-
plex, 47 Evergreen Terrace, Calisota, Earth, (...)”

Clearly, these REs are valid descriptions of the respec-
tive entities in the robot’s world representation. Still they
fail to achieve their communicative goal, which is to specify
the right amount of information so that the hearer can easily
uniquely identify what is meant. The following expressions
might serve as more appropriate variants of the previous ex-
amples (in certain situations! ):

1. “the IT help desk”
2. “the large hall on the first floor”
3. “Peter’s office”
However, the question remains how a natural language pro-

cessing (NLP) system can generate such expressions which
are suitable in a given situation. In this paper we identify
some of the challenges that an NLP system for situated dia-
logue about large-scale space needs to address. We present
a situated model for generating and resolving REs that ad-
dresses these issues, with a special focus on how a conver-
sational mobile robot can produce and interpret such expres-
sions against an appropriate part of its acquired knowledge
base (KB). One benefit of our approach is that most com-
ponents, including the situated model and the linguistic re-
sources, are bi-directional, i.e., they use the same representa-



tions for comprehension and production of utterances. This
means that the proposed system is able to understand and cor-
rectly resolve all the REs that it is able to generate.

The rest of the paper is organized as follows. We first
briefly discuss relevant existing approaches to comprehend-
ing and producing REs (Section 2). We then motivate our
approach to context determination for situated interaction in
large-scale space (Section 3), and describe its implementation
in a dialogue system for an autonomous robot (Section 4). We
conclude in Section 5.

2 Background
The main purpose of an RE is to enable a hearer to correctly
and uniquely identify the target entity to which the speaker
is referring, the so-called intended referent. The GRE task is
thus to produce a natural language expression for a KB entity
that fulfills this purpose.

As can be seen from the examples in the previous section,
an RE needs to meet a number of constraints in order to be
successful. First, it needs to make use of concepts that can be
understood by the hearer. This becomes an important consid-
eration when we are dealing with a robot which acquires its
own models of the environment and is to talk about the con-
tents of these. Second, it needs to contain enough information
so that the hearer can distinguish the intended referent from
other entities in the world, the so-called potential distractors.
Finally, this needs to be balanced against the third constraint:
Inclusion of unnecessary information should be avoided so as
not to elicit false implications on the part of the hearer.

We will only briefly mention how to address the first chal-
lenge, and refer the reader to our recent work on multi-
layered conceptual spatial maps for robots that bridge the gap
between robot-centric representations of space and human-
centric conceptualizations [Zender et al., 2008].

The focus in this paper lies on the second and third aspect,
namely the problem of including the right amount of infor-
mation that allows the hearer to identify the intended refer-
ent. According to the seminal work on GRE by Dale and
Reiter [1995], one needs to distinguish whether the intended
referent is already in the hearer’s current context or not. This
context can consist of a local visual scene (visual context) or a
shared workspace (spatial context), but also contains recently
mentioned entities (dialogue context). If the intended refer-
ent is already part of the current context, the GRE task merely
consists of singling out the referent among the other members
of the context, which act as distractors. In this case the gen-
erated RE contains discriminatory information, e.g., “the red
ball” if several kinds of objects with different colors are in the
current context. If, on the other hand, the referent is not in the
hearer’s focus of attention, an RE needs to contain what Dale
and Reiter call navigational, or attention-directing informa-
tion. The example they give is “the black power supply in the
equipment rack,” where “the equipment rack” is supposed to
direct the hearers attention to the rack and its contents.

While most existing GRE approaches assume that the in-
tended referent is part of a given scene model, the context set,
very little research has investigated the nature of references
to entities that are not part of the current context.

The domain of such systems is usually a small visual scene,
e.g., a number of objects, such as cups and tables, located
in the same room, other closed-context scenarios, includ-
ing a human-robot collaborative table-top scenario [Dale and
Reiter, 1995; Horacek, 1997; Krahmer and Theune, 2002;
Kelleher and Kruijff, 2006]. What these scenarios have in
common is that they focus on a limited part of space, which
is immediately and fully observable: small-scale space.

In contrast, mobile robots typically act in more complex
environments. They operate in large-scale space, i.e., space
“larger than what can be perceived at once” [Kuipers, 1977].
At the same time they do need the ability to understand and
produce verbal references to things that are beyond the cur-
rent visual and spatial context. When talking about remote
places and things outside the current focus of attention, the
task of extending the context becomes crucial.

Paraboni et al. [2007] are among the few to address this
problem. They present an algorithm for context determi-
nation in hierarchically ordered domains, e.g., a university
campus or a document structure. Their approach is mainly
targeted at producing textual references to entities in writ-
ten documents (e.g., figures and tables in book chapters),
and consequently they do not touch upon the challenges that
arise in a physically and perceptually situated dialogue set-
ting. Nonetheless their approach presents a number of con-
tributions towards GRE for situated dialogue in large-scale
space. An appropriate context, as a subset of the full domain,
is determined through Ancestral Search. This search for the
intended referent is rooted in the “position of the speaker and
the hearer in the domain” (represented as d), a crucial first
step towards situatedness. Their approach suffers from the
shortcoming that their GRE algorithm treats spatial relation-
ships as one-place attributes. E.g., a spatial containment re-
lation that holds between a room entity and a building entity
(“the library in the Cockroft building”) is given as a property
of the room entity (BUILDING NAME = COCKROFT), rather than
a two-place relation (in(library,Cockroft)). Thereby
they avoid recursive calls to the GRE algorithm, which are
necessary for intended referents related to another entity that
needs to be properly referred to. We claim that this imposes
an unnecessary restriction onto the KB design. Moreover, it
makes it hard to use their context determination algorithm as
a sub-routine of any of the many existing GRE algorithms.

3 Situated Dialogue in Large-Scale Space
Imagine the situation in Figure 1 did not take place some-
where on campus, but rather inside building 3B. It would have
made little or no sense for the robot to say that “the IT help
desk is on the 1st floor in building 3B.” To avoid confusion,
an utterance like “the IT help desk is on the 1st floor” would
be appropriate. Likewise, if the IT help desk happened to be
located on another site of the university, the robot would have
had to identify its location as being, e.g., “on the 1st floor in
building 3B on the new campus”. This illustrates that the hi-
erarchical representation of space that humans adopt [Cohn
and Hazarika, 2001] reflects upon the choice of an appropri-
ate context when producing referential descriptions that in-
volve attention-directing information.



Thus, the physical and spatial situatedness of the dialogue
participants plays an important role when determining which
related parts of space come into consideration as potential dis-
tractors. Another important observation concerns the verbal
behavior of humans when talking about remote objects and
places in a complex dialogue (i.e., more than just a question
and a reply). E.g., consider the following dialogue:

Person A: “Where is the exit?”
Person B: “First go down this corridor. Then turn right.
After a few steps you’ll see the big glass doors.”
Person A: “And the bus station? Is it to the left?”

As can be seen, an utterance in such a collaborative dia-
logue is usually grounded in previously introduced discourse
referents, both temporally and spatially. Initially, the physi-
cal surroundings of the dialogue partners form the context to
which references are related. Then, as the dialogue unfolds,
this point can conceptually move to other locations that have
been explicitly introduced. Usually, a discourse marker de-
noting spatial or temporal cohesion (e.g., “then” or “there”)
establishes the last mentioned referent as the new anchor, cre-
ating a “mental tour” through large-scale space.

3.1 Context Determination Through Topological
Abstraction

To keep track of the correct referential context in such a di-
alogue, we propose a general principle of Topological Ab-
straction1 (TA) for context extension. TA is applied when-
ever a reference cannot be generated or resolved with respect
to the current context. In such a case TA incrementally ex-
tends the context until the reference can be established. TA
is designed to operate on a spatial abstraction hierarchy; i.e.,
a decomposition of space into parts that are related through
a tree or lattice structure in which edges denote a contain-
ment relation (cf. Figure 2a). Originating in the Referential
Anchor a, TA extends the context by incrementally ascend-
ing the spatial abstraction hierarchy until the intended refer-
ent is in the resulting sub-hierarchy (cf. Figure 2b). When no
other information, e.g., from a preceding dialogue, is present,
a is assumed to correspond to the spatio-visual context that
is shared by the hearer and the speaker – usually their physi-
cal location and immediate surroundings. During a dialogue,
however, a corresponds to the most salient discourse entity,
reflecting how the focus of attention moves to different, even
remote, places, as illustrated in the example dialogue above.

Below we describe two instantiations of the TA principle,
a TA algorithm for reference generation (TAA1) and one for
reference resolution (TAA2). They differ only minimally,
namely in their use of an intended referent r or an RE desc(x)
to determine the conditions for entering and exiting the loop
for topological abstraction. The way they determine a context
through topological abstraction is identical.
Context Determination for GRE TAA1 (cf. Algorithm 1)
constructs a set of entities dominated by the Referential An-
chor a (including a itself). If this set contains the intended
referent r, it is taken as the current utterance context set. Else
TAA1 moves up one level of abstraction and adds the set of
all child nodes to the context set. This loop continues until r

1similar to Ancestral Search [Paraboni et al., 2007]
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(a) Example for a hierarchical representation of space

(b) Illustration of the TA principle: starting from the Referential An-
chor (a), the smallest sub-hierarchy containing both a and the in-
tended referent (r) is formed incrementally

Figure 2: Topological Abstraction in a spatial hierarchy

Algorithm 1 TAA1 (for reference generation)
Require: a = referential anchor; r = intended referent

Initialize context: C = {}
C = C ∪ topologicalChildren(a) ∪ {a}
if r ∈ C then

return C
else

Initialize: SUPERNODES = {a}
for each n ∈ SUPERNODES do

for each p ∈ topologicalParents(n) do
SUPERNODES = SUPERNODES ∪ {p}
C = C ∪ topologicalChildren(p)

end for
if r ∈ C then

return C
end if

end for
return failure

end if

is in the thus constructed set. At that point TAA1 stops and
returns the constructed context set.

TAA1 is formulated to be neutral to the kind of GRE al-
gorithm that it is used for. It can be used with the orig-
inal Incremental Algorithm [Dale and Reiter, 1995], aug-
mented by a recursive call if a relation to another entity is
selected as a discriminatory feature. It could in principle also
be used with the standard approach to GRE involving rela-
tions [Dale and Haddock, 1991], but we agree with Paraboni
et al. [2007] that the mutually qualified references that it
can produce2 are not easily resolvable if they pertain to cir-
cumstances where a confirmatory search is costly (such as
in large-scale space). More recent approaches to avoiding
infinite loops when using relations in GRE make use of a
graph-based knowledge representation [Krahmer et al., 2003;
Croitoru and van Deemter, 2007]. TAA1 is compatible with
these approaches, as well as with the salience based approach
of Krahmer and Theune [2002].

2Stone and Webber [1998] present an approach that produces
sentences like “take the rabbit from the hat” in a context with several
hats and rabbits, but of which only one is in a hat. Humans find such
REs natural and easy to resolve in visual scenes.



Algorithm 1 TAA1 (for reference generation)
Require: a = referential anchor; r = intended referent

Initialize context: C = {}
C = C ∪ topologicalChildren(a) ∪ {a}
if r ∈ C then

return C
else

Initialize: SUPERNODES = {a}
for each n ∈ SUPERNODES do

for each p ∈ topologicalParents(n) do
SUPERNODES = SUPERNODES ∪ {p}
C = C ∪ topologicalChildren(p)

end for
if r ∈ C then

return C
end if

end for
return failure

end if

Algorithm 2 TAA2 (for reference resolution)
Require: a = ref. anchor; desc(x) = description of referent

Initialize context: C = {}
Initialize possible referents: R = {}
C = C ∪ topologicalChildren(a) ∪ {a}
R = desc(x) ∩ C
if R $= {} then

return R
else

Initialize: SUPERNODES = {a}
for each n ∈ SUPERNODES do

for each p ∈ topologicalParents(n) do
SUPERNODES = SUPERNODES ∪ {p}
C = C ∪ topologicalChildren(p)

end for
R = desc(x) ∩ C
if R $= {} then

return R
end if

end for
return failure

end if

Context Determination for Reference Resolution A con-
versational robot must also be able to understand verbal de-
scriptions by its users. In order to avoid overgenerating possi-
ble referents, we propose TAA2 (cf. Algorithm 2) which tries
to select an appropriate referent from a relevant subset of the
full KB. It is initialized with a given semantic representation
of the referential expression, desc(x), in a format compatible
with the KB. We will show how this is accomplished in our
framework in Section 4.1. Then, an appropriate entity sat-
isfying this description is searched for in the KB. Similarly
to TAA1, the description is first matched against the current
context set C consisting of a and its child nodes. If this set
does not contain any instances that match desc(x), TAA2 en-
larges the context set along the spatial abstraction axis until
at least one possible referent can be identified within C.

4 Implementation
Our approach for resolving and generating spatial referring
expressions has been fully integrated with the dialogue func-
tionality in a cognitive system for a mobile robot [Zender et
al., 2008; Kruijff et al., 2009]. The robot is endowed with
a conceptual spatial map [Zender and Kruijff, 2007], which
represents knowledge about places, objects and their relations
in an OWL-DL3 ontology. We use the Jena reasoning frame-
work4 with its built-in OWL reasoning and rule inference fa-
cilities. Internally, Jena stores the facts of the conceptual map
as RDF5 triples, which can be queried through SPARQL6

queries. Figure 3 shows a subset of such a KB.
Below, we use this example scenario to illustrate our ap-

proach to generating and resolving spatial referring expres-
sions in the robot’s dialogue system. We assume that the
interaction takes place at the reception on the ground floor
(“floor0”), so that for TAA1 and TAA2 a =reception.

3http://www.w3.org/TR/owl-guide/
4http://jena.sourceforge.net
5http://www.w3.org/RDF
6http://www.w3.org/TR/rdf-sparql-query

floor0

reception

floor1

kitchen1 kitchen2 office1 office2

floor2

kitchen3 office3 office4

building 3B

(a) Topological abstraction hierarchy

(kitchen1 rdf:type Kitchen), (...)
(office1 rdf:type Office), (...)
(kitchen2 size big), (...)
(bob rdf:type Person), (bob name Bob),
(bob owns office1), (...)
(floor1 contains kitchen1), (...)
(floor2 contains office3), (...)
(floor1 ordNum 1), (floor2 ordNum 2), (...)
(b) RDF triples in the conceptual map (namespace URIs omitted)

Figure 3: Part of a representation of an office environment

4.1 The Comprehension Side
In situated dialogue processing, the robot needs to build up an
interpretation for an utterance which is linked both to the di-
alogue context and to the (referenced) situated context. Here,
we focus on the meaning representations.

We represent meaning as a logical form (LF) in a descrip-
tion logic [Blackburn, 2000]. An LF is a directed acyclic
graph (DAG), with labeled edges, and nodes representing
propositions. Each proposition has an ontological sort, and a
unique index. We write the resulting ontologically sorted, re-
lational structure as a conjunction of elementary predications
(EPs): @idx:sort(prop) to represent a proposition prop with
ontological sort sort and index idx, @idx1:sort1〈Rel〉(idx2 :
srt2) to represent a relation Rel from index idx1 to index
idx2, and @idx:sort〈Feat〉(val) to represent a feature Feat
with value val at index idx. Representations are built compo-
sitionally, parsing the word lattices provided by speech recog-
nition with a Combinatory Categorial Grammar [Lison and
Kruijff, 2008]. Reversely, we use the same grammar to real-
ize strings (cf. Section 4.2) from these meaning representa-
tions [White and Baldridge, 2003].

An example is the meaning we obtain for “the big kitchen
on the first floor,” (folding EPs under a single scope of @).
It illustrates how each propositional meaning gets an index,
similar to situation theory. “kitchen” gets one, and also mod-
ifiers like “big,” “on” and “one.” This enables us to single out
every aspect for possible contextual reference (Figure 4a).

Next, we resolve contextual references, and determine the
possible dialogue move(s) the utterance may express. Con-
textual reference resolution determines how we can relate the
content in the utterance meaning, to the preceding dialogue
context. If part of the meaning refers to previously mentioned
content, we associate the identifiers of these content represen-
tations; else, we generate a new identifier. Consequently, each
identifier is considered a dialogue referent.

Once we have a representation of utterance meaning in
dialogue context, we build a further level of representation
to facilitate connecting dialogue content with models of the
robot’s situation awareness. This next level of representation
is essentially an a-modal abstraction over the linguistic as-
pects of meaning, to provide an a-modal conceptual structure



@l1:e−place(kitchen∧
〈Delimitation〉unique∧
〈Num〉sg ∧ 〈Quantification〉specific∧
〈Modifier〉(b1 : q − size ∧ big)∧
〈Modifier〉(o1 : m − location ∧ on ∧
〈Anchor〉(f1 : thing ∧ floor ∧
〈Delimitation〉unique ∧
〈Num〉sg ∧ 〈Quantification〉specific ∧
〈Modifier〉(n1 : number − ordinal ∧ 1))))

(a) Logical form

Concept: {"kitchen"}

Size: {"big"}

Concept: {"floor"}

OrdNumberTag: {"1"}

RelationLabel: {"On"}

(b) A-modal directed acyclic graph

SELECT ?x0 ?x1 WHERE {
?x0 rdf:type Kitchen.
?x0 size big.
?x1 rdf:type Floor.
?x1 ordNum 1.
?x0 containedIn ?x1.

(c) SPARQL query
In the previous example this would
resolve ?x0 to kitchen2

Figure 4: Logical form, a-modal DAG and corresponding SPARQL query for “the big kitchen on the first floor”

[Jacobsson et al., 2008]. Abstraction is a recursive translation
of DAGs into DAGs, whereby the latter (conceptual) DAGs
are typically flatter than the linguistic DAGs (Figure 4b).

The final step in resolving an RE is to construct a query
to the robot’s KB. In our implementation we construct a
SPARQL query from the a-modal DAG representations (Fig-
ure 4c). This query corresponds to the logical description of
the referent desc(r) in TAA2. TAA2 then incrementally ex-
tends the context until at least one element of the result set of
desc(r) is contained within the context.

4.2 The Production Side
Production covers the entire path from handling dialogue
goals to speech synthesis. The dialogue system can itself pro-
duce goals (e.g., to handle communicative phenomena like
greetings), and it accepts goals from a higher level planner.
Once there is a goal, an utterance content planner produces
a content representation for achieving that goal, which the
realizer then turns into one or more surface forms to be syn-
thesized. Below we focus on utterance content planning.

A dialogue goal specifies a goal to be achieved, and any
content that is associated with it. A typical example is to
convey an answer to a user: the goal is to tell, the content is
the answer. Content is given as a conceptual structure, proto
LF, abstracting away from linguistic specifics, similar to the
a-modal structures we produce for comprehension.

Content planning turns this proto LF into an LF which
matches the specific linguistic structures defined in the gram-
mar we use to realize it. “Turning into” means extending the
proto LF with further semantic structure. This may be non-
monotonic in that parts of the proto LF may be rewritten, ex-
panding into locally connected graph structures.

Planning is agenda-based, and uses a planning domain de-
fined as a (systemic) grammar network alike [Bateman, 1997;
Kruijff, 2005]. A grammar network is a collection of systems
that define possible sequences of operations to be performed
on a node with characteristics matching the applicability con-
ditions for the system. A system’s decision tree determines
which operations are to be applied. Decisions are typically
context-sensitive, based on information about the shape of the
(entire) LF, or on information in context models (dialogue or
otherwise). While constructing an LF, the planner cycles over
its nodes, and proposes new agenda items for nodes which
have not yet been visited. An agenda item consists of the
node, and a system which can be applied to that node.

A system can explicitly trigger the generation of an RE
for the node on which it operates. It then provides the dia-

logue system with a request for an RE, with a pointer to the
node in the (provided) LF. The dialogue system resolves this
request by submitting it to GRE modules which have been
registered with the system. (Registration allows us to plug-
and-play with content-specific GRE algorithms.) Assuming a
GRE module produces an LF with the content for the RE, the
planner gets this LF and integrates it into the overall LF.

For example, say the robot in our previous example is to
answer the question “Where is Bob?”. We receive a commu-
nicative goal (see below) to inform the user, specifying the
goal as an assertion related to the previous dialogue context
as an answer. The content is specified as an ascription e of
a property to a target entity. The target entity is t which is
specified as a person called “Bob” already available in the di-
alogue context, and thus familiar to the hearer. The property
is specified as topological inclusion (TopIn) within the entity
k, the reference to which is to be produced by the GRE algo-
rithm (hence the type “rfx” and the “RefIndex” which is the
address of the entity).

@d:dvp(c − goal∧
〈SpeechAct〉assertion ∧
〈Relation〉answer ∧
〈Content〉(e : ascription ∧
〈Target〉(t : person ∧ Bob ∧
〈InfoStatus〉familiar) ∧

〈TopIn〉(p : rfx ∧ RefIndex)))

The content planner makes a series of decisions about the
type and structure of the utterance to be produced. As it is an
assertion of a property ascription, it decides to plan a sentence
in indicative mood and present tense with “be” as the main
verb. The reference to the target entity makes up the copula
restriction, and a reference to the ascribed property is in the
copula scope. This yields an expansion of the goal content:

@e:ascription(be ∧
〈Tense〉pres ∧
〈Mood〉ind ∧
〈Cop − Restr〉(t : entity ∧

Bob ∧ 〈InfoStatus〉familiar) ∧
〈Subject〉(t : entity) ∧
〈Cop − Scope〉(prop : m − location ∧

in ∧ 〈Anchor〉(p : rfx ∧ RefIndex)))

The next step consists in calling the GRE algorithm to pro-
duce an RE for the entity p. In our NLP system we use a
slightly modified implementation of the Incremental Algo-
rithm [Dale and Reiter, 1995]. The context set C is deter-
mined using TAA1. Let’s assume that Bob is currently in



kitchen3. In our example (a =reception) the GRE algorithm
hence produces the following result, which is then returned to
the planner and inserted into the proto LF created so far:

@p:entity(kitchen ∧
〈TopOn〉(f : entity ∧

floor ∧ 〈Unique〉true ∧
〈Number〉(n : quality ∧ 2)))

The planner then makes further decisions about the realiza-
tion, expanding this part of the LF to the following result:

@p:entity(kitchen ∧
〈Delimitation〉unique ∧
〈Num〉sg ∧ Quantification〉specific ∧
〈Modifier〉(o1 : m − location ∧ on ∧
〈Anchor〉(f : thing ∧ floor ∧
〈Delimitation〉unique ∧
〈Num〉sg ∧ 〈Quantification〉specific ∧
〈Modifier〉(t1 : number − ordinal ∧ 2))))

Once the planner is finished, the resulting overall LF is pro-
vided to a CCG realizer [White and Baldridge, 2003], turning
it into a surface form (“Bob is in the kitchen on the second
floor”). This string is synthesized to speech using the MARY
TTS software [Schröder and Trouvain, 2003].

5 Conclusions and Future Work
We have presented an algorithm for context determination
that can be used both for resolving and generating referring
expressions in a large-scale space domain. We have presented
an implementation of this approach in a dialogue system for
an autonomous mobile robot.

Since there exists no suitable evaluation benchmark for sit-
uated human-robot dialogue to compare our results against,
we are currently planning a user study to evaluate the perfor-
mance of the TA algorithm. Another important item for future
work is the exact nature of the spatial progression in situated
dialogue, modeled by “moving” the referential anchor.
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The german text-to-speech synthesis system MARY: A
tool for research, development and teaching. Int. Journal
of Speech Technology, 6:365–377, 2003.

[Stone and Webber, 1998] M. Stone and B. Webber. Tex-
tual economy through close coupling of syntax and seman-
tics. In Proc. INLG-1998, pages 178–187, Niagara-on-the-
Lake, ON, Canada, 1998.

[White and Baldridge, 2003] M. White and J. Baldridge.
Adapting chart realization to CCG. In Proc. ENLG-2003,
Budapest, Hungary, 2003.

[Zender and Kruijff, 2007] H. Zender and G. J. Kruijff.
Multi-layered conceptual spatial mapping for autonomous
mobile robots. In Control Mechanisms for Spatial Knowl-
edge Processing in Cognitive / Intelligent Systems, AAAI
Spring Symposium 2007, March 2007.

[Zender et al., 2008] H. Zender, O. Martı́nez Mozos, P. Jens-
felt, G. J. Kruijff, and W. Burgard. Conceptual spatial rep-
resentations for indoor mobile robots. Robotics and Au-
tonomous Systems, 56(6):493–502, June 2008.



Phrasing Questions

Geert-Jan M. Kruijff
German Research Center

for Artificial Intelligence (DFKI GmbH)
Saarbrücken, Germany

gj@dfki.de

Michael Brenner
Institute for Computer Science

Albert-Ludwigs-Universität
Freiburg, Germany

brenner@informatik.uni-freiburg.de

Abstract

In a constructive learning setting, a robot builds up be-
liefs about the world by interacting – interacting with
the world, and with other agents. Asking questions is
key in such a setting. It provides a mechanism for in-
teractively exploring possibilities, to extend and explain
the robot’s beliefs. The paper focuses on how to linguis-
tically phrase questions in dialogue. How well the point
of a question gets across depends on how it is put. It
needs to be effective in making transparent the agent’s
intentions and beliefs behind raising the question, and
in helping to scaffold the dialogue such that the desired
answers can be obtained. The paper proposes an al-
gorithm for deciding what to include in formulating a
question. Its formulation is based on the idea of consid-
ering transparency and scaffolding as referential aspects
of a question.

Introduction
Robots are slowly making their entry into ”the real world.”
And it is slowly becoming an accepted fact of life that we
cannot possibly provide such robots will all there is to know,
out-of-the-box. So they need to learn. The point of socially
guided (machine) learning (Thomaz 2006) is that some of
that learning can be done effectively through social interac-
tion with other agents in the environment.

This paper focuses on how a robot should phrase its ques-
tions, considering a social learning setting in which situ-
ated dialogue is the main interactive modality (Kruijff et
al. 2006a; Jacobsson et al. 2007). The robot and a human
use spoken dialogue to discuss different aspects of the envi-
ronment. We consider learning to be driven by the robot’s
own, perceived learning needs. This requires dialogue to be
mixed-initiative. Both the human and the robot can take the
initiative in driving this ”show-and-tell-then-ask” dialogue.
Questions play a fundamental role in such dialogues. As-
suming a robot has the ability to raise issues in need of clari-
fication or learning for any modality, (e.g. (Kruijff, Brenner,
and Hawes 2008)), the problem thus becomes how to prop-
erly phrase a question.

Typically, a question is represented as an abstraction
over the argument of a predicate. For example, assuming

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

?x.P (x) to indicate that a question regards a parameter x
of some predicate P (x), a question about the color of a ball
could be phrased as ?x.(ball(y) ∧ has−color(y, x)). How-
ever, more aspects need to be taken into account, for a ques-
tion to be posed in such a way that the addressee is likely
to understand the question and provide a suitable answer
(Ginzburg 1995b).

First of all, the phrasing needs to make transparent how
a question arises from an agent’s beliefs, what beliefs – and
what gaps in an agent’s beliefs – it refers to. It should make
clear what a question is about. Furthermore, there is a rea-
son behind raising the question. The agent has a specific
goal, it intends to obtain a particular kind of answer. Not
just any answer will do. Raising a question also needs to set
up, scaffold, the right context for answering it. This is the
why of a question, pointing to how the agent would like to
see the question resolved.

An example in (Kruijff et al. 2006b; 2007b) provides an
interesting illustration.1 The robot is capable of figuring out
when it might have mistakenly classified a particular passage
in the environment as a door. At the point where it realizes
this, it asks, ”Is there a door here?” Unfortunately, the place
where it asks this is not related to the location ”here” refers
to. To anyone but a developer-acting-as-user it is not trans-
parent what the ”here” means. This often leads to the user
giving the wrong answer, namely ”yes this room has a door”
rather than, ”no, there is no door between the trash bin and
the table.” The way the question was phrased lacked both in
transparency (location reference) and in scaffolding (specific
location, not the room as such).

The paper presents an approach to generating a content
representation for a question. These representations reflect
what is being asked after, in reference to beliefs (about-
ness, transparency) and intentions (resolvedness, scaffold-
ing). The approach explicitly regards transparency and scaf-
folding as referential qualities of a question. This way their
referential nature in the larger dialogue- and situated con-
text can be considered. Following out that idea, the ap-
proach bases its content determination algorithm on Dale &
Reiter’s incremental algorithm for generating referring ex-
pressions (Dale and Reiter 1995), in combination with algo-

1See also the video at the CoSy website’s Explorer page, at
http://cosy.dfki.de/www/media/explorer.y2.html.



rithms for referential context determination (Zender, Kruijff,
and Kruijff-Korbayová 2009; Paraboni, van Deemter, and
Masthoff 2007).

Central to the approach is establishing the information
pertaining to the question. A description logic-like formal-
ism is used to represent such information, as a conceptual
structure in which propositions have ontological sorts and
unique indices, and can be related through named relations.
A question can then be represented as a structure in which
we are querying one or more aspects of such a representa-
tion (Ginzburg 1995b; Kruijff, Brenner, and Hawes 2008).
The formalism allows everything to be queried: relations,
propositions, sorts. Around the formulation of a question
we construct a nucleus, comprising the situation (the ”facts”)
and the beliefs that have led up to the question, the question
itself, and the goal content which would resolve the ques-
tion. The question nucleus integrates Ginzburg’s notions of
aboutness, and (potential) resolvedness.

Based on the question nucleus, the algorithm starts by
determining to what extend the different aspects are cov-
ered by the (dialogue) common ground between the robot
and the human. For this, contextual references are resolved
in a dialogue context model (Kruijff et al. 2007a), and it
is established how these can be related to inferences over
domain knowledge and instances (Kruijff et al. 2007b).
The question nucleus is extended with these connections
– or rather, with indications of the information structure
or informativity of individual content – so that it includes
an explicit notion of what is shared, and what is privately
held information (cf. (Lochbaum, Grosz, and Sidner 1999;
Grosz and Kraus 1999)).

The algorithm next decides what aspects of a question
nucleus to include in the content for phrasing the ques-
tion. For each aspect of the nucleus (facts, beliefs, ques-
tion, goals) the algorithm uses the informativity of the as-
pect’s content, in conjunction with similarly related but con-
trasting content in the dialogue context model, to determine
whether to include it. Essentially, new or contrastive con-
tent will be considered, whereas salient ”old” information
will not. The form in which the content will be included
is determined by content-specific algorithms for generat-
ing referring expressions (e.g. (Kelleher and Kruijff 2006;
Zender, Kruijff, and Kruijff-Korbayová 2009)). The deci-
sions to include particular content can be weighted accord-
ing to a comprehensibility ranking as e.g. in (Krahmer, van
Erk, and Verleg 2003).

The contributions the approach aims for are, briefly, as
follows. Purver and Ginzburg develop an account for gen-
erating questions in a dialogue context (Purver, Ginzburg,
and Healey 2003; Purver 2004). Their focus was, however,
on clarification for the purpose of dialogue grounding. A
similar observation can be made for recent work in HRI
(Li, Wrede, and Sagerer 2006), We are more interested in
formulating questions regarding issues in building up situ-
ation awareness, including the acquisition of new ways of
understanding situations (cf. also (Kruijff, Brenner, and
Hawes 2008)). In issue-based (or information state-based)
dialogue systems (Larsson 2002), the problem of how to
phrase a question is greatly simplified because the task do-

main is fixed. There is little need for paying attention to
transparency or scaffolding, as it can be assumed the user
understands the task domain.

An overview of the paper is as follows.The paper starts
with a discussion of basic issues in modeling questions and
their semantics, based on (Ginzburg 1995b). Then the ap-
proach is presented. The approach starts from the assump-
tion that a question is a dialogue, not just a single utterance.
Discussed is how the content plan for such a question dia-
logue can be determined, providing definitions, representa-
tion, and algorithms. The paper ends with a discussion of
how the approach could be integrated, evaluated, and points
for further research.

Background
What is a question? Ginzburg (1995b) discusses a variety of
linguistic approaches. All of them aim to provide an invari-
ant characterization of the semantics of a question. Broadly,
they have proposed the following aspects as crucial to that
definition.

First, several approaches propose to see a question as an
n-ary relation. The relation puts together the question with
one or more contributions pertaining to answering it. The
point here is to take into account the fact that a question
can be discussed over several turns in a dialogue. Second,
there is a sense of aboutness to a question. Each question
can be associated with a collection of propositions, which
are –intuitively– related to the question. And, finally, each
question can be considered to be associated with a (possibly
complex) proposition which provides an exhaustive answer.
In other words, an exhaustive answer resolves the question.

Ginzburg suggests that all these aspects together make
up a characterization of a question – not just one of them,
as most approaches suggest. Furthermore, these aspects
are to be understood as being relative. What a question is
about, and how it can be resolved, should be understood rel-
ative to an agent’s goal and belief/knowledge state (cf. also
(Ginzburg 1995a)). The following example illustrates this.

(1) Context: a robot drives around campus, and is about
to enter the DFKI building.
a. Janitor: Do you know where you are?

Robot: DFKI.
b. Janitor believes the robot knows where it is.

(2) Context: a robot drives around the DFKI building,
to get a cup of coffee.
a. Janitor: Do you know where you are?

Robot: DFKI.
b. The janitor is not convinced the robot really

knows where it is.

What counts as an answer to a question may thus vary
across contexts. What a question is thus cannot be reduced
to an analysis of just what counts as its answers. Instead,
Ginzburg starts with setting up an ontology in which ques-
tions, propositions and facts are considered as equal citizens.
This makes it possible to consider a question in relation to



possible answers for it. The ontology is defined using sit-
uation theoretic constructs, which we will adopt through-
out this paper. (All definitions as per (Ginzburg 1995a;
1995b).)

Definition 1 (SOA, Situation, Fact). A SOA (State Of Af-
fairs) describes possible ways an actual situation might be.
SOAs are either basic, or built up from basic ones using al-
gebraic operations. A basic SOA is an atomic possibility,
written as 〈R, f : i〉 with R a relation, f a mapping assign-
ing entities to the argument roles of R, and i is a polarity i.e.
i ∈ {+,−}. A situation s supports the factuality of a SOA
σ iff s |= σ. The SOA σ is then considered a fact in s. To
enable complex SOAs, SOAs can be structured as a Heyt-
ing algebra under a partial order ’→’, which is closed under
arbitrary meets (

∧
) and joins (

∨
). Situations and SOAs to-

gether form a SOA-algebra:

1. If s |= σ and σ → τ then σ |= τ

2. s &|= 0, s |= 1 (FALSE,TRUE)

3. If Σ is any finite set of SOAs, then s |=
∧

Σ iff s |= σ
for each σ ∈ Σ

4. If Σ is any finite set of SOAs, then s |=
∨

Σ iff s |= σ
for at least one σ ∈ Σ

Finally, an application operator is defined, to allow for vari-
able assignment (and reduction):
λx.〈R, a : b, c : x : +〉|x '→ d| = 〈R, a : b, c : d : +〉 !

Using Definition 1, we can now consider a proposition to
be an assertion about the truth of a possibility relative to a
situation.

Definition 2 (Proposition). A proposition p is a relational
entity, asserting a truth regarding a SOA τ in a particular
situation s: p = (s : τ). A proposition p = (s : τ) is TRUE
iff τ is a fact of s, denoted as s |= τ . !

Before defining what a question is, the notions of re-
solvedness and aboutness need to be defined. Resolved-
ness, or rather the broader concept of potentially resolving a
question, is defined as follows. The definition distinguishes
whether a (possibly complex) fact resolves a question de-
pending on whether the question is polar, asking for the truth
of an assertion (e.g. ”Is the ball red?”), or factive, asking af-
ter a value (e.g. ”What color is the ball?”).

Definition 3 (Resolvedness conditions). A SOA τ poten-
tially resolves a question q if either

1. τ positively-resolves q (for ’polarity p’: any informa-
tion that entails p; for a factive question: any informa-
tion that entails that the extension of the queried predi-
cate is non-empty)

2. τ negatively-resolves q (for ’polarity p’: any informa-
tion that entails ¬p; for a factive question: any informa-
tion that entails that the extension of the queried predi-
cate is empty)

!

We will leave the notion of aboutness for the moment.
Essentially, Ginzburg (1995a; 1995b) defines this as a col-
lection of SOAs which can be associated with the content of
a question q, with a SOA being about q if it subsumes the
fact that q is either positively or negatively resolved. (For
subsumption, recall Definition 1.)

Ginzburg’s definition of what a question is then works out
as follows.
Definition 4 (Question). A question is an entity (s?µ) con-
structed from a situation s and an n-ary abstract SOA µ =
λx1 , ..., xnσ(x1 , ..., xn) (n ≥ 0):

1. µ constitutes an underspecified SOA from which the
class of SOAs that are about q can be characterized.

2. Those SOAs which are facts of s and informationally
subsume a level determined by µ constitute a class of
SOAs that potentially resolve q.

!

The definition includes references to the relational charac-
ter of a question (the abstract), and the notions of aboutness
(intuitively, the space within which we are looking for an
answer) and of resolvedness (the space of possible answers
we are looking for, one of which will -hopefully- establish
itself as fact). Finally, we already indicated above that re-
solvedness is an agent-relative notion. Ginzburg suggests to
do so using Definition 3 as follows.
Definition 5 (Agent-relative resolvedness). A fact τ re-
solves a question (s?µ) relative to a mental situation ms iff

1. Semantic condition: τ is a fact of s that potentially re-
solves µ

2. Agent relativisation: τ =⇒ msGoal − content(ms),
i.e. τ entails the goal represented in the mental situation
ms relative to the inferential capabilities encoded in ms.

!

Approach
The previous section presented a formal (but relatively ab-
stract) notion of what a question is. It made clear that a
question is more than a predicate with an open variable, or
(alternatively) just another way of characterizing a set of
propositions that would serve as exhaustive answer. Instead,
a question is a relational structure, tying into a larger con-
text. For one, this “context” provides a set of beliefs (SOAs,
in Ginzburg’s terms), a background within which potential
answers are sought. An agent’s goals help motivate to fo-
cus which beliefs are associated with the question. Another
point about this “context” is that a question isn’t just a sin-
gle utterance, or just forming a unit with an utterance that
answers it. There is a dialogue context in which this ques-
tion is phrased. The question itself, and whatever utterances
contribute to help clarify, refine and answer that question,
may (though need not) refer to content already established
in that context.

Phrasing a question, in other words, means we need to
provide the possibility for such contextual factors to influ-
ence how the content of a question is determined. Once the



agent has determined that it needs to raise a question, and
about what (e.g. cf. (Kruijff, Brenner, and Hawes 2008) for
questions in situated forms of learning), it needs to estab-
lish how best to communicate the question. In this paper,
we suggest to do this as follows. We will begin by further
explication of the notion of question, using a structure we
term the question nucleus. The question nucleus captures
more explicitly the relation between beliefs and intentions
that are active in a current context, and how they determine
the space of possible answers (or complexes of those). Then,
we sketch several algorithms. The first group of algorithms
concern context determination. Intuitively, these algorithms
determine what beliefs and potential answers form the rele-
vant background for the question. The background specifies
what can be assumed to be known, (and can thus be referred
to or even silently assumed), both in terms of content and
intentions in the the dialogue- and situated context. How a
question is to be phrased relies on what it needs to expli-
cate relative to that background, to effectively communicate
it. This is then finally done by the content determination
algorithm. The result of this algorithm is a logical form, ex-
pressed in a (decidable) description logic. The logical form
specifies the core content for the question, which a content
planner subsequently can turn into one or more fully-fledged
utterances.

The following definition defines more precisely what
we mean by a logical form, based on (Blackburn 2000;
Baldridge and Kruijff 2002). We will use the same formal-
ism to describe SOAs (cf. Definition 1).
Definition 6 (Logical forms). A logical form is a formula
φ built up using a sorted description logic. For a set of
propositions PROP = {p, ...}, an inventory of ontolog-
ical sorts SORT = {s, ...}, and a set of modal relations
MOD = {R, ...}, φ = p | i : s | ψ∧ψ′ | 〈R〉ψ | @i:sψ. The
construction i : s identifies a nominal (or index) with onto-
logical sort s. The at-operator construction @i:sψ specifies
that a formula ψ holds at a possible world uniquely referred
to by i, and which has ontological sort s. !

A standard Kripke-style model-based semantics can
be defined for this language (Blackburn 2000). Intu-
itively, this language makes it possible to build up rela-
tional structures, in which propositions can be assigned
ontological sorts, and referred to by using i as in-
dices. For example, @b1 :entity(ball ∧ 〈Property〉(c1 :
color ∧ red) means we have a “ball” entity, which we
can uniquely refer to as b1, and which has a (refer-
able) color property. (An alternative, equal way of view-
ing this formula is as a conjunction of elementary pred-
ications: @b1 :entityball ∧ @b1 :entity〈Property〉c1 :
color ∧ @c1 :colorred.)

Question nucleus
We start by defining the notion of question nucleus. The
function of a question nucleus is twofold. First, it should
capture the question’s background in terms of associated be-
liefs and intentions, and what space of expected answers
these give rise to. An expected answer is naturally only as
specific (or unspecific) as is inferable on the basis of what

the agent knows.
Definition 7 (Expected answer). An expected answer a for
a question q is a proposition a = (s : τ), with τ potentially
resolving q as per Definition 3. τ is a logical formula (Def-
inition 6) which can be underspecified, both regarding the
employed ontological sorts, and arguments. !

Effectively, assuming that the agent has a collection of
ontologies which provide a subsumption structure (a " b
meaning a subsumes b, i.e. b is more specific), an expected
answer can be said to define a “level” of specifity (Defini-
tion 4) according to subsumption. Following up on the ball
example, assume the agent has an ontology which defines
material − property " {color, shape}. An expected an-
swer to a question, what particular shape the ball has, would
take the form @b1 :entity(ball ∧ 〈Property〉(s1 : shape)).
All the proposition specifies is that there is an identifiable
shape. If the question would be about any, or some un-
known, property of the ball, an expected answer could be
phrased as @b1 :entity(ball ∧ 〈Property〉(m1 : material −
property)). Using the available ontological structure, and
relational structure between formulas, we can formulate ex-
pected answers at any level of specifity without requiring the
agent to already know the answer (cf. also (Kruijff, Brenner,
and Hawes 2008)).
Definition 8 (Question nucleus). A question nucleus is a
structure qNucleus = {r, BL, XP, AS} with:

1. A referent r relative to which the question q (part of XP)
is phrased.

2. BL (Beliefs) is a set of private and shared beliefs, about
agent intentions and facts in the current context (cf.
(Lochbaum, Grosz, and Sidner 1999; Grosz and Kraus
1999)).

3. XP (Execution Plan) is a continual plan with an exe-
cution record (Brenner and Nebel 2008) for resolving a
question q = (s?µ).

4. AS (Answer Structure) is a finite "-structure over
propositions p1 , ... which potentially resolve q, and
which are implied by BL.

The beliefs BL specify what the agent knows about r, what
the agent presumes to be shared knowledge about r, and
what the agent presumes other agents could know about r.
BL is based on the dialogue leading up to the question, any
previous actions involving r, and a domain model of agent
competences (Brenner and Kruijff-Korbayová 2008). XP
makes explicit that phrasing a question constitutes a dia-
logue, with an associated plan for communicating the ques-
tion and a record for how far the question has been fully
answered. This record maintains which aspects (elementary
predications) of the question are still open (“under discus-
sion,” similar to the Question-Under-Discussion construct of
(Ginzburg 1995b)). The AS is a set of propositions, relat-
ing those propositions to the aspect(s) of the question they
would potentially resolve (and thus to the execution record
in XP ). AS is based on propositions implied by BL (rel-
ative to r, q) and is "-structured according to ontological
structure. !



Contextually determining aboutness
Asking a question starts with the agent having determined
what it is it needs to know about some referent r, e.g. an
area in the environment, an object – or, more specifically,
relations or properties. (To allow for group referents, we
will consider r to be a set.) Next the question nucleus is
built up, starting with the beliefs about the question, BL.

We adopt the approach to belief modeling described in
(Brenner and Kruijff-Korbayová 2008). Beliefs are formu-
lated as relational structures with multi-valued state vari-
ables (MVSVs). These state variables are used for several
purposes. First, they can indicate domain values, as illus-
trated by the sorted indices in the examples above. The
color c1 would be a Property-type state variable of the en-
tity b1, and could take domain values in the range of that
ontological sort. Important is that the absence of a value
for an MVSV is interpreted as ignorance, not as false-
hood: @b1 :entity(ball ∧ 〈Property〉(s1 : shape)) means
the agent does not know what shape the ball has, not that
it has no shape (as per a closed-world assumption). In a
similar way, state variables are used for expressing private
beliefs, and mutual or shared beliefs (Lochbaum, Grosz,
and Sidner 1999; Grosz and Kraus 1999). A private be-
lief of agent a1 about content φ is expressed as (K{a1}φ)
whereas a mutual belief, held by several agents, is expressed
as (K{a1 , a2 , ...}φ). Secondly, MSVSs can be quanti-
fied over, for example using the ? to express a question:
?s1.@b1 :entity(ball ∧ 〈Property〉(s1 : shape)) represents
a question regarding the shape of the referent b1.

As an agent perceives the environment, we assume it
builds up beliefs about the instances it perceives, and what
relations can be observed or inferred to hold between them.
For example, see (Brenner et al. 2007) for a robot manipu-
lating objects in a local visual scene, or (Kruijff et al. 2007b)
for a robot exploring an indoor environment. Furthermore,
we assume that the agent’s planning domains include mod-
els of agent capabilities – what another agent is capable of
doing, including talking (and answering questions!) about
particular aspects of the environment (Brenner and Kruijff-
Korbayová 2008). Finally, if the agent has been engaged in
a dialogue with another agent, and discussed the referent-in-
question r before, we assume that the (agreed-upon) content
discussed so far constitutes shared beliefs, held by all agents
involved.

Algorithm 1 : Determine(BL) (sketch)

Require: BELs is a set of private and mutual beliefs the
agent holds, (including beliefs about capabilities); r is the
referent (set) in question

BL = ∅
for b ∈ BELs do

if b includes a MVSV m ∈ r then
BL = BL ∪ b

end if
end for

return BL

Algorithm 1 sketches the basis of the algorithm for estab-
lishing BL. Those beliefs are gathered which refer explic-
itly to the referent the question is about. Note that BL may
end up being empty. This means that r has not been talked
about, nor does the agent know whether another agent could
actually offer it an answer to what it would like to know
more about.

Contextually determining resolvedness
The beliefs BL about the referent in question r state what
the agent already believes about r (privately, or shared), and
what it believes about another agent’s capabilities. Next,
these beliefs need to be structured such that potentially re-
solving answers can be derived. We assume that we can
make use of the ontological sorts, and the structuring over
these sorts provided by domain ontologies, to organize be-
liefs. The organization we are after first of all relates a belief
to a potentially resolving answer, by combining it (inferen-
tially) with the ?-quantified, ontologically sorted MVSVs in
the question to yields a partially or completely reduced log-
ical form (Definition 1). Secondly, the organization relates
beliefs by (sortal) subsumption over the potentially resolv-
ing answers they generate.

For example, consider a question about the color of a ball:
?c1.@b1 :entity(ball ∧ 〈Property〉(c1 : color)). Let us as-
sume the robot holds several beliefs with regard to b1, and
the variable c1. A robot learning more about visual prop-
erties of objects through interaction with a human tutor (Ja-
cobsson et al. 2007) typically holds at least beliefs about
what the tutor is capable of telling it. Thus, assume the
robot believes the tutor can tell it about material properties,
colors, and shapes. Using tell-val (tell value action)
we can model these beliefs as (K {a1} tell − val(a2 , m :
material − property), (K {a1} tell − val(a2 , c : color).
The variables m, b are existentially bound in these beliefs.
Using the inference that material − property ! color
and introducing bound variables m′, c′ for m and c respec-
tively, the beliefs can be combined with the question to
yield the potentially resolving propositions c′ : color,m′ :
material − property. Furthermore, subsumption yields
m′ : material − property ! c′ : color. Thus, by com-
bining the beliefs with what the agent already knows, it can
expect to know something it doesn’t yet know by asking a
question. And by making use of the way its knowledge is
ontologically structured, it can determine how precise that
answer is likely to be.

Algorithm 2 provides a first sketch of the algorithm for
establishing AS. (In the current version, propositional con-
tent and additional relational structure pertaining to m in the
context of b is not yet included into AS.)

Content determination
Finally, once the beliefs about q and the potentially resolving
answers for q have been established, we can turn to deter-
mining the exact content for communicating q. The purpose
of content determination is to establish what, how much,
should be communicated for the agent to get an appropri-
ate answer – how much content it needs to communicate to
ensure proper scaffolding and transparency. For example,



Algorithm 2 : Determine(AS) (sketch)

Require: BL is a set of beliefs relative to r, q is a question
about r, and ONT is a collection of ontologies supporting
subsumption inferences on sorts used in BL and q.

AS = ∅ (empty subsumption )
for b ∈ BLs do

φ = #
for MVSV m ∈ r existentially bound in b do

introduce a bound variable m′

φ = φ ∧ m′ : sort(MV SV )
end for
AS = AS % φ, under !

end for

return AS

consider again the question about the color of the ball. How
the question should be phrased, depends on whether e.g. the
ball has already been talked about, what goals are involved
(are we learning how this ball looks like, or how objects
roll?), etc. Example 3 provides some illustrations.

(3) Asking about the color of a single ball on a table ...
a. If the robot is not sure whether the other agent

knows about colors:
“Could you tell me about the color of this ball?”

b. If the robot believes the other agent knows about
colors:
“ Could you tell me what color this ball is?”

c. If the robot is not sure whether asking about
color is relevant to the current goal:
“I would like to know more about the color of
this ball. Could you tell me what it is?”

d. If the ball is under discussion, and asking for
color is relevant:
“What’s the color?”

Example 3 particularly illustrates how scaffolding and
transparency come into play. We connect these terms ex-
plicitly to the question nucleus. We see scaffolding primar-
ily as appropriately embedding a question into an intentional
setting, relating to AS and the extent to which available be-
liefs lead to specific (potentially resolving) answers. Trans-
parency relates to the referential setting of the question nu-
cleus, relating r to BL in the sense of what the agent can
already assume to be mutually known about the referent un-
der discussion. Planning the question as a dialogue, then,
means determining relevant beliefs, and the information sta-
tus of relevant content. Relevant beliefs are those which are
associated with maximally specific, potentially resolving an-
swer(s). A distinction needs to be made between private and
mutual believes, particularly as beliefs about competences
are first and foremost private beliefs. Furthermore, it should
be determined whether these beliefs fit into the current in-
tentional context. (For the purposes of the current paper, we
will consider learning goals only, and consider them to spec-

ify what ontological sorts the agent is trying to learn.) Infor-
mation status regards whether content, pertaining to r, can
be assumed to be mutually known – most notably, whether
r is mutually known (i.e. mutually identifiable in context).

Algorithm 3 : Content determination (sketch)

Require: BL is a set of beliefs relative to r, q is a question
about r, ONT is a collection of ontologies supporting sub-
sumption inferences on sorts used in BL and q, AS is a
structure over potentially resolving answers

RelBL = ∅
for a ∈ AS do

if a is maximally specific, i.e. there is no a’ s.t. a !
a’ then
RelBL = RelBL ∪ { b }, for b yielding a

end if
end for
MutualRelBL = mutual beliefs in RelBL
ScaffoldingBL = ∅
TransparencyBL = ∅
for MVSV m in q do

if there is a b ∈ MutualRelBL associated to m then
TransparencyBL = TransparencyBL ∪ { b }

else
ScaffoldingBL = ScaffoldingBL ∪ { be-
liefs associated to most specific answers for m }

end if
end for
return ScaffoldingBL, TransparencyBL

Algorithm 3 first determines what beliefs are relevant to
achieve a maximally specific answer, and which of these be-
liefs are mutual. How much scaffolding needs to be done de-
pends on whether these mutual beliefs imply all potentially
resolving answers to the questioned MVSVs in r. If not, the
algorithm backs off by constructing a belief set which needs
to be communicated for appropriate scaffolding. The basis
for transparency is formed by the mutual beliefs about r.

On the basis of these sets of beliefs, and q itself, the com-
munication of q can be planned. We do not provide an in-
depth discussion of dialogue- and content-planning here, for
space (and time) reasons. We refer the interested reader to
(Brenner and Kruijff-Korbayová 2008; Kruijff et al. 2009).
In brief, beliefs in the scaffolding set are specified as as-
sertions (Brenner and Nebel 2008). The plan for communi-
cating the question starts by verifying these assertions, and
then raises the question itself. It is a matter for content fu-
sion whether such verification can be done in conjunction
with the question itself (Example 3, a–b) or as preceding ut-
terances (Example 3, c). For the realization of the question,
the transparency beliefs are used to determine information
status. Content planning then turns information status into
decisions about how to refer to r and the asked-after prop-
erties – e.g. using pronominal reference (Example 3, c) or
even omitting explicit reference, by eliding any mention of
r (Example 3, d).



Conclusions
The approach presented in this paper is still under develop-
ment. The key technologies it is based on (planning, mo-
tivation, dialogue processing, and ontological inferencing)
are already available in the system architecture the approach
will be integrated into. We will describe the full integration,
with working examples, in a full version of this paper. We
will then also consider how this approach can be applied in
related settings, such as performance requests.

We are currently considering various alternative ways to
evaluate the approach. User experiments are just one option
here. The problem is that an approach as presented here,
and the overall architecture it will be integrated into, present
a large parameter space. Consequently, it is difficult to en-
sure a controlled setting for a user experiment – and, only
a very limited part of the parameter space can be effectively
explored. An alternative way we are therefore currently con-
sidering is to use techniques from language evolution. In
simulations we would like to explore what the effects of dif-
ferent parameter settings would be on how agents are able to
communicate, and what this consequently means for mea-
surable parameters such as learning performance. Examples
of such experiments can be found in (Ginzburg and Macura
2006).

There remain for the moment plenty of open issues to be
investigated further – this paper really only provides a first
description of the approach we are developing. It does aim to
make clear how notions such as scaffolding and transparency
can be folded into a characterization of how a system can
phrase a question – seeing a question, in fact, as a subdia-
logue to be planned, not just a single utterance paired with
a possible answer. Basic issues remain in the construction
of the various belief sets, and the associated structures over
potentially resolving answers. Although an “unweighted”
approach as followed here will work for most simple sce-
narios, it remains to be seen whether associating costs with
beliefs (and assuming them, in a plan for communicating a
dialogue) could provide a more adaptive, scalable approach
in the long run. Furthermore, the current formulation of the
construction of the answer structure AS (Algorithm 2) does
not cover polar questions (though this is an easy extension).
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A situated context model for resolution and generation of
referring expressions. In Proceedings of the 12th European
Workshop on Natural Language Generation (ENLG 2009),
126–129.



Efficient Parsing of Spoken Inputs for Human-Robot Interaction

Pierre Lison and Geert-Jan M. Kruijff

Abstract— The use of deep parsers in spoken dialogue sys-
tems is usually subject to strong performance requirements.
This is particularly the case in human-robot interaction, where
the computing resources are limited and must be shared by
many components in parallel. A real-time dialogue system must
be capable of responding quickly to any given utterance, even in
the presence of noisy, ambiguous or distorted input. The parser
must therefore ensure that the number of analyses remains
bounded at every processing step.

The paper presents a practical approach to address this issue
in the context of deep parsers designed for spoken dialogue.
The approach is based on a word lattice parser combined
with a statistical model for parse selection. Each word lattice
is parsed incrementally, word by word, and a discriminative
model is applied at each incremental step to prune the set of
resulting partial analyses. The model incorporates a wide range
of linguistic and contextual features and can be trained with
a simple perceptron. The approach is fully implemented as
part of a spoken dialogue system for human-robot interaction.
Evaluation results on a Wizard-of-Oz test suite demonstrate
significant improvements in parsing time.

I. INTRODUCTION

Developing robust and efficient parsers for spoken dia-
logue is a difficult and demanding enterprise. This is due to
several interconnected reasons.

The first reason is the pervasiveness of speech recogni-
tion errors in natural (i.e. noisy) environments, especially
for open, non-trivial discourse domains. Automatic speech
recognition (ASR) is indeed a highly error-prone task, and
parsers designed to process spoken input must therefore find
ways to accomodate the various ASR errors that may (and
will) arise. This problem is particularly acute for robots
operating in real-world noisy environments and deal with
utterances pertaining to complex, open-ended domains.

Next to speech recognition, the second issue we need to
address is the relaxed grammaticality of spoken language.
Dialogue utterances are often incomplete or ungrammatical,
and may contain numerous disfluencies like fillers (err, uh,
mm), repetitions, self-corrections, etc. Rather than getting
crisp-and-clear commands such as ”Put the red ball inside
the box!”, we are more likely to hear utterances such as:
”right, now, could you, uh, put the red ball, yeah, inside
the ba/ box!”. This is natural behaviour in human-human
interaction [1] and can also be observed in several domain-
specific corpora for human-robot interaction [2]. Spoken
dialogue parsers should therefore be made robust to such
ill-formed utterances.

This work was supported by the EU FP7 ICT Integrated Project “CogX”
(FP7-ICT- 215181).

Pierre Lison and Geert-Jan M. Kruijff are with the German Research
Centre for Artificial Intelligence (DFKI GmbH), Language Technology Lab,
Saarbrücken, Germany {pierre.lison},{gj} @ dfki.de

Finally, the vast majority of spoken dialogue systems are
designed to operate in real-time. This has two important
consequences. First, the parser should not wait for the
utterance to be complete to start processing it – instead, the
set of possible semantic interpretations should be gradually
built and extended as the utterance unfolds. Second, each
incremental parsing step should operate under strict time
constraints. The main obstacle here is the high level of
ambiguity arising in natural language, which can lead to a
combinatorial explosion in the number of possible readings.

The remaining of this paper is devoted to addressing this
last issue, building on an integrated approach to situated
spoken dialogue processing previously outlined in [3], [4].
The approach we present here is similar to [5], with some
notable differences concerning the parser (our parser being
specifically tailored for robust spoken dialogue processing),
and the features included in the discriminative model.

An overview of the paper is as follows. We first describe
in Section II the cognitive architecture in which our system
has been integrated. We then discuss the approach in detail in
Section III. Finally, we present in Section IV the quantitative
evaluations on a WOZ test suite, and conclude.

II. ARCHITECTURE

The approach we present in this paper is fully implemented
and integrated into a cognitive architecture for autonomous
robots. A recent description of the architecture is provided
in [6], [7]. It is capable of building up visuo-spatial models
of a dynamic local scene, and continuously plan and execute
manipulation actions on objects within that scene. The robot
can discuss objects and their material- and spatial properties
for the purpose of visual learning and manipulation tasks.
Figure 1 illustrates the architecture schema for the commu-
nication subsystem, limited to the comprehension side.

Fig. 1. Architecture schema of the communication subsystem (limited to
the comprehension part).



Starting with ASR, we process the audio signal to estab-
lish a word lattice containing statistically ranked hypothe-
ses about word sequences. Subsequently, parsing constructs
grammatical analyses for the given (partial) word lattice. A
grammatical analysis constructs both a syntactic analysis of
the utterance, and a representation of its meaning. The analy-
sis is based on an incremental chart parser1 for Combinatory
Categorial Grammar [8]. These meaning representations are
ontologically richly sorted, relational structures, formulated
in a (propositional) description logic – more precisely in the
HLDS formalism [9]. The parser itself is based on a variant
of the CKY algorithm [10].

Once all the possible (partial) parses for a given (partial)
utterance are computed, they are filtered in order to retain
only the most likely interpretation(s). This ensures that the
number of parses at each incremental step remains bounded
and avoid a combinatorial explosion of the search space.
The task of selecting the most likely parse(s) among a set
of possible ones is called parse selection. We describe it in
detail in the next section.

At the level of dialogue interpretation, the logical forms
are then resolved against a dialogue model to establish co-
reference and dialogue moves.

Linguistic interpretations must finally be associated with
extra-linguistic knowledge about the environment – dialogue
comprehension hence needs to connect with other subarchi-
tectures like vision, spatial reasoning or planning. We realise
this information binding between different modalities via a
specific module, called the “binder”, which is responsible for
the ontology-based mediation accross modalities [11].

A. Context-sensitivity
The combinatorial nature of language provides virtually

unlimited ways in which we can communicate meaning.
This, of course, raises the question of how precisely an
utterance should then be understood as it is being heard.
Empirical studies have investigated what information humans
use when comprehending spoken utterances. An important
observation is that interpretation in context plays a crucial
role in the comprehension of the utterance as it unfolds [12].
During utterance comprehension, humans combine linguistic
information with scene understanding and “world knowl-
edge” to select the most likely interpretation.

Fig. 2. Context-sensitivity in processing situated dialogue understanding

1Built using the OpenCCG API: http://openccg.sf.net

Several approaches in situated dialogue for human-robot
interaction have made similar observations [13], [14], [15],
[7]: A robot’s understanding can be improved by relating
utterances to the situated context. By incorporating con-
textual information into our model, our approach to robust
processing of spoken dialogue seeks to exploit this important
insight. At each processing step (speech recognition, word
lattice parsing, dialogue-level interpretation and cross-modal
binding), contextual information is used to prime the utter-
ance comprehension, as shown in the Figure 2.

III. APPROACH

As we just explained, the parse selection module is re-
sponsible for selecting at each incremental step a subset of
”good” parses. Once the selection is made, the best analyses
are kept in the parse chart, while the others are discarded
and pruned from the chart.

A. The parse selection task
To achieve this selection, we need a mechanism to dis-

criminate among the possible parses. This is done via a
(discriminative) statistical model covering a large number of
features.

Formally, the task is defined as a function F : X → Y
where the domain X is the set of possible inputs (in our
case, X is the set of possible word lattices), and Y the set
of parses. We assume:

1) A function GEN(x) which enumerates all possible
parses for an input x. In our case, the function rep-
resents the admissibles parses according to the CCG
grammar.

2) A d-dimensional feature vector f(x,y)∈ℜd , represent-
ing specific features of the pair (x,y). It can include
various acoustic, syntactic, semantic or contextual fea-
tures which can help us discriminate between the
various parses.

3) A parameter vector w ∈ℜd .
The function F , mapping a word lattice to its most likely

parse, is then defined as:

F(x) = argmax
y∈GEN(x)

wT · f(x,y) (1)

where wT · f(x,y) is the inner product ∑d
s=1 ws fs(x,y), and

can be seen as a measure of the “quality” of the parse. Given
the parameters w, the optimal parse of a given utterance x
can be therefore easily determined by enumerating all the
parses generated by the grammar, extracting their features,
computing the inner product wT · f(x,y), and selecting the
parse with the highest score.

The task of parse selection is an example of a structured
classification problem, which is the problem of predicting
an output y from an input x, where the output y has a rich
internal structure. In the specific case of parse selection, x is
a word lattice, and y a logical form.



B. Training data
In order to estimate the parameters w, we need a set

of training examples. Unfortunately, no corpus of situated
dialogue adapted to our task domain is available to this day,
let alone semantically annotated. The collection of in-domain
data via Wizard of Oz experiments being a very costly and
time-consuming process, we followed the approach advo-
cated in [16] and generated a corpus from a hand-written
task grammar.

To this end, we first collected a small set of WoZ data,
totalling about a thousand utterances related to a simple
scenario of object manipulation and visual learning. This set
is too small to be directly used as a corpus for statistical
training, but sufficient to capture the most frequent linguistic
constructions in this particular context. Based on it, we
designed a domain-specific context-free grammar covering
most of the utterances. Each rule is associated to a semantic
HLDS representation. Weights are automatically assigned to
each grammar rule by parsing our corpus, hence leading
to a small stochastic context-free grammar augmented with
semantic information.

Once the grammar is specified, it is randomly traversed a
large number of times, resulting in a larger set (about 25.000)
of utterances along with their semantic representations. Since
we are interested in handling errors arising from speech
recognition, we also need to “simulate” the most frequent
recognition errors. To this end, we synthesise each string
generated by the domain-specific grammar, using a text-
to-speech engine2, feed the audio stream to the speech
recogniser, and retrieve the recognition result.

Via this technique, we are able to easily collect a large
amount of training data. Because of its relatively artificial
character, the quality of such training data is naturally lower
than what could be obtained with a genuine corpus. But, as
the experimental results will show, it remains sufficient to
train the perceptron for the parse selection task, and achieve
significant improvements in accuracy and robustness. In a
near future, we plan to progressively replace this generated
training data by a real spoken dialogue corpus adapted to
our task domain.

C. Perceptron learning
The algorithm we use to estimate the parameters w using

the training data is a perceptron. The algorithm is fully
online - it visits each example in turn, in an incremental
fashion, and updates w if necessary. Albeit simple, the
algorithm has proven to be very efficient and accurate for
the task of parse selection [5], [17].

The pseudo-code for the online learning algorithm is
detailed in [Algorithm 1].

It works as follows: the parameters w are first initialised
to some arbitrary values. Then, for each pair (xi,zi) in the
training set, the algorithm searchs for the parse y′ with the
highest score according to the current model. If this parse
happens to match the best parse which generates zi (which

2We used MARY (http://mary.dfki.de) for the text-to-speech engine.

we shall denote y∗), we move to the next example. Else, we
perform a simple perceptron update on the parameters:

w = w+ f(xi,y∗)− f(xi,y′) (2)

The iteration on the training set is repeated T times, or
until convergence. The most expensive step in this algorithm
is the calculation of y′ = argmaxy∈GEN(xi) wT · f(xi,y) - this
is the decoding problem.

Algorithm 1 Online perceptron learning

Require: - Set of n training examples {(xi,zi) : i = 1...n}
- For each incremental step j with 0≤ j ≤ |xi|,

we define the partially parsed utterance x j
i

and its gold standard semantics z j
i

- T : number of iterations over the training set
- GEN(x): function enumerating possible parses

for an input x, according to the CCG grammar.
- GEN(x,z): function enumerating possible parses

for an input x and which have semantics z,
according to the CCG grammar.

- L(y) maps a parse tree y to its logical form.
- Initial parameter vector w0

% Initialise
w← w0

% Loop T times on the training examples
for t = 1 ... T do

for i = 1 ... n do
% Loop on the incremental parsing steps
for j = 0...|xi| do

% Compute best parse according to model
Let y′ = argmaxy∈GEN(x j

i )
wT · f(x j

i ,y)

% If the decoded parse '= expected parse, update the
parameters of the model
if L(y′) '= z j

i then

% Search the best parse for the partial utterance x j
i

with semantics z j
i

Let y∗ = argmaxy∈GEN(x j
i ,z

j
i )

wT · f(x j
i ,y)

% Update parameter vector w
Set w = w+ f(x j

i ,y
∗)− f(x j

i ,y
′)

end if
end for

end for
end for
return parameter vector w

It is possible to prove that, provided the training set (xi,zi)
is separable with margin δ > 0, the algorithm is assured
to converge after a finite number of iterations to a model
with zero training errors [5]. See also [18] for convergence
theorems and proofs.

D. Features
As we have just seen, the parse selection operates by

enumerating the possible parses and selecting the one with
the highest score according to the linear model parametrised
by the weights w.



The accuracy of our method crucially relies on the
selection of “good” features f(x,y) for our model - that is,
features which help discriminating the parses. In our model,
the features are of four types: semantic features, syntactic
features, contextual features, and speech recognition features.

1) Semantic features: What are the substructures of a
logical form which may be relevant to discriminate the
parses? We define features on the following information
sources: the nominals, the ontological sorts of the nominals,
the dependency relations (following [19]), and the sequences
of dependency relations.

Fig. 3. HLDS logical form for “I want you to take the mug”.

The features on nominals and ontological sorts aim at
modeling (aspects of) lexical semantics - e.g. which mean-
ings are the most frequent for a given word -, whereas
the features on relations and sequence of relations focus
on sentential semantics - which dependencies are the most
frequent.

These features therefore help us handle various forms of
lexical and syntactic ambiguities.

2) Syntactic features: Syntactic features are features as-
sociated to the derivational history of a specific parse.
Alongside the usual CCG rules (application, composition and
type raising), our parser also uses a set of non-standard rules
designed to handle disfluencies, speech recognition errors,
and combinations of discourse units by selectively relaxing
the grammatical constraints (see [4] for details). In order to
”penalise” to a correct extent the application of these non-
standard rules, we include in the feature vector f(x,y) new
features counting the number of times these rules are applied
in the parse. In the derivation shown in the Figure 4, the rule
corr (correction of a speech recognition error) is for instance
applied once.

These syntactic features can be seen as a penalty given to
the parses using these non-standard rules, thereby giving a
preference to the “normal” parses over them.

This ensures that the grammar relaxation is only applied

pick
s/particle/np

cup
up corr

particle
s/np

>

the
np/n

ball
n

np >

s >

Fig. 4. CCG derivation of “pick cup the ball”.

“as a last resort” when the usual grammatical analysis fails
to provide a parse.

3) Contextual features: As we have already outlined in
the background section, one striking characteristic of spoken
dialogue is the importance of context. Understanding the
visual and discourse contexts is crucial to resolve potential
ambiguities and compute the most likely interpretation(s) of
a given utterance.

The feature vector f(x,y) therefore includes various fea-
tures related to the context:

• Activated words: our dialogue system maintains in its
working memory a list of contextually activated words
(cfr. [20]). This list is continuously updated as the
dialogue and the environment evolves. For each context-
dependent word, we include one feature counting the
number of times it appears in the utterance string.

• Expected dialogue moves: for each possible dialogue
move, we include one feature indicating if the dialogue
move is consistent with the current discourse model.
These features ensure for instance that the dialogue
move following a QuestionYN is a Accept, Reject
or another question (e.g. for clarification requests), but
almost never an Opening.

4) Speech recognition features: Finally, the feature vector
f(x,y) also includes features related to the speech recogni-
tion. The ASR module outputs a set of (partial) recognition
hypotheses, packed in a word lattice. One example is given
in Figure 5.

Fig. 5. Example of word lattice

We want to favour the hypotheses with high confidence
scores, which are, according to the statistical models in-
corporated in the ASR, more likely to reflect what was
uttered. To this end, we introduce in the feature vector
several acoustic features measuring the likelihood of each
recognition hypothesis.

E. Incremental chart pruning
In the previous subsections, we explained how the parse

selection was performed, and on basis of which features.



Beam width Size of Average parsing Exact-match Partial-match
word lattice time (in s.) Precision Recall F1-value Precision Recall F1-value

(Baseline) (none) 10 10.1 40.4 100.0 57.5 81.4 100.0 89.8
120 10 5.78 40.9 96.9 57.5 81.9 98.0 89.2
60 10 4.82 41.1 92.5 56.9 81.7 94.1 87.4
40 10 4.66 39.9 88.1 54.9 79.6 91.9 85.3
30 10 4.21 41.0 83.0 54.9 80.2 88.6 84.2
20 10 4.30 40.1 80.3 53.5 78.9 86.5 82.5

(Baseline) (none) 5 5.28 40.0 100.0 57.1 81.5 100.0 89.8
120 5 6.62 40.9 98.4 57.8 81.6 98.5 89.3
60 5 5.28 40.5 96.9 57.1 81.7 97.1 88.7
40 5 4.26 40.9 91.0 56.5 81.7 92.4 86.7
30 5 3.51 40.7 92.4 56.5 81.4 93.9 87.2
20 5 2.81 36.7 87.1 51.7 79.6 90.7 84.8

TABLE I
EVALUATION RESULTS (IN SECONDS FOR THE PARSING TIME, IN % FOR THE EXACT- AND PARTIAL-MATCH).

This parse selection is used at each incremental step to
discriminate between the ”good” parses that needs to be kept
in the parse chart, and the parses that should be pruned in
order to keep a limited number of interpretations, and hence
avoid a combinatory explosion of analyses.

To achieve this, we introduce a new parameter in our
parser: the beam width. The beam width defines the maximal
number of analyses which can be kept in the chart at each
incremental step. If the number of possible readings exceeds
the beam width, the analyses with a lower parse selection
score are removed from the chart.

Practically, this is realised by removing the top signs
associated in the chart with the set of analyses to prune,
as well as all the intermediate signs which are included in
these top signs and are not used in any of the ”good” analyses
retained by the parse selection module.

A simple backtracking mechanism is also implemented
in the parser. In case the beam width happens to be too
narrow and renders the utterance unparsable, it is possible to
reintroduce the signs previously removed from the chart and
restart the parse at the failure point.

The combination of incremental parsing and incremental
chart pruning provides two decisive advantages over classi-
cal, non-incremental parsing techniques: first, we can start
processing the spoken inputs as soon as a partial analysis
can be outputted by the speech recogniser. Second, the
pruning mechanism ensures that each incremental parsing
step remains time-bounded. Such a combination is therefore
ideally suited for the real-time spoken dialogue systems used
in human-robot interaction.

IV. EVALUATION

We performed a quantitative evaluation of our approach,
using its implementation in a fully integrated system (cf.
Section II). To set up the experiments for the evaluation,
we have gathered a Wizard-of-Oz corpus of human-robot
spoken dialogue for our task-domain (Figure 6), which
we segmented and annotated manually with their expected
semantic interpretation. The data set contains 195 individual

utterances 3 along with their complete logical forms.
The results are shown in the Table I. We tested our

approach for five different values of the beam width param-
eter, and for two sizes of the word lattice. The results are
compared against a baseline, which is the performance of
our parser without chart pruning. For each configuration, we
give the average parsing time, as well as the exact-match and
partial-match results (in order to verify that the performance
increase is not cancelled by a drop in accuracy). The most
important observation we can make is that the choice of the
beam width parameter is crucial. Above 30, the chart pruning
mechanism works very efficiently – we observe a notable
decrease in the parsing time without significantly affecting
the accuracy performance. Below 30, the beam width is too
small to retain all the necessary information in the chart, and
the recall quickly drops.

Figure 7 illustrates the evolution of the ambiguity level
(in terms of number of alternative semantic interpretations)
during the incremental parsing. We observe that the chart
pruning mechanism acts as a stabilising factor within the
parser, by limiting the number of ambiguities produced after
every incremental step to a reasonable level.

Fig. 6. Wizard-of-Oz experiments for a task domain of object manipulation
and visual learning

3More precisely, word lattices provided by the speech recogniser. These
word lattices can contain a maximum of 10 recognition hypotheses.



Fig. 7. Variation of ambiguity level during incremental parsing, with and
without chart pruning (on word lattices with NBest 10 hypotheses).

V. CONCLUSIONS

We presented in this paper an original mechanism for
efficient parsing of spoken inputs, based on a combination
of incremental parsing (to start the processing as soon as
a partial speech input is recognised) and incremental chart
pruning (to limit at every step the number of analyses
retained in the parse chart).

The incremental parser is based on a fine-grained Com-
binatory Categorial Grammar, and takes ASR word lattices
as input. It outputs a set of partial semantic interpretations
(”logical forms”), which are progressively refined and ex-
tended as the utterance unfolds.

Once the partial interpretations are computed, they are
subsequently pruned/filtered to keep only the most likely
hypotheses in the parse chart. This mechanism is based on
a discriminative model exploring a set of relevant semantic,
syntactic, contextual and acoustic features extracted for each
parse. At each incremental step, the discriminative model
yields a score for each resulting parse. The parser then only
retains in its chart the set of parses associated with a high
score, the others being pruned.

The experimental evaluation conducted on a Wizard-of-
Oz test suite demonstrated that the aforementioned approach
was able to significantly improve the parser performance .

As forthcoming work, we shall examine the extension of
our approach in new directions, such as the introduction
of more refined contextual features, the extension of the
grammar relaxation rules, or the use of more sophisticated
learning algorithms such as Support Vector Machines.
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Abstract

Spoken dialogue is notoriously hard to
process with standard NLP technologies.
Natural spoken dialogue is replete with
disfluent, partial, elided or ungrammati-
cal utterances, all of which are difficult to
accommodate in a dialogue system. Fur-
thermore, speech recognition is known to
be a highly error-prone task, especially
for complex, open-ended domains. The
combination of these two problems – ill-
formed and/or misrecognised speech in-
puts – raises a major challenge to the de-
velopment of robust dialogue systems.

We present an integrated approach for ad-
dressing these two issues, based on an in-
cremental parser for Combinatory Cate-
gorial Grammar. The parser takes word
lattices as input and is able to handle ill-
formed and misrecognised utterances by
selectively relaxing its set of grammati-
cal rules. The choice of the most rele-
vant interpretation is then realised via a
discriminative model augmented with con-
textual information. The approach is fully
implemented in a dialogue system for au-
tonomous robots. Evaluation results on a
Wizard of Oz test suite demonstrate very
significant improvements in accuracy and
robustness compared to the baseline.

1 Introduction

Spoken dialogue is often considered to be one of
the most natural means of interaction between a
human and a robot. It is, however, notoriously
hard to process with standard language process-
ing technologies. Dialogue utterances are often in-
complete or ungrammatical, and may contain nu-
merous disfluencies like fillers (err, uh, mm), rep-
etitions, self-corrections, etc. Rather than getting

crisp-and-clear commands such as ”Put the red
ball inside the box!”, it is more likely the robot
will hear such kind of utterance: ”right, now, could
you, uh, put the red ball, yeah, inside the ba/ box!”.
This is natural behaviour in human-human interac-
tion (Fernández and Ginzburg, 2002) and can also
be observed in several domain-specific corpora for
human-robot interaction (Topp et al., 2006).

Moreover, even in the (rare) case where the ut-
terance is perfectly well-formed and does not con-
tain any kind of disfluencies, the dialogue sys-
tem still needs to accomodate the various speech
recognition errors thay may arise. This problem
is particularly acute for robots operating in real-
world noisy environments and deal with utterances
pertaining to complex, open-ended domains.

The paper presents a new approach to address
these two difficult issues. Our starting point is the
work done by Zettlemoyer and Collins on parsing
using relaxed CCG grammars (Zettlemoyer and
Collins, 2007) (ZC07). In order to account for
natural spoken language phenomena (more flex-
ible word order, missing words, etc.), they aug-
ment their grammar framework with a small set
of non-standard combinatory rules, leading to a
relaxation of the grammatical constraints. A dis-
criminative model over the parses is coupled with
the parser, and is responsible for selecting the most
likely interpretation(s) among the possible ones.

In this paper, we extend their approach in two
important ways. First, ZC07 focused on the treat-
ment of ill-formed input, and ignored the speech
recognition issues. Our system, to the contrary,
is able to deal with both ill-formed and misrec-
ognized input, in an integrated fashion. This is
done by augmenting the set of non-standard com-
binators with new rules specifically tailored to deal
with speech recognition errors.

Second, the only features used by ZC07 are syn-
tactic features (see section 3.4 for details). We
significantly extend the range of features included



in the discriminative model, by incorporating not
only syntactic, but also acoustic, semantic and
contextual information into the model. As the ex-
perimental results have shown, the inclusion of a
broader range of linguistic and contextual infor-
mation leads to a more accurate discrimination of
the various interpretations.

An overview of the paper is as follows. We first
describe in Section 2 the cognitive architecture in
which our system has been integrated. We then
discuss the approach in detail in Section 3. Fi-
nally, we present in Section 4 the quantitative eval-
uations on a WOZ test suite, and conclude.

2 Architecture

The approach we present in this paper is fully
implemented and integrated into a cognitive ar-
chitecture for autonomous robots. A recent ver-
sion of this system is described in (Hawes et al.,
2007). It is capable of building up visuo-spatial
models of a dynamic local scene, and continuously
plan and execute manipulation actions on objects
within that scene. The robot can discuss objects
and their material- and spatial properties for the
purpose of visual learning and manipulation tasks.

Figure 1: Architecture schema of the communica-
tion subsystem (only for comprehension).

Figure 2 illustrates the architecture schema for
the communication subsystem incorporated in the
cognitive architecture (only the comprehension
part is shown).

Starting with ASR, we process the audio signal
to establish a word lattice containing statistically
ranked hypotheses about word sequences. Subse-
quently, parsing constructs grammatical analyses
for the given word lattice. A grammatical analy-
sis constructs both a syntactic analysis of the ut-
terance, and a representation of its meaning. The
analysis is based on an incremental chart parser1

1Built using the OpenCCG API: http://openccg.sf.net

for Combinatory Categorial Grammar (Steedman
and Baldridge, 2009). These meaning represen-
tations are ontologically richly sorted, relational
structures, formulated in a (propositional) descrip-
tion logic, more precisely in the HLDS formal-
ism (Baldridge and Kruijff, 2002). The parser
compacts all meaning representations into a sin-
gle packed logical form (Carroll and Oepen, 2005;
Kruijff et al., 2007). A packed LF represents con-
tent similar across the different analyses as a single
graph, using over- and underspecification of how
different nodes can be connected to capture lexical
and syntactic forms of ambiguity.

At the level of dialogue interpretation, a packed
logical form is resolved against a SDRS-like dia-
logue model (Asher and Lascarides, 2003) to es-
tablish co-reference and dialogue moves.

Linguistic interpretations must finally be associ-
ated with extra-linguistic knowledge about the en-
vironment – dialogue comprehension hence needs
to connect with other subarchitectures like vision,
spatial reasoning or planning. We realise this
information binding between different modalities
via a specific module, called the “binder”, which is
responsible for the ontology-based mediation ac-
cross modalities (Jacobsson et al., 2008).

2.1 Context-sensitivity
The combinatorial nature of language provides
virtually unlimited ways in which we can commu-
nicate meaning. This, of course, raises the ques-
tion of how precisely an utterance should then be
understood as it is being heard. Empirical stud-
ies have investigated what information humans use
when comprehending spoken utterances. An im-
portant observation is that interpretation in con-
text plays a crucial role in the comprehension of
utterance as it unfolds (Knoeferle and Crocker,
2006). During utterance comprehension, humans
combine linguistic information with scene under-
standing and “world knowledge”.

Figure 2: Context-sensitivity in processing situ-
ated dialogue understanding



Several approaches in situated dialogue for
human-robot interaction have made similar obser-
vations (Roy, 2005; Roy and Mukherjee, 2005;
Brick and Scheutz, 2007; Kruijff et al., 2007): A
robot’s understanding can be improved by relating
utterances to the situated context. As we will see
in the next section, by incorporating contextual in-
formation into our model, our approach to robust
processing of spoken dialogue seeks to exploit this
important insight.

3 Approach

3.1 Grammar relaxation
Our approach to robust processing of spoken di-
alogue rests on the idea of grammar relaxation:
the grammatical constraints specified in the gram-
mar are “relaxed” to handle slightly ill-formed or
misrecognised utterances.

Practically, the grammar relaxation is done
via the introduction of non-standard CCG rules
(Zettlemoyer and Collins, 2007). In Combinatory
Categorial Grammar, the rules are used to assem-
ble categories to form larger pieces of syntactic
and semantic structure. The standard rules are ap-
plication (<, >), composition (B), and type rais-
ing (T) (Steedman and Baldridge, 2009).

Several types of non-standard rules have been
introduced. We describe here the two most impor-
tant ones: the discourse-level composition rules,
and the ASR correction rules. We invite the reader
to consult (Lison, 2008) for more details on the
complete set of grammar relaxation rules.

3.1.1 Discourse-level composition rules
In natural spoken dialogue, we may encounter ut-
terances containing several independent “chunks”
without any explicit separation (or only a short
pause or a slight change in intonation), such as

(1) “yes take the ball no the other one on your
left right and now put it in the box.”

Even if retrieving a fully structured parse for
this utterance is difficult to achieve, it would be
useful to have access to a list of smaller “discourse
units”. Syntactically speaking, a discourse unit
can be any type of saturated atomic categories -
from a simple discourse marker to a full sentence.

The type-changing rule Tdu allows the conver-
sion of atomic categories into discourse units:

A : @if ⇒ du : @if (Tdu)

where A represents an arbitrary saturated
atomic category (s, np, pp, etc.).

The rule TC is a type-changing rule which al-
lows us to integrate two discourse units into a sin-
gle structure:

du : @ax ⇒ du : @cz / du : @by (TC)

where the formula @cz is defined as:

@{c:d-units}(list∧
(〈FIRST〉 a ∧ x)∧
(〈NEXT〉 b ∧ y)) (2)

3.1.2 ASR error correction rules
Speech recognition is a highly error-prone task. It
is however possible to partially alleviate this prob-
lem by inserting new error-correction rules (more
precisely, new lexical entries) for the most fre-
quently misrecognised words.

If we notice e.g. that the ASR system frequently
substitutes the word “wrong” for the word “round”
during the recognition (because of their phonolog-
ical proximity), we can introduce a new lexical en-
try in the lexicon in order to correct this error:

round % adj : @attitude(wrong) (3)

A set of thirteen new lexical entries of this type
have been added to our lexicon to account for the
most frequent recognition errors.

3.2 Parse selection
Using more powerful grammar rules to relax the
grammatical analysis tends to increase the number
of parses. We hence need a mechanism to discrim-
inate among the possible parses. The task of se-
lecting the most likely interpretation among a set
of possible ones is called parse selection. Once all
the possible parses for a given utterance are com-
puted, they are subsequently filtered or selected
in order to retain only the most likely interpreta-
tion(s). This is done via a (discriminative) statisti-
cal model covering a large number of features.

Formally, the task is defined as a function F :
X → Y where the domain X is the set of possible
inputs (in our case, X is the set of possible word
lattices), and Y the set of parses. We assume:

1. A function GEN(x) which enumerates all
possible parses for an input x. In our case,
this function simply represents the set of
parses of x which are admissible according
to the CCG grammar.



2. A d-dimensional feature vector f(x, y) ∈
"d, representing specific features of the pair
(x, y). It can include various acoustic, syn-
tactic, semantic or contextual features which
can be relevant in discriminating the parses.

3. A parameter vector w ∈ "d.

The function F , mapping a word lattice to its
most likely parse, is then defined as:

F (x) = argmax
y∈GEN(x)

wT · f(x, y) (4)

where wT · f(x, y) is the inner product∑d
s=1 ws fs(x, y), and can be seen as a measure

of the “quality” of the parse. Given the parameters
w, the optimal parse of a given utterance x can be
therefore easily determined by enumerating all the
parses generated by the grammar, extracting their
features, computing the inner product wT ·f(x, y),
and selecting the parse with the highest score.

The task of parse selection is an example of
a structured classification problem, which is the
problem of predicting an output y from an input
x, where the output y has a rich internal structure.
In the specific case of parse selection, x is a word
lattice, and y a logical form.

3.3 Learning
3.3.1 Training data
In order to estimate the parameters w, we need a
set of training examples. Unfortunately, no corpus
of situated dialogue adapted to our task domain is
available to this day, let alone semantically anno-
tated. The collection of in-domain data via Wizard
of Oz experiments being a very costly and time-
consuming process, we followed the approach ad-
vocated in (Weilhammer et al., 2006) and gener-
ated a corpus from a hand-written task grammar.

To this end, we first collected a small set of
WoZ data, totalling about a thousand utterances.
This set is too small to be directly used as a cor-
pus for statistical training, but sufficient to cap-
ture the most frequent linguistic constructions in
this particular context. Based on it, we designed
a domain-specific CFG grammar covering most of
the utterances. Each rule is associated to a seman-
tic HLDS representation. Weights are automati-
cally assigned to each grammar rule by parsing our
corpus, hence leading to a small stochastic CFG
grammar augmented with semantic information.

Once the grammar is specified, it is randomly
traversed a large number of times, resulting in a
larger set (about 25.000) of utterances along with
their semantic representations. Since we are inter-
ested in handling errors arising from speech recog-
nition, we also need to “simulate” the most fre-
quent recognition errors. To this end, we synthe-
sise each string generated by the domain-specific
CFG grammar, using a text-to-speech engine2,
feed the audio stream to the speech recogniser,
and retrieve the recognition result. Via this tech-
nique, we are able to easily collect a large amount
of training data3.

3.3.2 Perceptron learning
The algorithm we use to estimate the parameters
w using the training data is a perceptron. The al-
gorithm is fully online - it visits each example in
turn and updates w if necessary. Albeit simple,
the algorithm has proven to be very efficient and
accurate for the task of parse selection (Collins
and Roark, 2004; Collins, 2004; Zettlemoyer and
Collins, 2005; Zettlemoyer and Collins, 2007).

The pseudo-code for the online learning algo-
rithm is detailed in [Algorithm 1].

It works as follows: the parameters w are first
initialised to some arbitrary values. Then, for
each pair (xi, zi) in the training set, the algorithm
searchs for the parse y′ with the highest score ac-
cording to the current model. If this parse happens
to match the best parse which generates zi (which
we shall denote y∗), we move to the next example.
Else, we perform a simple perceptron update on
the parameters:

w = w + f(xi, y
∗)− f(xi, y

′) (5)

The iteration on the training set is repeated T
times, or until convergence.

The most expensive step in this algorithm is
the calculation of y′ = argmaxy∈GEN(xi) w

T ·
f(xi, y) - this is the decoding problem.

It is possible to prove that, provided the train-
ing set (xi, zi) is separable with margin δ > 0, the

2We used MARY (http://mary.dfki.de) for the
text-to-speech engine.

3Because of its relatively artificial character, the quality
of such training data is naturally lower than what could be
obtained with a genuine corpus. But, as the experimental re-
sults will show, it remains sufficient to train the perceptron
for the parse selection task, and achieve significant improve-
ments in accuracy and robustness. In a near future, we plan
to progressively replace this generated training data by a real
spoken dialogue corpus adapted to our task domain.



algorithm is assured to converge after a finite num-
ber of iterations to a model with zero training er-
rors (Collins and Roark, 2004). See also (Collins,
2004) for convergence theorems and proofs.

Algorithm 1 Online perceptron learning

Require: - set of n training examples {(xi, zi) : i = 1...n}
- T : number of iterations over the training set
- GEN(x): function enumerating possible parses

for an input x, according to the CCG grammar.
- GEN(x, z): function enumerating possible parses

for an input x and which have semantics z,
according to the CCG grammar.

- L(y) maps a parse tree y to its logical form.
- Initial parameter vector w0

% Initialise
w← w0

% Loop T times on the training examples
for t = 1...T do

for i = 1...n do
% Compute best parse according to current model
Let y′ = argmaxy∈GEN(xi)

wT · f(xi, y)

% If the decoded parse "= expected parse, update the
parameters
if L(y′) "= zi then

% Search the best parse for utterance xi with se-
mantics zi

Let y∗ = argmaxy∈GEN(xi,zi)
wT · f(xi, y)

% Update parameter vector w
Set w = w + f(xi, y

∗)− f(xi, y
′)

end if
end for

end for
return parameter vector w

3.4 Features
As we have seen, the parse selection operates by
enumerating the possible parses and selecting the
one with the highest score according to the linear
model parametrised by w.

The accuracy of our method crucially relies on
the selection of “good” features f(x, y) for our
model - that is, features which help discriminat-
ing the parses. They must also be relatively cheap
to compute. In our model, the features are of four
types: semantic features, syntactic features, con-
textual features, and speech recognition features.

3.4.1 Semantic features
What are the substructures of a logical form which
may be relevant to discriminate the parses? We de-
fine features on the following information sources:

1. Nominals: for each possible pair
〈prop, sort〉, we include a feature fi in

Figure 3: graphical representation of the HLDS
logical form for “I want you to take the mug”.

f(x, y) counting the number of nominals
with ontological sort sort and proposition
prop in the logical form.

2. Ontological sorts: occurrences of specific
ontological sorts in the logical form.

3. Dependency relations: following (Clark and
Curran, 2003), we also model the depen-
dency structure of the logical form. Each
dependency relation is defined as a triple
〈sorta, sortb, label〉, where sorta denotes
the sort of the incoming nominal, sortb the
sort of the outgoing nominal, and label is the
relation label.

4. Sequences of dependency relations: number
of occurrences of particular sequences (ie. bi-
gram counts) of dependency relations.

The features on nominals and ontological sorts
aim at modeling (aspects of) lexical semantics -
e.g. which meanings are the most frequent for a
given word -, whereas the features on relations and
sequence of relations focus on sentential seman-
tics - which dependencies are the most frequent.
These features therefore help us handle lexical and
syntactic ambiguities.

3.4.2 Syntactic features
By “syntactic features”, we mean features associ-
ated to the derivational history of a specific parse.
The main use of these features is to penalise to a



correct extent the application of the non-standard
rules introduced into the grammar.

pick
s/particle/np

cup
up corr

particle
s/np

>

the
np/n

ball
n

np >

s >

Figure 4: CCG derivation of “pick cup the ball”.

To this end, we include in the feature vector
f(x, y) a new feature for each non-standard rule,
which counts the number of times the rule was ap-
plied in the parse.

In the derivation shown in the figure 4, the rule
corr (correction of a speech recognition error) is
applied once, so the corresponding feature value is
set to 1. The feature values for the remaining rules
are set to 0, since they are absent from the parse.

These syntactic features can be seen as a penalty
given to the parses using these non-standard rules,
thereby giving a preference to the “normal” parses
over them. This mechanism ensures that the gram-
mar relaxation is only applied “as a last resort”
when the usual grammatical analysis fails to pro-
vide a full parse. Of course, depending on the
relative frequency of occurrence of these rules in
the training corpus, some of them will be more
strongly penalised than others.

3.4.3 Contextual features
As we have already outlined in the background
section, one striking characteristic of spoken dia-
logue is the importance of context. Understanding
the visual and discourse contexts is crucial to re-
solve potential ambiguities and compute the most
likely interpretation(s) of a given utterance.

The feature vector f(x, y) therefore includes
various features related to the context:

1. Activated words: our dialogue system main-
tains in its working memory a list of contex-
tually activated words (cfr. (Lison and Krui-
jff, 2008)). This list is continuously updated
as the dialogue and the environment evolves.
For each context-dependent word, we include
one feature counting the number of times it
appears in the utterance string.

2. Expected dialogue moves: for each possible
dialogue move, we include one feature indi-
cating if the dialogue move is consistent with
the current discourse model. These features
ensure for instance that the dialogue move

following a QuestionYN is a Accept, Re-
ject or another question (e.g. for clarification
requests), but almost never an Opening.

3. Expected syntactic categories: for each
atomic syntactic category in the CCG gram-
mar, we include one feature indicating if the
category is consistent with the current dis-
course model. These features can be used to
handle sentence fragments.

3.4.4 Speech recognition features
Finally, the feature vector f(x, y) also includes
features related to the speech recognition. The
ASR module outputs a set of (partial) recognition
hypotheses, packed in a word lattice. One exam-
ple of such a structure is given in Figure 5. Each
recognition hypothesis is provided with an asso-
ciated confidence score, and we want to favour
the hypotheses with high confidence scores, which
are, according to the statistical models incorpo-
rated in the ASR, more likely to reflect what was
uttered.

To this end, we introduce three features: the
acoustic confidence score (confidence score pro-
vided by the statistical models included in the
ASR), the semantic confidence score (based on a
“concept model” also provided by the ASR), and
the ASR ranking (hypothesis rank in the word lat-
tice, from best to worst).

Figure 5: Example of word lattice

4 Experimental evaluation

We performed a quantitative evaluation of our ap-
proach, using its implementation in a fully inte-
grated system (cf. Section 2). To set up the ex-
periments for the evaluation, we have gathered a
corpus of human-robot spoken dialogue for our
task-domain, which we segmented and annotated
manually with their expected semantic interpreta-
tion. The data set contains 195 individual utter-
ances along with their complete logical forms.

4.1 Results
Three types of quantitative results are extracted
from the evaluation results: exact-match, partial-



Size of word lattice
(number of NBests)

Grammar
relaxation

Parse
selection Precision Recall F1-value

(Baseline) 1 No No 40.9 45.2 43.0
. 1 No Yes 59.0 54.3 56.6
. 1 Yes Yes 52.7 70.8 60.4
. 3 Yes Yes 55.3 82.9 66.3
. 5 Yes Yes 55.6 84.0 66.9

(Full approach) 10 Yes Yes 55.6 84.9 67.2

Table 1: Exact-match accuracy results (in percents).

Size of word lattice
(number of NBests)

Grammar
relaxation

Parse
selection Precision Recall F1-value

(Baseline) 1 No No 86.2 56.2 68.0
. 1 No Yes 87.4 56.6 68.7
. 1 Yes Yes 88.1 76.2 81.7
. 3 Yes Yes 87.6 85.2 86.4
. 5 Yes Yes 87.6 86.0 86.8

(Full approach) 10 Yes Yes 87.7 87.0 87.3

Table 2: Partial-match accuracy results (in percents).

match, and word error rate. Tables 1, 2 and 3 illus-
trate the results, broken down by use of grammar
relaxation, use of parse selection, and number of
recognition hypotheses considered.

Each line in the tables corresponds to a possible
configuration. Tables 1 and 2 give the precision,
recall and F1 value for each configuration (respec-
tively for the exact- and partial-match), and Table
3 gives the Word Error Rate [WER].

The first line corresponds to the baseline: no
grammar relaxation, no parse selection, and use of
the first NBest recognition hypothesis. The last
line corresponds to the results with the full ap-
proach: grammar relaxation, parse selection, and
use of 10 recognition hypotheses.

Size of word
lattice (NBests)

Grammar
relaxation

Parse
selection WER

1 No No 20.5
1 Yes Yes 19.4
3 Yes Yes 16.5
5 Yes Yes 15.7

10 Yes Yes 15.7

Table 3: Word error rate (in percents).

4.2 Comparison with baseline
Here are the comparative results we obtained:

• Regarding the exact-match results between
the baseline and our approach (grammar re-
laxation and parse selection with all fea-
tures activated for NBest 10), the F1-measure
climbs from 43.0 % to 67.2 %, which means
a relative difference of 56.3 %.

• For the partial-match, the F1-measure goes
from 68.0 % for the baseline to 87.3 % for
our approach – a relative increase of 28.4 %.

• We observe a significant decrease in WER:
we go from 20.5 % for the baseline to 15.7 %
with our approach. The difference is statisti-
cally significant (p-value for t-tests is 0.036),
and the relative decrease of 23.4 %.

5 Conclusions

We presented an integrated approach to the pro-
cessing of (situated) spoken dialogue, suited to
the specific needs and challenges encountered in
human-robot interaction.

In order to handle disfluent, partial, ill-formed
or misrecognized utterances, the grammar used by
the parser is “relaxed” via the introduction of a
set of non-standard combinators which allow for
the insertion/deletion of specific words, the com-
bination of discourse fragments or the correction
of speech recognition errors.

The relaxed parser yields a (potentially large)
set of parses, which are then packed and retrieved
by the parse selection module. The parse selec-
tion is based on a discriminative model exploring a
set of relevant semantic, syntactic, contextual and
acoustic features extracted for each parse. The pa-
rameters of this model are estimated against an au-
tomatically generated corpus of 〈utterance, logical
form〉 pairs. The learning algorithm is an percep-
tron, a simple albeit efficient technique for param-
eter estimation.



As forthcoming work, we shall examine the po-
tential extension of our approach in new direc-
tions, such as the exploitation of parse selection
for incremental scoring/pruning of the parse chart,
the introduction of more refined contextual fea-
tures, or the use of more sophisticated learning al-
gorithms, such as Support Vector Machines.
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