
WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 1

Self-Understanding & Self-Extension:
A Systems and Representational Approach

Jeremy L. Wyatt, Alper Aydemir, Michael Brenner, Marc Hanheide, Nick Hawes,
Patric Jensfelt, Matej Kristan, Geert-Jan M. Kruijff, Pierre Lison, Andrzej Pronobis,

Kristoffer Sjöö, Danijel Skočaj, Alen Vrečko, Hendrik Zender, Michael Zillich

Abstract—There are many different approaches to building a
system that can engage in autonomous mental development. In
this paper we present an approach based on what we term self-
understanding, by which we mean the use of explicit representa-
tion of and reasoning about what a system does and doesn’t know,
and how that understanding changes under action. We present
a coherent architecture and a set of representations used in two
robot systems that exhibit a limited degree of autonomous mental
development, what we term self-extension. The contributions
include: representations of gaps and uncertainty for specific kinds
of knowledge, and a motivational and planning system for setting
and achieving learning goals.

Index Terms—robotics, robot learning, architectures, represen-
tations

I. INTRODUCTION

WHAT is needed for an agent to learn in a truly
autonomous fashion? One way is to give that agent

knowledge of what it knows and doesn’t know, and to make
it reason with these representations to set its own epistemic
goals. An epistemic goal is a goal to be in a certain knowledge
state. In this paper we describe this representation and systems
approach to autonomous mental development. We present
an architecture, together with a set of representations that
explicitly capture what the robot and other agents do and don’t
know at any one time, i.e. representations of their epistemic
state. We also describe representations of how this epistemic
state will change under action. Such representations with
algorithms for reasoning about them we refer to as conferring
a degree of self-understanding, and allow the construction of
systems that are able to plan how to extend the knowledge
they have of the environment, i.e. knowledge self-extension.
We also describe a goal management system that allows the
robot to choose quickly between different epistemic goals. We
argue that such an approach will be necessary in the long
term as robot systems become able to generate many goals
for filling gaps in and reducing uncertainty in knowledge.

Jeremy L. Wyatt, Marc Hanheide and Nick Hawes are with the University
of Birmingham, email: {jlw,nah,m.hanheide}@cs.bham.ac.uk

Michael Brenner is with Albert-Ludwigs-Universität, email:
brenner@informatik.uni-freiburg.de

Pierre Lison, Geert-Jan M. Kruijff and Hendrik Zender are with DFKI,
Saarbrücken, Germany, email: {plison,gj,zender}@dfki.de

Patric Jensfelt, Andrzej Pronobis, Kristoffer Sjöö and Alper Aydemir are
with KTH Stockholm, email: {patric,krsj,pronobis,aydemir}@csc.kth.se

Matej Kristan, Alen Vrečko and Danijel Skočaj are with University of
Ljubljana, email: {matej.kristan,alen.vrecko,danijel.skocaj}@fri.uni-lj.si

Michael Zillich is with Vienna University of Technology, email: zil-
lich@acin.tuwien.ac.at

Manuscript received February 28, 2010

It is important to understand a little of the different types
of incompleteness in knowledge. We use incompleteness as
an umbrella term to cover many different types of knowl-
edge gaps and uncertainty about knowledge. We can think
about a typology of incompleteness in knowledge based on
three dimensions of variability. These are the nature of the
incompleteness, the type of knowledge that is incomplete, and
whether the incompleteness is represented in a quantitative or
qualitative manner.

With regard to the nature of the incompleteness, in the
simplest case we may have a variable or variables that have
a defined set of possible values or hypotheses from which the
true value is known to be drawn. We refer to this as simple
uncertainty. We can also have uncertainty about the number of
variables needed in a model, i.e. about the model complexity.
Finally we can also have cases where the agent knows that
a variable is of an unexperienced class, i.e. there is novelty.
This can include cases where the variables are continuous but
where the observation models for a class are quite confident
and do not generalise well to some new observation. The type
of knowledge that is incomplete may vary enormously. Four
simple types that cover a variety of cases include contingent
knowledge about the current world state, structural knowledge
about the universal relationships between variables, knowledge
consisting of predictions of action outcomes or events, and
knowledge about their causes. Finally there is a question about
whether the representation is qualitative or quantitative. In
qualitative representations of gaps or uncertainty we have a set
of possible values for the variable, or a statement that the vari-
able value is unknown, or knowledge that there may be many
variables that are unmodelled. In quantitative representations
we will have some kind of scalar values attached to hypotheses
(e.g. is this a cup or mug) or statements (such as whether
there is novelty or not), and in our case these will typically be
probabilities. Note that by a quantitative gap or quantitative
uncertainty we do not mean that the underlying space for the
variable is continuous or discrete, but instead that the way
the incompleteness is represented involves an expression of
preference for one hypothesis or statement versus another.

In this paper we deal with filling qualitative gaps, qualitative
uncertainty in state, quantitative uncertainty about structural
knowledge, and novel states. We provide empirical proof
that our approach works and illustrate different aspects of
it through two robot systems we have implemented. We call
these Dora, and George (Figs. 1 and 2). We provide links to



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 2

(a) The Dora plat-
form: a P3 mobile
robot base with a
custom-built super-
structure and dif-
ferent sensors.

(b) Visualisation of Dora’s map of a partially ex-
plored environment. Coloured disks denote place nodes
(colour indicates segmentation into different rooms,
area0,1,2). Small green circles represent opportu-
nities for spatial exploration (placeholders). Red nodes
indicate places where doorways are located.

Fig. 1. Dora the Explorer: a robot system for goal-driven spatial exploration.

(a) Scenario setup. (b) Observed scene.
Fig. 2. George scenario: continuous interactive learning of visual properties.

videos of these systems running in the real world1, and analyse
their behaviour on larger amounts of data using simulations.
We now describe Dora and George in more detail to give
concrete examples that will run through the paper.

Dora is able to explore an office environment, choosing
between filling different types of incompleteness in her maps
of the environment. Dora illustrates the architecture, the rep-
resentations of gaps in spatial knowledge, the use of epistemic
states in goal setting and action planning, and in the use of
our motivation system. In Dora’s case the current incomplete
knowledge she can model and fill can be seen by reference
to Fig. 1(b). Here we can see a visualisation of a map that
Dora has built after a partial tour of an office environment.
The map consists of a graph where the nodes (which we call
places) are partitioned into areas by landmarks, such as doors.
Dora has representations of two kinds of incompleteness. She
represents unexplored regions of space, by maintaining a set
of hypothesised places, which we call placeholders. These are
depicted in Fig. 1(b) as small unfilled circles with numeric
labels. This is uncertainty about how many variables are
needed to model the space. Second, Dora has the ability to
categorise areas into categories such as office, kitchen, coffee
room and corridor. In Fig. 1(b) it can be seen that none of
the areas currently have known categories. This is simple
state uncertainty, as Dora knows a certain number of types of

1Available at http://cogx.eu/

area, and cannot represent or reason about novel area types.
During the autonomous part of the mapping process Dora will
choose the order in which to reduce these different kinds of
incompleteness. To map unexplored areas by adding nodes
to the topological map she will conduct laser based mapping
while visiting the hypothesised placeholders. To categorise a
room she will search for objects that indicate its category, e.g.
kitchens typically contain objects such as milk cartons and
cups, and offices objects such as bookshelves and journals.

George is a system that converses with a human to reduce
incompleteness it has about the properties of objects on a table
top. George illustrates the way we represent uncertainty and
incompleteness in models of the structural relationships be-
tween visual information and linguistic descriptions of objects.
What visual properties, for example, make an object round or
square, vs. red or yellow? George has representations of the
uncertainty it has as to which sub-spaces of a set of visual
features are associated with particular adjectives. This is a
type of structural uncertainty. George can learn from a tutor,
but crucially he can also decide which questions to ask in order
to fill a particular gap he has identified. A typical scene during
George’s learning is depicted in Fig. 2. A typical dialogue
snippet might be:

G: Which colour is the elongated object?
H: The elongated object is yellow.
G: OK.
G: Is the square object blue?
H: No it is not blue. It is red.
G: OK.

During this dialogue the robot and the human reason about
each others beliefs, what they know and don’t know, and
how to establish common understanding. This is type of state
uncertainty, since the robot can only model the human as
having one of a known set of beliefs. In the dialogue each
agent makes references to objects that they understand will
be distinguishing to the other agent, such as referring to the
elongated object. More importantly George asks questions
which are prompted by detection of gaps such as state novelty.
He asks: “Which colour is ..?” when he realises that the
colour is one he hasn’t experienced before. When he is simply
uncertain about which of a number of colour classes is present
he asks instead whether the object has the most likely colour
class: Is the object blue?. Both George and Dora also have
mechanisms for doing non-monotonic inference or learning.
George can unlearn erroneous representations of colour and
shape, and in Dora’s case she can withdraw support for
inferences about room category, or the partition of her map.

The rest of the paper is structured as follows. In Section II
we describe the architectural model. Section III describes the
model that connects information from multiple modalities, and
how we have engineered those representations to explicitly
capture uncertainty and incompleteness in the amodal model.
In Section IV covers representations of space, cross-modal
relations, epistemic goals, and epistemic action effects, all as
used in Dora and/or George. In Section V we describe our
approach to goal management, and finally in Sections VI and
VII we describe the Dora and George systems and present an
experimental analysis their behaviour.



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 3

<<subarchitecture>>

Subarchitecture 1

+structure 1
+structure 2
+...

+insert()
+delete()
+overwrite()
+query()

Working Memory

<<component>>

Component 2

<<component>>

Component 3

<<component>>

Component 1

event
sink

event
sink

<<subarchitecture>>

Subarchitecture 2

+structure 1
+structure 2
+...

+insert()
+delete()
+overwrite()
+query()

Working Memory

<<component>>

Component 4

event
sink

external
interface

external
interface

notification 2

notification 1

memory operation 1

memory operation 2

(a) In CAS, there are components, which run in parallel, asynchronously updating shared
structures on a common working memory. They can also take input from sensors or give
output to actuators. Subarchitectures are coupled to make an overall system.

<<subarchitecture>>

Subarchitecture 1

<<component>>

Component 2

<<component>>

Component 3

<<component>>

Component 1

<<subarchitecture>>

Subarchitecture 2

<<component>>

Component 4

external
interface

external
interface

<<memory interaction>>

structure 2

<<memory interaction>>

structure 2

<<memory interaction>>

structure 1

(b) A simplified illustration of the interaction patterns mediated
through the working memories focusing on information flow
from sources to sinks.

Fig. 3. Building systems with CAS. The form on the right is used as a short hand in the later system diagram for Dora.

II. AN ARCHITECTURE FOR MULTI-MODAL PROCESSING

In this section we describe the basic architecture we employ,
which we call CAS (CoSy Architecture Schema) [1]. We refer
to it as a schema because it actually defines a space of specific
architectures, we refer to the schema when talk about this
space, and to an architecture when we mean a specific archi-
tecture employed in a particular robot system. The schema is
essentially a distributed working memory model, where repre-
sentations are linked within and across the working memories,
and are updated asynchronously and in parallel. The key idea is
that it replaces a single world model (still prevalent in robotics)
with multiple, linked world models, enabling it to work in
the face of inconsistent evidence, uncertainty and change.
The decomposition into working memories groups processes
that commonly share information, and is typically by sensory
modality. So that in Dora and George we build separate sub-
systems (called subarchitectures) for vision, communication
and spatial understanding. As we shall see in Sections III
and IV each subarchitecture contains representations which
explicitly capture uncertainty and incompleteness. The system
overall can reason about this uncertainty or incompleteness and
plan how to act so as to fill that knoweldge gap, perhaps by
employing information in another modality. We now describe
the key aspects of CAS relevant to this paper.

A. Subarchitecture Design

1) Components: Our schema starts on the level of a collec-
tion of processing components (Fig. 3(a)). Every component is
concurrently active, allowing them to process in parallel. We
do not specify any constraints on the contents of components:
they could have behave like a node in a connectionist network,
an activity in a behaviour-based system, or an entire function
in a functionally-composed system. Components can take
input either directly from sensors, or from working mem-
ory. They can also directly control actuators in the manner
of closed loop controllers, or initiate fixed action patterns.
Components can have processing triggered by the appearance
of certain information on the shared working memory, and
can modify structures on that memory. Components may
also have their own private (i.e. component-internal) memory.

Components are typically designed around two archetypes:
managed and unmanaged. Unmanaged components are low-
latency processes that run all the time, regardless of overall
system state. Managed components by contrast are typically
computationally expensive processes, which only run when
there is a demand for their services. These components are
only run when a particular configuration of information is
present on working memory.

2) Shared Working Memories: Rather than exchange in-
formation directly, processing components are connected to
a shared working memory (Fig. 3(a)). The contents of the
working memory are solely composed of the outputs of
processing components. Each working memory is connected
to all other working memories in the system. This allows
components to exchange information across subarchitectures.
In our implementation of CAS the communication method
between the working memory and the components determines
the efficiency of the model. But for now let us consider simply
that the schema itself allows reading and writing to working
memories, and transfer of information between them.

This use of shared working memories is particularly well
suited to the collaborative refinement of shared structures.
In this approach to information processing, a number of
components use the data available to them to incrementally
update an entry on working memory. In this manner the
results of processing done by one component can restrict the
processing options available to the others in an informed way.
As all components are active in parallel, the collective total
processing effort (i.e. the amount of work done by all the
components in solving a problem) may be reduced by sharing
information in this way. This feature turns out to be a very
powerful aspect of the schema.

B. System Design Practices with CAS

While a system could be composed of a single subar-
chitecture, we intend that there should typically be several
subarchitectures in operation. In the integrated systems we
describe in this paper we have about four subarchitectures. The
architecture makes no assumptions about whether system de-
composition should be predominantly according to behaviour



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 4

or information processing function. What is important is
that the decomposition groups components that commonly
exchange information via shared structures. One of the main
benefits of having distributed working memories is that the
working memory can act as a filter for its local components,
only letting them become aware of events elsewhere in the
system when necessary.

In the systems described here (Dora and George) we have
separate subarchitectures for vision, linguistic communication,
and spatial understanding. To have coherent global action,
however, the system benefits from linking these separate mod-
els. In other words there are data structures, or symbols on one
blackboard, that are related to those on another. For example
the visual system might have a symbol corresponding to a blue
cup sitting on a table, and the communication system might
have a symbol corresponding to a mention of a blue thing
by a human. To make sense of the human’s words the robot
has to decide whether these two symbols are connected, or
whether the human is referring to some other object (perhaps
another blue object in the scene). An important question is
what mechanisms can be used to link these efficiently? We
call this symbol linking problem the binding problem and
we describe it in the next section. In particular we will talk
about how we can solve the binding problem in a way that
allows us to represent uncertainty in which symbols should be
bound to which, and also gaps in the robot’s overall picture
of the world right now. Binding essentially involves creating
new symbols that refer back to each of the modality specific
symbols. We refer to the representations that are created by
binding as multi-modal representations. At the highest level of
abstraction, however, binding produces an essentially amodal
model of the robot’s world.

III. MODELLING MULTI-MODAL BELIEFS

So far we have described an architecture capable of support-
ing processing on groups of modality specific representations.
High-level cognitive capabilities must generally operate on
high level (i.e. abstract) representations that collect informa-
tion from multiple modalities. This requirement raises the
double issue of (1) how these high-level representations can
be reliably generated from low-level sensory data, and (2)
how information arising from different subsystems can be
efficiently fused into unified multi-modal structures.

We present here a new approach to multi-modal information
binding [2], [3], based on a Bayesian framework. The approach
is implemented in a specific subarchitecture in our systems
called the binder [4]. The binder is directly connected to all
subsystems in the architecture. It serves as a central hub for
the information gathered about entities currently perceived in
the environment. The data structures included in the binder
are inherently probabilistic. Each property or information bit
pertaining to an entity is given a probability value, reflecting
the confidence level of the subsystem. This enables the system
to deal with varying levels of noise and uncertainty, which are
unavoidable for most sensory-motor processes.

Based on the data structures made available in this repos-
itory, the binding algorithm seeks to ”merge” or unify the

perceptual inputs arising from the various subsystems, by
checking whether their respective features correlate with each
other. The probability of these correlations are encoded in
a Bayesian network. This Bayesian network might for in-
stance express a high compatibility between the haptic feature
“shape: cylindrical” and the visual feature “object: mug” (since
most mugs are cylindrical), but a very low compatibility
between the features “shape: cylindrical” and “object: ball”.

The resulting multi-modal information structure is called a
belief in our terminology. The task of the binder is to decide
which proxies from different modalities belong to the same
real-world entity, and should therefore be merged into a belief.
The outcome of this process is a joint probability distribution
over possible beliefs. These beliefs integrate in a compact
representation of all the information included in the perceptual
inputs. They can therefore be directly used by the deliberative
processes for planning, reasoning and learning.

A. Representations

The three central data structures manipulated by the binder
are proxies, unions and beliefs (also see Fig. 4(a)).

1) Proxies: A mid-level, uni-modal representation of a
given entity in the environment. Proxies are inserted onto the
binder by the various subsystems included in the architecture.

A proxy is essentially defined as a multivariate probabilistic
distribution over a set of features. The distributions included in
the proxy can be either discrete (as for categorical knowledge)
or continuous (as for real-valued measures).

2) Unions: A mid-level, multi-modal representation of an
entity, constructed by merging one or more proxies. Just
like proxies, unions are also represented as a multivariate
probabilistic distribution over possible features. Unions are
essentially a transitional layer between proxies and beliefs.

3) Beliefs: A high-level, amodal representation of an entity
in the environment. Beliefs are generally build on top of
unions, but they are expressed in an amodal format and encode
additional information related to the specific situation and
perspective in which the belief was formed, such as its spatio-
temporal frame, its epistemic status and its saliency value:
• The spatio-temporal frame is defined according to a

spatial model (set of possible “places” in the environ-
ment), a temporal model (points on a continuous temporal
interval), and possibly a perspective on these two models
from the viewpoint of a particular agent.

• The epistemic status of a belief (or subpart of a belief)
can be either private, attributed or shared. Private beliefs
are beliefs which are internal to the agent, while attributed
beliefs are beliefs an agent ascribes to another agent (e.g.
A believes that B believes X). Shared beliefs are beliefs
which are part of the common ground for all agents.

• Finally, the salience is a multivariate density function
<n → [0, 1], where each variable defines a particular,
real-valued saliency measure. It provides an estimate of
the “importance” or quality of standing out of a particular
entity relative to neighboring ones [5]. The salience is
used to drive the attentional behaviour of the agent by
specifying which entitites are currently in focus.



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 5

Sensory modalities Communication 
system

Proxy p2 Proxy p3 Proxy p4

Belief b2

Proxy p1

Belief b3Belief b1

Linguistic 
reference

Asserted content

Union u2 Union u3Union u1

(a) Construction of multi-modal beliefs.

Proxy p2 Proxy p3Proxy p1

Belief b2 Belief b3Belief b1

Reference r1

?

P=0.92
P=0.02

“the yellow object” 

P=0.01

(b) Reference resolution for the expression “the yellow object”.

Fig. 4. Multi-modal information binding: belief construction (left) and application in a reference resolution task (right).

Beliefs are indexed via an unique identifier, which allows us
to keep track of the whole development history of a particular
belief. Beliefs can also be connected with each other using
relational structures of arbitrary complexity.

To account for this rich representation, beliefs are for-
malised according to a belief model, which is a mathematical
structure defining a space of possible belief instances.

B. Binding algorithm

To be able to create beliefs out of proxies, the binder
must decide for each pair of proxies arising from distinct
subsystems, whether they should be bound into a single union,
or fork in two separate unions. The decision algorithm for this
task is based on a well-known technique from probabilistic
data fusion, called the Independent Likelihood Pool (ILP) [6].
Using the ILP, we are able to compute the likelihood of
every possible binding of proxies, and use this estimate as
a basis for constructing the beliefs. The multivariate proba-
bility distribution contained in the belief is a linear function
of the feature distributions included in the proxies and the
correlations between these.

A Bayesian network encodes all possible feature correla-
tions as conditional dependencies. The encoded features may
be discrete or continuous. The (normalised) product of these
correlations over the complete feature set provides an useful
estimate of the “internal consistency” of the constructed belief
– a belief with incompatible features will have a near-zero
probability, while a belief with highly correlated features will
be associated with a high probability.

C. Referencing and updating beliefs

The beliefs are high-level symbolic representations available
for the whole cognitive architecture. As such, they provide
an unified model of the environment which can be efficiently
used when interacting with the human user. An important
aspect of this is reference resolution: how to connect linguistic
expressions such as “this box” or “the ball on the floor” to the
corresponding beliefs about entities in the environment.

Reference resolution is performed using the same core
mechanisms as for binding – a Bayesian network specifies the

correlations between the linguistic constraints of the referring
expressions and the belief features (in particular, the entity
saliency and associated categorical knowledge). The resolu-
tion process yields a probability distribution over alternative
referents (see Fig. 4(b) for an example), which is then retrieved
by the communication subsystem for further interpretation.

In addition to simple reference, the interaction with a human
user can also provide new content to the beliefs, as in cross-
modal learning scenarios. Via (linguistic) communication, the
human user can thus directly extend or modify the robot’s
current beliefs, in a top-down manner, without altering the
incoming proxies. If this new information conflicts with ex-
isting perceptual knowledge, the agent can decide to trigger a
clarification request to resolve the conflict.

An utterance such as “This is yellow” illustrates these two
complementary mechanisms. First, the linguistic expression
“this” must be resolved to a particular entity in the environ-
ment. Since “this” is a (proximal) deictic, the resolution is
performed on basis of the saliency measures. In the absence of
any other constraint, the most salient entity is simply selected
and retrieved. Second, the utterance not only refers to an
existing entity in the environment, but it also provides new
information about it – namely that is is yellow. This asserted
content must therefore inserted into the robot’s beliefs. This
is realised by selecting the belief pertaining to the referred-to
entity and incorporating the new, attributed information into
its content representation.

D. Implementation

The outlined approach has been fully implemented as a
separate subsystem in the cognitive architecture. It includes
a central working memory where proxies can be inserted,
modified or deleted. The belief set is automatically updated
to reflect the incoming information. A GUI allows the user to
monitor at runtime the binder behaviour.

The Bayesian network encoding the feature correlations can
be either manually specified, or learned using various machine
learning techniques (see section VII).



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 6

IV. REPRESENTATIONS TO SUPPORT SELF-EXTENSION

This section explains how different domains of knowledge
are represented in our system. We present three types of
representations: representations of space, primarily related to
the Dora scenario; cross-modal representations used in the
George scenario; and representations of epistemic state and
action effects used by planning. Each representation focuses
on structuring and abstracting what is known, but also on
representing uncertainty and knowledge gaps explicitly.

A. Representations of space

Spatial knowledge constitutes a fundamental component of
the knowledge base of a mobile agent, such as Dora, and many
functionalities directly depend on the structure of the spatial
knowledge representation. These include spatial localisation,
navigation, wayfinding and autonomous exploration, but also
understanding and exploiting semantics associated with space,
human-like conceptualisation and categorisation of and rea-
soning about spatial units and their relations, human-robot
communication, action planning, object finding and visual
servoing, and finally storing and recalling episodic memories.

In our system, spatial knowledge is represented in multiple
layers, at different levels of abstraction, from low-level sensory
input to high level conceptual symbols. Moreover, continuous
space is discretised into a finite number of spatial units.
The abstraction and discretisation process is one of the most
important steps in representing spatial knowledge as it allows
the representation to be made compact, tractable and robust
to changes that occur in the world. Discretisation drastically
reduces the number of states that have to be considered, e.g.
during the planning process, and serves as a basis for higher
level conceptualisation.

The representation is designed for representing complex,
cross-modal, spatial knowledge that is inherently uncertain and
dynamic. Our primary assumption is that spatial knowledge
should be represented only as accurately as it is required to
provide all the necessary functionality of the system. This
keeps the complexity of the representation under control,
makes the knowledge more robust to dynamic changes and
substantially reduces the effort required to synchronise the
representation with the environment. Additionally, uncertain-
ties are associated with the represented symbols and gaps in
spatial knowledge are explicitly modelled.

Fig. 5 gives a general overview of the structure of the
representation. It is sub-divided into layers of specific repre-
sentations. We distinguish between four layers which focus
on different aspects of the world, abstraction levels of the
spatial knowledge and different spatial scales. Moreover, each
layer defines its own spatial entities and the way the agent’s
position in the world is represented. At the lowest abstraction
level we have the sensory layer which maintains an accurate
representation of the robot’s immediate environment extracted
directly from the robot’s sensory input. Higher, we have
the place and categorical layers. The place layer provides
fundamental discretisation of the continuous space explored
by the robot into a set of distinct places. The categorical
layer focuses on low-level, long-term categorical models of

Fig. 5. The layered structure of the spatial representation. The position of
each layer within the representation corresponds to the level of abstraction of
the spatial knowledge. The ABox in the conceptual layer corresponds to the
example in Fig. 1(b) on page 2.

the robot’s sensory information. Finally, at the top, we have
the conceptual layer, which associates human concepts (e.g.,
object or room category) with the categorical models in the
categorical layer and groups places into human-compatible
spatial segments such as rooms.

The following paragraphs provide additional details about
each of the layers and their instantiations within our system.
The system provides only an initial instantiation of the rep-
resentation that validates correctness and usefulness of the
knowledge structure within an integrated cognitive system. At
the same time, as it will be mentioned below, some of the
underlying algorithms do not adhere fully to the principles
behind the representation. For a detailed theoretical discussion
on those principles and optimal implementations, we refer the
reader to [7].

1) Sensory Layer: In the sensory layer, a detailed model
of the robot’s immediate environment is represented based
on direct sensory input as well as data fusion over space
around the robot. The sensory layer stores low-level features
and landmarks extracted from the sensory input together with
their exact position. Measures of uncertainty are also included
in this representation. Landmarks beyond a certain distance



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 7

are forgotten and replaced by new information. Thus, the
representation in the sensory layer is akin to a sliding window
with robocentric and up-to-date direct perceptual information.

The representation in the sensory layer helps to maintain
stable and accurate information about the robot’s relative
movements. Moreover, it allows for maintaining and tracking
the position of various features while they are nearby. Finally,
the sensory layer provides the low level robotic movement
systems with data for deriving basic control laws, e.g., for
obstacle avoidance or visual servoing.

In the current implementation, the sensory layer is main-
tained by two subsystems: a metric SLAM algorithm [8] that
builds a global metric map of the environment and an Active
Visual Search (AVS) component which represents hypotheses
about objects found in the environment using a local grid map.
The SLAM algorithm explicitly represents the uncertainty
associated with the pose of the robot and the location of all
landmarks using a multivariate Gaussian distribution encoded
using a state vector and a covariance matrix [9], [8]. At the
same time, the AVS component maintains hypotheses about
existence of an object of a specific category at a specific
location using a probabilistic grid representation [10]. The
probabilistic grid representation is formed from multiple cues
about object location one of which is the presence of obstacles
in the SLAM map. This is the prior on which basis the
AVS algorithm determines the next best viewpoint based on a
randomized art-gallery algorithm [11].

The existence of the global metric map violates some of
the assumptions behind the proposed representation; however,
it is only used internally. In future instantiations, the allo-
centric SLAM algorithm will be replaced by a robocentric
method [12], [13], [14]. Here, in order to verify the correctness
of such concept, we restrict access to the metric map from
other components of the system, exposing only local and
relative (with respect to the robot) metric information – with
the exception of the navigation system that still uses the
allocentric SLAM algorithm.

2) Place Layer: The place layer is responsible for the
fundamental, bottom-up discretisation of continuous space. In
the place layer, the world is represented as a collection of basic
spatial entities called places as well as their spatial relations.
The aim of this representation is not to represent the world as
accurately as possible, but at the level of accuracy sufficient
for performing required actions and robust localisation despite
uncertainty and dynamic variations.

Besides places, the place layer also defines paths between
them. The semantic significance of a path between two places
is the possibility of moving directly between one and the
other. In addition, the place layer explicitly represents gaps in
knowledge about explored space. Space that has not yet been
explored by the robot has no places in it. Therefore, tentative
places are generated, which the robot would probably uncover
if it moved in a certain direction. These hypothetical places
allow for reasoning about unknown space, and for planning
and executing exploratory activities. They are annotated as
placeholders to keep them apart from ordinary, actual places,
but are otherwise identically represented and interconnected.
For an illustrative example of several places and placeholders

A

B

C

D

Fig. 6. Placeholder creation. Dashed circles are hypotheses, each representing
one placeholder. A and B are frontier length estimates, C and D are coverage
estimates for the respective placeholders.

identified during spatial exploration, see Fig. 1(b) on page 2.
Two quantitative measures are associated with each place-

holder providing an estimate of information gain related to
each exploration task. These are used by the motivation
system, described later in Section V on page 11. The measures
used are the coverage estimate (CE) and the frontier length es-
timate (FLE), cf. Fig. 6. The former is obtained by measuring
the free space visible from the current node and not near to any
existing node, and assigning it to the closest hypothesis. This
heuristically estimates the number of new places that would
result from exploring that direction. The FLE is analogously
extracted from the length of the border to unknown space.
By prioritising these two measures differently, the motivation
mechanism can produce different exploratory behaviours.

3) Categorical Layer: The categorical layer contains long-
term, low-level representations of categorical models of the
robot’s sensory information. The knowledge represented in
this layer is not specific to any particular location in the envi-
ronment. Instead, it represents a general long-term knowledge
about the world at the sensory level. For instance, this is the
layer where models of landmarks or objects are defined in
terms of low-level features. The position of this layer in the
spatial representation reflects the assumption that the ability
to categorise and group sensory observations is a fundamental
one and can be performed in a feed-forward manner without
any need for higher-level feedback from cognitive processes.

The categorical models stored in this layer give rise to con-
cepts utilised by higher-level layers. In many cases complex
models are required that can only be inferred from training
data samples. In case of models that correspond to human
concepts, they can be learnt in a supervised fashion, using a
top-down supervision signal.

In our system, the categorical layer was realised through
visual categorical models of objects employed by the AVS
component and a simple door detection algorithm used as a
landmark model. The AVS component uses the object recogni-
tion method proposed in [15] and the models associated with
object classes reside in the categorical layer. However, using
only this algorithm does not provide the pose of objects nor the
uncertainty associated with it and is not robust to cases where
two objects appear similar from a certain viewpoint. Therefore,
a natural extension to this procedure which estimates the pose
and class of objects is also implemented [10]. Additionally,
in our experiments, we employed appearance and geometry-



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 8

based models of place categories [16]. Although currently not
being used in the Dora scenario, those models constitute a part
of the categorical layer.

4) Conceptual Layer: The conceptual layer provides a
symbolic ontological representation of space that makes use
of human-compatible concepts. The taxonomy of the spatial
concepts and properties of spatial entities, as well as the
instances of these concepts are linked to the lower levels
of the spatial model. This associates semantic interpretations
with the low-level models and can be used to specify which
properties are meaningful, e.g., from the point of view of
human-robot interaction. The main purpose of the conceptual
layer is to represent a segmentation of the environment into
rooms. Moreover it provides human-compatible concepts for
these rooms based on the objects they contain, and it can
supply default assumptions about which kinds of objects are
likely to be found in which kinds of rooms.

The representation underlying the conceptual map is an
OWL-DL ontology2, consisting of a taxonomy of concepts
(TBox) and the knowledge about individuals in the domain
(ABox), cf. Fig. 5 on page 6, cf. [17]. Here is an example of a
concept definition in the current implementation which defines
a kitchen as a room that contains at least two typical objects:

Kitchen ≡ Roomu ≥ 2contains.KitchenObject

Besides the usual inferences performed by the OWL-DL
reasoner, namely subsumption checking for concepts in the
TBox (i.e., establishing subclass/superclass relations between
concepts) and instance checking for ABox members (i.e., infer-
ring which concepts an individual instantiates), an additional
rule engine is used to maintain a symbolic model of space
under incomplete and changing information.

The discrete places from the place layer and their adjacency
are the main pieces of knowledge that constitute the input for
that reasoning. One, it maintains a representation that groups
places into rooms. Furthermore, using observations (visually
detected objects, appearance- and geometry-based room cat-
egories) it can infer human-compatible concepts for a room,
and raise expectations about which other kinds of objects are
prototypically likely to be present. The ongoing construction
of the conceptual map is potentially nonmonotonic. The over-
all room organisation may be revised on the basis of new
observations. The further association between room concepts
and salient, proto-typical object types is established through
the “locations” table of the OpenMind Indoor Common Sense3

database by Honda Research Institute USA Inc.
In the current implementation, the conceptual layer can be

used to determine knowledge gaps in the categorisation of
rooms. It is considered a gap in knowledge if for a given room
(i.e., an instance of PhysicalRoom) its basic level category is
unknown. This is assumed to be the case if no more specific
concept than PhysicalRoom (i.e., Office or Kitchen, cf. Fig. 5
on page 6) can be inferred for the individual. This knowledge
gap persists until the robot has gathered enough evidence (i.e.,
contained objects) for inferring a subconcept.

2http://www.w3.org/TR/owl-guide/
3http://openmind.hri-us.com/

B. Representations of epistemic state and action effects

Decisions about what actions to perform next are not pre-
programmed in our robot, but are made by the planning
subarchitecture. In this section, we describe how knowledge
and knowledge-producing actions are modelled such that the
planner can reason about how knowledge gaps can be filled.
Planning systems traditionally use representations based on
propositional logic. Most notably, the classic STRIPS formal-
ism and its modern descendent PDDL are based on such a
propositional representation. The representation we use for
the planning system on our robot, however, is based on
the SAS+ formalism [18]. Here, instead of propositions, we
use multi-valued state variables (MVSVs) v, each with an
associated domain vdom(v) describing the set of possible
values x ∈ vdom(v) that v may assume. A state is a function s
associating variables with values from their domain. In recent
years, SAS+ has been shown to enable powerful reasoning
techniques in planning algorithms and systems based on SAS+

now dominate the International Planning Competition. For the
modelling needs of our robot applications, we have developed
the SAS+-based modelling language MAPL [19].

For robotic planning, MAPL provides, in addition to
the computational advantages, several representational ones.
Firstly, it stays close to the feature/value model used by
other subarchitectures of our robot. In particular, the mapping
between binder states and planning states is greatly simplified:
Roughly, each feature f of a union u in a belief model is
mapped onto a state variable f(u). For example, if the belief
model describes that a room has been categorised as a kitchen
by attributing the feature areaclass : kitchen to a union u, this
would correspond to an assignment areaclass(u) = kitchen in
a planning state.

The main reason for using an SAS+-based representation
is that we can employ it to explicitly model knowledge and
gaps in knowledge, so that the planner can efficiently reason
about them. To this end, we must relax the assumption that
in a state s all variables v have a value x. Instead, we
accept states that are only partially defined, i.e., where some
variables are undefined or “unknown”. Conversely, we also
need to represent future states in which gaps will have been
filled. By nature, we can not know in advance which value a
variable v will assume then, but we can nevertheless exploit
the knowledge that, e.g., after executing a sensing action
the value of v will be “known”. To this end, we use so-
called Kval variables Kvalv with vdom(Kvalv) = >,⊥. With
Kval variables we can also model the epistemic effects of
sensing actions. For example, the action of running a room
categorisation algorithm in a room is modelled in MAPL as
follows:

(:sensor categorise_room
:agent (?a - agent)
:parameters (?r - room ?loc - place)
:precondition

(= (pos ?a) ?loc)
(contains ?r ?loc)

:effect (Kval ?a (areaclass ?r))
)

In words, this action model describes that an agent can
sense the area class of a room, i.e. its being a kitchen,



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 9

!"#$%&'$()*"#+,)-#"".&#""./&01$')/

!"#$%&."2)-("&01$')3

40",&!"#$&%&01$')/5

*"$14!"#$5%&46"#$11&47#&8&#"".5&&492$1&!"#$&4$#)$'1$,,&7#55

4:2$1&!"#$&4$#)$'1$,,&01$')/5&%&;5

!"#$%&'$()*"#+,)-#"".&#"".3&01$')3

!"#$%&."2)-("&01$')<

40",&!"#$&%&01$')35

4:2$1&!"#$&4$#)$'1$,,&01$')35&%&;5

!"#$%&'$()*"#+,)-#"".&#"".<&01$')<

4:2$1&!"#$&4$#)$'1$,,&01$')<5&%&;5

40",&!"#$&%&01$')35=&4'">($+>,&#"".3&01$')35

40",&!"#$&%&01$')35

40",&!"#$&%&01$')<5&=&4'">($+>,&#"".<&01$')<5

Fig. 7. A plan using sensory actions to satisfy epistemic goals.

office or hallway, once the agent is at a place that belongs
to the room in question. At planning time, the outcome of
observing areaclass(r) is yet unknown, therefore the effect
of categorise_room(r,loc) is formally described as
Kvalareaclass(r) = >.

Of course, Kval variables can appear in goal formulae as
well, so that we can conveniently express epistemic goals, i.e.
goals concerned with closing knowledge gap. Goal formulae
can contain expressions in first-order logic, in particular con-
ditionals and quantifiers, so that we can give the robot goals
like “categorise all rooms and explore all currently known
places” , which would correspond to ∀loc.Kvalareaclass(loc) =
> ∧ ∀place.explored(place).

Interestingly, due to the use of a quantified formula the goal
will be re-evaluated repeatedly during the continual planning
process, i.e. the planner will autonomously adapt its plan to
explore and categorise newly discovered places and rooms. A
(slightly simplified) example of a plan using sensing actions
that satisfy epistemic goals is given in Fig. 7.

In the George scenario and in our next instantiation of Dora,
information will not only be obtained by sensing, but also
through interaction with humans. To plan for such multiagent
interactions the robot must also reason about the knowledge of
the other agents. We can express nested beliefs using MVSVs
as well, e.g., “the robot R believes that human H believes
that object o is a pen” is modelled as BR,H

type(o) = pen.
Knowledge gaps may arise in several variants when nested
beliefs are used, depending on which agent is ignorant of
the other’s belief. Again, with MVSVs we can represent the
differences succinctly using agent-specific “unknown” sym-
bols. Consider, e.g., the difference between the statements “R
knows that H does not know the location of the cornflakes”
(KvalR,H

pos(cornflakes) = ⊥H ) and “R does not know if H

knows the location of the cornflakes” ((KvalR,H

pos(cornflakes) =

⊥H ). Just as sensing actions are modelled using standard
Kval variables, we can use nested Kval variables to describe
speech acts. In particular, we can describe wh-questions and
answers to them (“where”, “what colour”, etc.) by modelling

the appropriate nested belief effects. (Note: the planner was not
used for dialogue planning in the George system as presented
in this paper, but will be in its next instantiation).

a) Related Work: Reasoning about knowledge is classi-
cally studied in the field of epistemic logic [20]. The work
presented here integrates concepts of epistemic logic into a
planning representation so that a planning agent can reason
about how it can change its own or another agent’s state
of knowledge in the future [19]. Similar approaches have
been used previously to model planning in the presence of
sensing [21], [22]. The MAPL representation presented here
can additionally model nested and mutual beliefs, which is
crucial for describing teamwork and dialogue [23], [24].

C. Representations for cross-modal learning
Cross-modal learning plays an important role in a self-

extending system. It enables the system to, based on inter-
action with the environment and people, extend its current
knowledge by learning about the relationships between sym-
bols and features that arise from the interpretation of different
modalities. It involves processing of information from multiple
modalities, which have to be adequately represented. One
modality may exploit information from another to update its
current representations, or several modalities together may
be used to form representations of a certain concept. In this
subsection we focus on the former type of interaction between
modalities and present the representations that are used for
continuous learning of basic visual concepts in a dialogue with
a human. While Section III describes the formation of belief
models, which supervise the learning in the visual domain, this
subsection focuses on representations that are being updated
in this continuous learning process. All these principles are
integrated and demonstrated in the George scenario described
in Section VII.

1) Representations for visual concepts: The visual con-
cepts are represented as generative models, probability density
functions (pdf) over the feature space, and are constructed
in online fashion from new observations. In particular, we
apply the online Kernel Density Estimator (oKDE) [25] to
construct these models. The oKDE estimates the probability
density functions by a mixture of Gaussians, is able to adapt
using only a single data-point at a time, automatically adjusts
its complexity and does not assume specific requirements on
the target distribution. A particularly important feature of the
oKDE is that is allows adaptation from the positive as well as
negative examples [26]. The continuous learning proceeds by
extracting visual data in a form of a highdimensional features
(e.g., multiple 1D features relating to shape, texture, color and
intensity of the observed object) and oKDE is used to estimate
the pdf in this high-dimensional feature space. However, con-
cepts such as color red reside only within lower dimensional
subspace spanned only by features that relate to color (and
not texture or shape). Therefore, during online learning, this
subspace has to be identified to provide best performance. This
is achieved by determining for a set of mutually exclusive
concepts (e.g., colors green, blue, orange, etc.) the subspace
which minimizes the overlap of the corresponding distribu-
tions. The overlap between the distributions is measured using



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 10

the Hellinger distance as described in [27]. Therefore, during
online operation, a multivariate generative model is continually
maintained for each of the visual concepts and for mutually
exclusive sets of concepts the feature subspace is continually
being determined. The set of mutually exclusive concepts
can then be used to construct a Bayesian classifier in the
recognition phase, when the robot is generating a description
of a particular object in terms of its color, shape, etc. However,
since the system is operating in an online manner, the closed-
world assumption can not be assumed; at every step the system
should take into account also the probability of the ”unknown
model” as described in the following.

2) Accounting for unknown model: While maintaining
good models of the visual concepts and being able to adapt
those models is crucial for the robots online operation, the abil-
ity to detect gaps in the knowledge presented by these models
is equally important. Generally speaking the robot collects the
visual information about its environment as follows. First it
determines a region in an image which contains the interesting
information, then it ”segments” that region and extracts the
feature values z from which it later builds models of objects,
concepts, etc. The visual information may be ambiguous by
itself, and segmentation may not always be successful. We will
assume that some measure of how well the segmentation was
carried out exists and we will denote it by s ∈ [0, 1]. High
values of s (around one) mean high confidence that a good
observation z was obtained, while low values relate to low
confidence.

Let m ∈ {mk,mu} denote two possible events: (i) the
observation came from an existing internal model mk, and
(ii) the observation came from an unknown model mu. We
define the knowledge model as a probability of observation z,
given the confidence score s:

p(z|s) = p(z|mk, s)p(mk|s) + p(z|mu, s)p(mu|s). (1)

The function p(z|mk, s) is the probability of explaining z
given that z comes from one of the learnt models, p(mk|s)
is the a priori probability of any learnt model given the
observer’s score s. The function p(z|mu, s) is the probability
of z corresponding to the unknown model, and p(mu|s) is the
probability of the model ”unknown” given the score s.

Assume that the robot has learnt K separate alternative
internal models M = {Mi}i=1:K from previous observations.
The probability p(z|mk, s) can then be further decomposed in
terms of these K models,

p(z|mk, s) =
K∑

i=1

p(z|Mi,mk, s)p(Mi|mk, s). (2)

If we define the ”unknown” model by M0 and set
p(z|mu, s) = p(z|M0,mu, s)p(M0|mu, s), then (1) becomes

p(z|s) = p(mk|s)
K∑

i=1

p(z|Mi,mk, s)p(Mi|mk, s)

+p(mu|s)p(z|M0,mu, s)p(M0|mu, s). (3)

Note that the ”unknown model”, M0, accounts for a poor
classification, by which we mean that none of the learnt

U R G B U R G B U R G B U R G B U R G B U R G B

Fig. 8. Example of detecting the knowledge gaps and updating the 1D
KDE representations. Top row: probability distributions for three colours (red,
green, blue lines) and unknown model (gray line) in 1D feature space. Bottom
row: a posteriori probabilities for the unknown model (U) and three colours
(R, G, B) for three feature values denoted by the circle, the diamond and the
square. Left column: before updates, right column: after updates.

models supports the observation z strongly enough. We as-
sume that the probability of this event is uniformly distributed
over the feature space, which means that we can define the
likelihood of model M0, given observation z by a uniform
distribution, i.e., p(z|M0,mu, s) = U(z). Note also, that
the only possible unknown model comes from the class M0,
therefore p(M0|mu, s) = 1.

The observation z can be classified into the class Mi which
maximizes the a posteriori probability (AP). The a posteriori
probability of a class Mi is calculated as

p(Mi|z, s) =
p(z|Mi,m, s)p(Mi|m, s)p(m|s)

p(z|s)
, (4)

where m = mk for i ∈ [1,K] and m = mu for i = 0.
In our implementations, the distribution of each i-th alter-

native of the known model p(z|Mi,mk, s) is continuously
updated by the oKDE [25], while the a priori probability
p(Mi|mk, s) for each model is calculated from the frequency
at which each of the alternative classes Mi, i > 0, has
been observed. The a priori probability of an unknown model
(and implicitly of a known model), p(mu|s) is assumed non-
stationary in that it changes with time. The following function
decreases the ”unknown” class probability with increasing
number of observations N :

p(mu|s) = e
−0.5( N

σN
)2
, (5)

where σN is a user specified parameter that specifies how the
robot’s internal confidence about learned models changes with
time.

With above definitions, the knowledge model is completely
defined and allows discovery of knowledge gaps. They can
be discovered through inspection of the AP distribution. In
particular, we can distinguish two general cases:
• The observation z can be best explained by the unkown

model, which indicates the gap in the knowledge; the
observation should most probably be modeled with a
model, which has not yet been learned.

• The a priori probability of the model that best explains the
observation is low, which indicates that the classification



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 11

is very uncertain and that the current model can not
provide a reliable result.

3) Illustrative example: For a better visualization of the
knowledge update and gap discovery we will restrict our
example to a one-dimensional case. Fig. 8 illustrates detection
and filling of knowledge gaps for three cases (feature values)
denoted by the circle, the diamond, and the square. The plots
in the left column depict the models and the recognition at a
particular step in the learning process, while the right column
depicts the situation after the system has updated these models
considering the detected knowledge gaps and the answers from
the tutor.

Consider a scene similar to that presented in Fig. 2. Let us
assume that the circle in Fig. 8 represents the yellow object
and that the yellow colour has not been presented to the
robot before. Therefore, the corresponding model for colour
yellow has not yet been learned and the feature value obtained
from the segmented yellow object fails in a not yet modeled
area. This value is thus best explained by the ”unknown
model”, which has the highest a posteriori probability. The
robot detects this gap in his knowledge and asks the tutor
”Which colour is this object?”, and after the tutor provides the
requested information, the robot initializes a model for yellow
colour. However, since only one sample does not suffice to
build a reliable representation, the yellow colour will only be
able to be recognized after some additional yellow objects are
observed.

The feature value denoted by a diamond in Fig. 8 is
best explained by a green model, however this recognition
is not very reliable, therefore the robot asks the tutor: ”Is
this object green?” to verify its belief. After the tutor replies
”No. It is blue.”, the robot first unlearns the representation of
green and updates the representation of blue. The corrected
representations, depicted in the pdfs in the right column in
Fig. 8, then enable the correct recognition as indicated by the
second bar plot in the right column of the Fig. 8.

The last case denoted by the square shows another exam-
ple of non-reliable recognition, which triggers the additional
clarification question to the tutor: ”Is this object blue?” After
the robot gets a positive answer, it updates the representation
of blue, which increases the probability of the recognition.

V. GOAL MANAGEMENT: CHOOSING BETWEEN DIFFERENT
EPISTEMIC GOALS

In the previous sections the focus was very much on the
representation of knowledge gaps and on the understanding
of knowledge limitations. In this section we discuss a generic
framework to generate and manage epistemic goals that cor-
repsond to knowledge gaps in these representation. We propose
a goal generation and management framework (GGM) that
enables the robot to decide which gaps in its representation
to eliminate when and generate appropriate behaviour to self-
extend its knowlegde.

We have built on the work of [28], to produce the design
illustrated in Figure 9. This design is a general framework,
or schema, for an architecture for goal generation and man-
agement that tackles the mentioned issues. It specifies a

G

G

attention filter

G

G
G

G

G

G

G

active goals

managed goals

unsurfaced goals

G

}ac
tiv

at
io

n

suspension

activation & suspension 
managed by planning

uses importance & 
urgency

} variable threshold 
attention filter restricts 
access to management 

processes

uses importance & 
urgency

} goals are generated/
updated independently

annotated with 
importance & urgency

goal generators

m
et

a-
m

an
ag

em
en

t

goal expansion 
(planning, scheduling, execution)

Fig. 9. The goal generation and management framework.

collection of interacting elements which must be included in
any instantiation of the framework, although the precise details
of the instantiation will inevitably vary between instances. The
elements of the framework are described in more detail below.

At the bottom of the framework, a system’s drives are
encoded as multiple goal generators. These are concurrently
active processes which monitor the system’s state (both the
external world and internal representations) and produce goals
to satisfy the system’s drives. Generators can also remove
previously generated goals if they are judged to no longer
be appropriate. In this manner we can say that the system’s
drives are encoded in the goal generators (either explicitly or
implicitly). We work from the assumption that as a goal passes
up through the framework from a generator and influences a
system’s behaviour, it is inspected by processes of greater and
greater computational complexity. Therefore the lower strata of
the framework exist to protect these processes (and thus overall
system resources) from having to consider more goals than
is necessary (where this could be a contingent judgement).
The main mechanism in the framework for protecting the
management processes is the attention filter. This is a coarse
barrier which uses simple, fast processing to let some some
goals through to the management mechanisms whilst blocking
others. Goals which make it through this filter are described
as surfaced, thus the goals which fail to pass the filter
are referred to as unsurfaced. A collection of management
processes determine which of the surfaced goals should be
combined to serve as the goals being actively pursued by the
system. If a goal is selected in this way we describe it as
activated. If a goal is removed from the set of goals being
pursued by the system we refer to it as suspended.

In order to fulfil their roles, the filtering and management
processes require information on which to base their decisions.



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 12

<<subarchitecture>>

planner.sa

GoalFilterQueue

GoalScheduler

GoalManager

Executor Planner

<<subarchitecture>>

coma.sa

CategorizeRoomGenerator

PlaceMonitor

OwlReasoner<<subarchitecture>>

spatial.sa

ExplorePlaceGenerator ProxyMarshaller

PlaceManager

MapManager Navigation

AVS

<<subarchitecture>>

binding.sa

Binder

<<subarchitecture>>

vision.sa

Object
Recogniser

doVisualSearch

gotoPlace

<<use>>

generatePlan

<<memory interaction>>

Plan

Goal

Goal

PlanProxy

Goal

Proxy

<<memory interaction>>

ComaRoom

<<use>>

Goal

<<memory interaction>>

Place

<<memory interaction>>Proxy

Place

Belief
Belief

Fig. 10. Dora system architecture. For clarity, all memory interactions are not depicted as information flow mediated through working memories in the
subarchitectures but as directed dotted connections of sources and sinks. The dashed lines represent synchronous request-reply calls to components by mutually
modifying memory structures.

Following the original work [28], the framework requires that
goal generators annotate each goal with a description of the
goal’s importance and urgency, and keep these descriptions up
to date as long as the goal exists. Importance should reflect
the significance of the goal to the agent (as motivated by
the related drive). Urgency should reflect the necessity of
achieving the goal sooner rather than later. As we shall see
later, producing importance and urgency descriptions for use
in such a framework is a problem in itself. In addition to these
descriptions, the framework allows the management processes
to use whatever approaches are required to select and maintain
a set of active goals. Perhaps the minimum requirements on
these processes is the ability to check whether a goal, or
collection of goals, can be achieved (thus positing planning
as a goal activation, as well as achievement, mechanism).

The GGM is currently implemented as one of the core
concepts in our exploring robot Dora (cf. Sec. VI). In this
system we derive the importance of a goal from an estimated
information gain computed for the epistemic goals. In brief,
the information gain for achieving the goal of exploring a
yet unexplored place is derived from the measures shown
in Fig. 6. The information gain of categorizing a room is
similarly designed, assuming that a categorising bigger rooms
yields more information. The GGM continuously monitors
these measures of information gain and relates it to the costs
to actually achieve this goal acquired by asking the planner.
We are currently not employing a notion of urgency in our
implementation as the robot’s drives are not prioritised so far.

The GGM in cooperation with planning implements action
selection and execution in our systems, allowing the robots to
expose effective and efficient self-extending behaviour.

VI. DORA THE EXPLORER

The current implementation of Dora is focused on spatial
representations and two types of knowledge gaps that give
rise to epistemic goals to fill these gaps: explore a place and
categorise a room. Dora’s system architecture is composed
of five of the subarchitectures discussed earlier in this paper
running all on one Laptop computer on the autonomous robot,
cf. Fig. 1(a). The composition is sketched in Fig. 10. The
diagram is adopted from UML 2.0 specification and illustrates
the information flow between components, and also across
subarchitectures. Most of the flow is realised by interactions
with the working memories in an event-driven manner as
proposed by CAS in Sec. II. For clarity and readability the
interactions are not shown as connections to the respective
memories but linking sources and sinks of information directly
following the schema pictured in Fig. 3(b). The diagram does
however not include all components. We focus here on those
that are required to understand the architecture facilitating self-
understanding and -extension, disregarding those that can be
seen only as support services and sensor abstraction.

The application domain of Dora is also reflected in this
architecture when we compare it to the architecture of George:
spatial.sa is only relevant for a mobile robot and the reasoning
about spatial concepts implemented in coma.sa is likewise
specific to the scenario (cf. Sec. IV-A4). Furthermore, Dora
is studied as our first system that employs goal management
and planning to choose and pursue epistemic goals.

vision.sa only plays a minor role in this system. The
ObjectRecogniser component (based on the FERNS detector
[29]) detects objects visually when triggered by AVS. The



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 13

ProxyMarshalling is a mediator component selecting spatial
information to be presented as Proxy to the binder. The
PlaceMonitor in coma.sa fulfills a similar purpose. As can
be seen in the figure, binding.sa in Dora as in George is
working on a unified representation of beliefs and proxies
only, allowing a simple transformation of information in the
planning domain required by the Planner. As can been seen as
well, the goal management scheme of motivation in Dora is
implemented as part of planner.sa. Epistemic goals are created
from observing knowledge gaps in the specific representations
in other SA’s working memories as discussed in Sec. IV-A2
and IV-A4. These goals are filtered, scheduled, and planned
for following the principles introduced in Sec. V. The Executor
eventually executes and monitors actions by triggering either
the navigation to explore a place or the AVS component (cf.
Sec. IV-A1) which autonomously interacts with other compo-
nents to visually search for objects that allow the OwlReasoner
to derive conceptual knowledge about rooms (cf. Sec. IV-A4).

Fig. 10 on the previous page also illustrates our decom-
position strategy. The only representations that are currently
exchanged across borders of subarchitecture are information
related to binding (cf. Sec. III) and the epistemic goals
corresponding to the knowledge gaps.

A. Dora running

A prototypical run with the current Dora implementation
unfolds as follows:

1) Dora starts from scratch without any knowledge about
the specific environment she is operating in.

2) Optionally, Dora can be given a short tour by a human
instructor to create an initial representations already
containing some knowledge gaps. Fig. 1(b) on page 2
shows such a partially known environment.

3) Dora autonomously explores her environment having
drives to self-extend with respect to two types of knowl-
edge gaps: unexplored places as they have been defined
in the place layer and yet uncategorised rooms as defined
in conceptual layer of the spatial representations. In the
example in Fig. 1(b) on page 2, the rooms area0, area1,
area2 give rise to room categorisation drives, whereas
the different placeholders lead to exploration goals. Note
that a number of placeholders (notably the ones labelled
“8(7)”, “7(16)”, and “20(19)”) are in space that will later
be segmented into new rooms, which then, in turn, will
also need to be categorised.

4) A room categorization goal is considered satisfied when
a more specific concept can be inferred for a Physical-
Room instance in the ABox of the conceptual map layer,
cf. Fig. 11. An exploration goal is satisfied if the robot
either turns the placeholder into a real place or discards
it, because it turned out as a false hypothesis.

The two types of gaps are created and monitored by
the components PlaceManager@spatial.sa and PlaceMoni-
tor@coma.sa, respectively. Fig. 10 illustrates how these com-
ponents submit hypotheses about ComaRoom (a detected but
not yet categorised room) and Place (a detected but not yet
explored place) to their working memories. From these gaps

(a) Dora has found 2 bookshelves.

Bookshelf(object1)
Bookshelf(object2)
in(object1,area1)
in(object2,area1)

→ Office(area1)
(b) New facts stored in the ABox.

Fig. 11. Continuing the example in Fig. 1(b) on page 2: based on the presence
of 2 OfficeObject instances the DL reasoner infers that area1 instantiates Office.

Fig. 12. Exemplary course of action for filling knowledge gaps in a real run.

epistemic goals are generated by the goal generators Explore-
PlaceGenerator and CategoriseRoomGenerator, respectively.
Thus, a number of goals is always present in the system
corresponding to these gaps. Dora’s behaviour is driven by
the selection of a subset of these goals by goal generation and
management (GGM, cf. Sec. V) and the execution of actions
according to generated plans to achieve these goals.

Fig. 12 visualises an exemplary run of Dora illustrating
the course of action she takes with respect to self-extending
for the two types of knowledge gaps. The x-axis shows the
time in seconds since the beginning of the run. The figure
thus indicates the time when a new gaps are detected (upper
line) and the time, when a particular epistemic goal has been
accomplished to fill a gap in the knowledge. This particular
run comprised an initial tour taking Dora from the corridor
(the long room in the centre of Fig. 1(b) on page 2) to the
room in the upper-right corner in that figure. It can be seen in
Fig. 12 that she is passively detecting gaps in her knowledge in
the phase labelled “Tour”, but not yet autonomously extending
it. Only after the tour Dora interleaves categorisation of rooms
to fill gaps with the exploration of new places. A video4 of
the real robot operating in an office environment can support
comprehension of this illustration and provide the reader with
a better understanding of Dora’s generated behaviour.

Taking a closer look on the actual processes in the system,
we can see how the interaction between component works.
Fig. 13 on the following page pictures the activity that the
robot goes through from the detection of a knowledge gap
to its filling. The example illustrated in the figure is corre-
sponding to “explore place” only, but the structure is similar
for “categorise room”. It starts with spatial.sa hypothesising a
new place and thus generating a Place in the working memory
that is marked as being hypothetical. This generation triggers
binding and ExplorePlaceGenerator to create a Belief about
this place and an epistemic Goal to explore this place. After

4http://cogx.eu/results/dora/



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 14

schedule 
goals

the predicted 
gains and 
costs of all 
goals are 
used to rank 
the goals

mark place 
explored

execute 
navigation 

action

detects 
unexplored 

place

This place is initially 
unexplored

create epistemic 
goal

remove 
corresponding 

goal

predict 
gain/costs

The goal is 
initially 
unsurfaced

create proxy

create 
belief

update 
proxy

update 
belief

apply filter 
rules

update 
planning 

state
generate 

plan

update 
planning 

state

dora knows that an 
action to move to an 
unexplored place will 
most likely achieve the 
epistemic goal to 
explore a place

execute 
actions of 

plan

select 
goals

currently dora 
chooses the 
best rated 
goal as its 
active goal

surfaced goal : Goal

unsurfaced goal : Goal

activated goal : Goal

place : Place

 : Belief

 : Plan

by approaching an unexplored 
place it will be explored

passes filter

Fig. 13. Activity diagram illustrating the “path” of a knowledge gap from
its generation to its filling.

the motivation-related components have filtered and scheduled
the generated goal, the planner is triggered to generate a
plan to actually achieve it. The Executor then executes the
actions of the plan. One action will be to navigate towards the
placeholder which will – in this example – make it explored.
This update is again propagated through the working memory,
resulting in the goal to be removed and the belief being
updated asynchronously.

In this paper we present two experiments, each studying
slightly different aspects of the Dora scenario. The first exper-
iment focuses on the spatial representation with an emphasis
on the nonmonotonic reasoning about space in the conceptual
layer. The second one focuses on the goal management and
the benefits of having such a management framework in the
system. For sake of reproducibility and focus on specific
aspects these experiments are carried out in simulation. Our
simulation framework transparently substitutes the sensors and
actuators, still allowing to run the core system unmodified
and in a situated way with sensing-actuation loops closed.
The simulator operates using the floor plan of one of the real
environments in which Dora operates (cf. Fig. 14).

Fig. 14. Stage simulation model used in the experiments (l) and screenshots
of the visualisation tool acquired during one of the three experiments (r).

B. Experiment 1: Spatial Representation

One consequence of the uncertainty and partiality of the ob-
servations Dora is dealing with is that the map building process
is nonmonotonic. Structural and conceptual abstractions may
need to be reconsidered in the light of new evidence acquired
during the active exploration. In this experiment we assess the
accuracy and appropriateness of our nonmonotonically built
spatial representation as the robot keeps exploring.

Setup: The map consisted of eight rooms: a corridor, a
terminal room, a lab, two offices, two restrooms, and a printer
room, cf. Fig. 14. This constitutes the ground truth for our
tests of the accuracy of the room maintenance. The robot
was ordered to perform an autonomous exploration, which
means that only placeholder exploration goals were considered
by the motivation system. To evaluate the coverage that this
exploration yields, we determined a gold standard of 60
Place nodes to be generated in order to fully, densely and
optimally cover the simulated environment. We achieved this
by manually steering the robot to yield an optimal coverage,
staying close to walls and move in narrow, parallel lanes.
We performed three runs with the robot in different starting
positions, each time with an empty map. Each run was cut-off
after 30 minutes. The robot was then manually controlled to
take the shortest route back to its starting position.

For the evaluation, the system logged the state of its
ABox each time a new room was created, or an existing
one was deleted. This subsumes cases in which rooms are
split or merged. At each such step, the generated map was
compared to the ground truth for the room representation
and to the gold standard for Place node coverage. The first
room instance to cover part of a ground-truth room is counted
as true positive (TP). If that room instance extends into a
second room, it is counted as TP only once, and once as
a false positive (FP). Each additional room instance inside
a ground-truth room is also counted as FP. False negatives
(FN) are ground-truth rooms for which no room instance
exists. Using these measures, precision P , recall R and the
balanced f-score F for the room maintenance are as follows:
P = | TP |/(| TP |+| FP |), R = | TP |/(| TP |+| FN |),
R = 2× ((P ×R)/(P +R)). We compute a normalised value
for coverage using coverage = | nodes |/60.

Results: Fig. 15 on the next page shows the development of
the relevant measures during the three experimental runs. As
can be seen, the accuracy (balanced f-score) of the representa-
tion is monotonically increasing towards a high end result (0.8,
0.79 and 0.93, resp.). The increases and decreases in precision
during the individual runs are due to the introduction and



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 15

�

����

����

����

����

� �������
�

����

����

����

����

� �������
�

����

����

����

����

� �������

Fig. 15. Plots for precision, recall, balanced f-score and coverage of each of the three experimental runs. The Y-axis shows the normalised values for
precision, recall, balanced f-score, and coverage (0–1). The X-axis is time, in milliseconds.

retraction of false room instances. Recall can be interpreted
as coverage in terms of room instances. After 30 minutes the
exploration algorithm yielded a relatively high recall value
(0.75, 0.75 and 0.875, resp.), i.e., most of the rooms had
been visited. A recurring problem here was that the two
smallest rooms were often only entered by a few decimetres.
This was enough to consider the corresponding Placeholder
to be explored, but not enough to create an additional Place
node beyond the doorway – which would have been the
prerequisite for room instance creation. The node coverage
that the algorithm achieved after 30 minutes (33, 34, 32 out
of 60, respectively) can be attributed partly to the 30-minutes
cut-off of the experiment, and partly to the exploration strategy
which goes for high information gain Placeholder first. These
tend to be in the middle of a room rather than close to its
walls.

C. Experiment 2: Goal Management

As discussed in Sec. IV-B0a and V, we have two alternatives
to express Dora’s drives. First, we can explicitly use quantifiers
to create on conjunctive goal for the overall system to explore
all places and categorise all rooms and rely on the replanning
ability of the continual planning (cf. Sec. IV-B0a). We term
this system setup Conjunct Goal Set (CGS). The proposed
alternative is to make use of the goal generation and manage-
ment approach and let it select and schedule the individual
goals. Our hypothesis is that (i) the effort for planning is
reduced as we chunk the problem into smaller pieces, making
it tractable if it comes to more complex problems, and (ii)
goal management is a powerful and simple means to encode
domain knowledge into the behaviour generation in Dora. We
refer to this second setup as Managed Goal Set (MGS).

Setup: For this study we restricted the space to be explored
five rooms and the corridor (being the right part of Fig. 1(b) on
page 2 without the large room). The ultimate goal in this setup
for the robot is to categorise all rooms using the two typical
objects placed in each of the five rooms. The objects describe
one of three categories according to the OpenMind Indoor
Common Sense Database (room, office, and kitchen), allowing
the conceptual mapping SA to categorise these rooms.

A single run starts with a short tour through the corridor.
Then Dora is switched to autonomous mode and starts acting
in response to her goals. Fig. 12 on page 13 is generated from
one of these runs including the tour and the categorisation of
five rooms. In total we ran the system 15 times: 8 in MGS con-
figuration and 7 in CGS. A run for the CGS configuration was
defined as complete when the conjunctive goal was achieved

TABLE I
PLANNING TIME MEASURES (ALL IN SECONDS).

CGS MGS
avg. time per planning call 0.621 s 0.292 s

avg. time spent on planning 48.843 s 8.858 s

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

runtime in seconds

(r
e−

)p
la

nn
in

g 
tim

e 
in

 m
ill

is
ec

on
ds

 

 

MGS

CGS

Fig. 16. Averaged planning time during a system run.

(i.e., no places left unexplored and no rooms uncategorised).
The MGS configuration was said to be complete when no more
surfaced goals remained.

Results: As part of our experiments that are fully detailed
in [30] we were interested in the effect the GGM approach has
on the complexity of problems to be solved by planning. So me
measured the time Dora spend planning in the runs for the two
different setups. These measures are summarised in Table I.
The differences between the averaged timings taken for the
two configurations are statistically significant with p < 0.0001
in Mann-Whitney testing for all measures shown in the table.

As the first row of the table indicates, there is a significant
difference between the average time taken by a single call to
the planner. A call occurs either when the goal management
activates a new goal or when replanning is triggered by a state
change. Planning calls in CGS take more than twice the time
compared to MGS. This is due to the higher complexity of
the planning problems in the CGS configuration (it is planning
for the conjunction of all epistemic goals rather than a single
goal). If we look at the average time spent on planning in
total per run (second row in Table I) the difference is more
prominent. This is due to the fact that in the CGS configuration
the planner is triggered more often: 79.0 times on average,
compared to 31.1 times for the MGS configuration. This is
because the longer plan lengths required in CGS are more
likely to be affected by state changes and thus require more
frequent replanning.

Figure 16 shows how the complexity of planning problems
evolves as the system is running. It depicts the length of
single planner calls against the runtime of the system. For
comparability, this plot has been created from a partial set



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 16

of all runs (five of each configuration) containing only those
in which Dora successfully categorised all five rooms. The
planning time is averaged at discrete time steps across all the
runs of each setup. The error bars indicate the standard error
in averaging. From this figure it is apparent that, in agreement
with the data in Table I, less planning effort is required in MGS
compared to CGS. It can also be seen that the progression over
runtime is different in the two cases. While the trend, indicated
by a linear fitting shown as a dotted line in Fig. 16, is a
shallowly included line for MGS, a steeper increase in average
planning time can be seen for CGS. This steeper increase can
be associated with the increasing size of the planning problems
the CGS configuration faces as Dora’s knowledge increases:
planning for all possible goals over a larger and larger state
becomes increasingly difficult. This underpins our hypothesis
that with a suitable mechanism for goal selection we can
tackled the challenge of increasingly complex environments
and correspondingly high numbers of knowledge gaps in our
representations.

VII. GEORGE: CURIOSITY DRIVEN CROSS MODAL
LEARNING

The George scenario has been designed to demonstrate,
monitor, and show progress on the development of the in-
tegrated system for learning the association between visual
features of an object and its linguistically expressed properties.
The main goal is, therefore, to integrate the developed vision
routines, learning and recognition competencies, dialogue ca-
pabilities, as well as different kinds of representations and
belief models in an overall system.

A. Scenario setup and example script

The robot operates in a table-top scenario, which involves
a robot and a human tutor (see Fig. 2(a)). The robot is
asked to recognize and describe the objects in the scene (in
terms of their properties like colour and shape). There are
a single or several objects (i.e., up to five) in the scene
(but still, with limited occlusion). The human positions new
objects on the table and removes the objects from the table
while being involved in a dialogue with the robot. At the
beginning the robot does not have any representation of object
properties, therefore he fails to recognize the objects and has
to learn. To begin with, the tutor guides the learning and
teaches the robot about the objects. After a while, the robot
takes the initiative and tries to detect the ignorance and to
learn autonomously, or asks the tutor for assistance when
necessary. The tutor can supervise the learning and correct the
robot when necessary; the robot is able to correct erroneously
learned representations. The robot establishes the transparency
and verbalizes its knowledge and knowledge gaps, as well
as intended actions. In a dialogue with the tutor, the robot
keeps extending and improving the knowledge. The tutor can
also ask questions about the scene, and the robot is able to
answer (and keeps answering better and better). At the end,
the representations are rich enough to accomplish the task -
to correctly describe the initial scene.

Video/Stereo 

server

Image     

3D points

Bottom-up 

attention

SOI

SOI 

analyser

Proto 

object

Object 

analyser

Visual 

object

Visual 

mediator

Visual learner/

recognizer
Segmentor

Proxy

Union

Clarification 

request

Communication SA Binder SA

Visual SA

Dialogue 

processing

Binding

Belief 

constuction

Belief

Fig. 17. Architecture of the George system.

Two main types of learning are present in the George
scenario, which differ on where the motivation for learning
update comes from. In tutor driven learning the learning
process is initiated by the human teacher, while in the tutor
assisted learning, the learning step is triggered by the robot.

Tutor driven learning is suitable during the initial stages,
when the robot has to be given information, which is used to
reliably initiate (and extend) visual concepts. Consider a scene
with a single object present:

H: Do you know what this is?
G: No.
H: This is a red object.
G: Let me see. OK.

Since at the beginning George doesn’t have any representation
of visual concepts, he can’t answer the question. After he
gets the information, he can first initiate and later sequentially
update the corresponding information.

After a number of such learning steps, the acquired models
become more reliable and can be used to reference the objects.
Therefore, there can be several objects in the scene, as in
Fig. 2, and George can talk about them:

H: What colour is the elongated object?
G: It is yellow.

When the models are reliable enough, George can take
initiative and try to learn without being told to. In this curiosity
driven learning George can pose the question to the tutor, when
he is able to detect the object in the scene, but he is not certain
about his recognition. As described in Section IV-C in such
tutor assisted learning there are two general cases of detecting
uncertainty and knowledge gaps. If the robot can not associate
the detected object with any of the previously learned models,
it considers this as a gap in his knowledge and asks the tutor
to provide information:

R: Which colour is this object?
H: It is yellow.
R. OK.

The robot is now able to initialize the model for yellow and,



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 17

after the robot observes a few additional yellow objects, which
make the model of yellow reliable enough, he will be able to
recognize the yellow colour.

In the second case, the robot is able to associate the object
with a particular model, however the recognition is not very
reliable. Therefore, the robot asks the tutor for clarification:

R: Is this red?
H: No. This is yellow.
R. OK.

After the robot receives the answer from the tutor, he corrects
(unlearns) the representation of the concept of red and updates
the representation of yellow and makes these two representa-
tions more reliable.

In such mixed initiative dialogue George continuously im-
proves the representations and learns the reliable models of
basic visual concepts. After a while George can successfully
recognize the acquired concepts and provide reliable answers:

H: Do you know what this is?
G: It is a blue object.
H: What shape is the red object?
G: It is elongated.

B. System architecture and processing pipeline

The George system is composed of three subarchitectures:
Binder SA, Communications SA and Visual SA, as depicted
in Fig. 17. The components of visual subsystem (SA) can
be divided in three distinct layers: the quantitative layer, the
qualitative layer and the mediative layer.

The quantitative layer processes the visual scene as a whole
and implements one or more bottom-up visual attention mech-
anisms. A bottom-up attention mechanism tries to identify
regions in the scene that might be interesting for further
visual processing. George has currently one such mechanism,
which uses the stereo 3D point cloud provided by stereo
reconstruction component to extract the dominant planes and
the things sticking out from those planes. Those sticking-
out parts form spherical 3D spaces of interest (SOIs). The
SOI Analizer component validates the SOIs and, if deemed
interesting (SOI persistence, stability, size, etc.), upgrades
them to proto-objects adding information that is needed for
the qualitative processing (e. g. segmentation mask).

The qualitative layer processes each interesting scene part
(object) individually, focusing on qualitative properties. Af-
ter the extraction of the visual attributes (Visual Learner-
recognizer), like color and shape, the Object Analyzer up-
grades the proto-objects to visual objects. Visual objects
encapsulate all the information available within Visual SA and
are the final modal representations of the perceived entities in
the scene. Also, the learning of visual attributes is performed
on this layer.

The main purpose of the mediative layer is to exchange
information about the perceived entities with other modal-
ities. This is usually not done directly, but via specialised
a-modal subarchitectures like the Binder SA (Section III).
The Visual Mediator component adapts and forwards the
modal information about objects to the binder (each visual
object is represented by a dedicated proxy in the binder).

1.
An elongated
yellow box is
added to the
scene.

2.
Tutor: "The
elongated
object is
yellow."

3.
The asserted
information
is learned
and verified.

BinderBeliefs

shared:

elongated

yellow

visual
learning

4.
The visual
information
is updated.

robot:

yellow
elongated

yellow
elongated

yellow
elongated

elongated
elongated

unknown
color

robot:

elongated

elongated
elongated

unknown
color

robot:

elongated

elongated

robot[tutor]:

elongated

yellow

elongated
elongated

unknown
color

robot:

elongated

shared:

elongated

yellow

elongated

elongated

elongated

yellow
elongated

Visual
Mediator

Fig. 18. Example of processing pipeline. The green color represents
restrictive information, while the violet color denotes asssertive information.
Only the beliefs and other data structures pertaining to the yellow tea box are
shown.

The component also monitors beliefs for possible learning
opportunities, which result in modal learning actions. Another
important functionality of the mediator is to formulate and
forward clarification motivations in the case of missing or am-
biguous modal information. Currently, these motivations are
directly intercepted by Communication SA, which synthesizes
a question about the certain object property.

Now, let us describe the processing pipeline on one illustra-
tive example. We will describe in more detail what happens
after the human places several objects in the scene (see Fig. 2)
and refers to the only elongated object in the scene (the yellow
tea box) by asserting ”H: The elongated object is yellow.”.

In Visual SA the tea box is represented by a SOI on the
quantitative layer, a proto-object on the qualitative layer and
a visual object on the mediative layer. Let us assume that
the Visual Learner-recognizer has recognized the object as of
elongated shape, but has completely failed to recognize the
color. In the binder this results in a one-proxy union with the
binding features giving the highest probability to the elongated
shape, while the color is considered unknown. This union is
referenced by the single robot’s private belief in the belief
model (Fig. 18, step 1).

The tutor’s utterance ’The elongated object is yellow.’ is
processed by the Communication SA, resulting in a new
belief attributed to the tutor. This belief restricts the shape to
elongated and asserts the color to be yellow. Before the belief
is actually added to the belief model, the binder translates it



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 18

to a binding proxy (phantom proxy) with the shape restriction
as a binding feature. In the most probable configuration, the
phantom proxy is bound to the existing union, which already
includes the visual proxy representing the tea box (Fig. 18,
step 2). The union is promptly referenced by the attributed
belief and the phantom proxy is deleted soon after.

In Visual SA, the mediator intercepts the event of adding
the attributed belief. The color assertion and the absence of
the color restriction in the robot’s belief is deemed as a
learning opportunity (the mediator knows that both beliefs
reference the same binding union, hence the same object). The
mediator translates the asserted color information to equivalent
modal color label and compiles a learning task. The learner-
recognizer uses the label and the lower level visual features of
the tea box to update its yellow color model. After the learning
task is complete, the mediator verifies the attributed belief,
which changes its epistemic status to shared (Fig. 18, step 3).
The learning action re-triggers the recognition. If the updated
yellow color model is good enough, the color information in
the binder and belief model is updated (Fig. 18, step 4).

A similar process also takes place in tutor assisted learning,
when the robot initiates, based on an unreliable recognition,
the learning process, e.g., by asking ”R: Is this red?”. In
this case, the need for assistance reflects in a robot’s private
belief that contains the assertion about the red color and
references the union representing the object. Based on this
belief the Communication SA synthesizes the above question.
When the robot receives the positive answer, he updates the
representation of red, using a very similar mechanism as in
the case of tutor driven learning.

C. Experimental results

The system was primarily developed to work in an interac-
tion with a user. However, to comprehensively analyse the
proposed learning strategies, such interactive work is time
consuming and impractical. Therefore, we instead performed
quantitative evaluation in simulation. The simulation envi-
ronment uses stored images, which were previously captured
and automatically segmented. We used a number of everyday
objects, similar to those presented in Fig. 2. Each image,
containing a detected and segmented object, was then man-
ually labeled. In the learning process the tutor is replaced
by an omniscient oracle, which has the ground truth data
available. In this way the extensive tests could be automatically
performed and a reliable evaluation of the proposed methods
were obtained.

Six visual attributes were considered; four colours (red,
green, blue, yellow) and two shapes (elongated, compact). The
database that we used for learning contains 500 images. 400
images were used to incrementally learn the representations
of six visual properties, while the rest 100 of them were used
as test images. We repeated the experiment for 100 runs by
randomly splitting the set of images into the training and test
set and averaged the results across all runs.

During the experiment, we kept incrementally updating
the representations with the training images using the Tutor
driven (denoted as TD) and the Tutor assisted (denoted as

1 25 50 85 145 245 40
0

100

200

300

400

500

600

Number of images

erocs noitingoce
R

0

0.5

1

1.5

2

2.5

3

3.5

4

tsoc gnirotuT

TD
TA

Fig. 19. Experimental results. TD: Tutor driven learning, TA: Tutor assisted
learning, solid line: Recognition score, dashed line: Tutoring cost.

TA) learning strategies. Note that in both cases the first 15
images were added in a tutor driven mode to form the initial
models. At each step, we evaluated the current knowledge
by recognising the visual properties of all test images. The
learning performance was evaluated using two performance
measures: recognition score, which rewards successful recog-
nition (true positives and true negatives) and penalises incor-
rectly recognised visual properties (false positives and false
negatives), and tutoring costs, which measure the level of the
tutor’s involvement, as defined in [31].

Fig. 19 shows the evolution of the learning performance
over time for both learning strategies. The first thing to note
is that the overall results improve through time. The growth of
the recognition score is very rapid at the beginning when new
models of newly introduced concepts are being added, and
still remains positive even after all models are formed due to
refinement of the corresponding representations.

Tutor-driven approach performs better, since the correct
information is always given by the tutor. The inherent problem
of any continuous learning framework, which involves au-
tonomous updating of the knowledge, is propagation of errors.
This is also reflected in the lower performance of the Tutor
assisted approach. However, we also have to take into account
the tutoring costs that occur during the learning. In Tutor-
driven learning mode they are almost constant; the tutor always
gives all the information about the current object, which is
available. The costs of Tutor-assisted learning are significantly
lower. The robot keeps asking the tutor only at the beginning
of the learning process; after its knowledge gets improved the
number of questions drops and most of the costs relate to
the fact that the tutor has to listen to the robot and await for
its questions. There is, as expected, a trade off between the
quality of the results and cognitive load the tutor has to invest
in the learning process. The best option would therefore be to
first invoke the tutor driven approach and later on, when the
models are reliable enough, switch to the tutor assisted mode.

VIII. CONCLUSION

In this paper we have presented a way of thinking about
autonomous learning that is focussed on architectures and
representations. The representational component of our theory
is two-fold: on the one hand we employ representations of
uncertainty and gaps in different modalities; on the other
we represent how that lack of knowledge may change under
action. The architectural theory is coupled: representations are



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 19

shared within working memories and linked across them, again
in a way that explicitly represents the different ways they
might be linked. In other words our systems reason explic-
itly about the multiple and uncertain ways that information
from different modalities might be related. We also represent
novelty in the structural rules that represent the universal
relationships across modalities. Finally the architectural part
of the theory also describes a way that possible learning goals
can be quickly ranked, so that as systems are scaled that only
a feasibly small subset are actually planned for.

We have shown that this approach works, by implementing
two robot systems. Each illustrates different aspects of our
approach. Dora illustrates the architecture, representations
of gaps and uncertainty in spatial representations, the goal
management system, and the use of planning with epistemic
goals. George illustrates how we explicitly represent uncer-
tainty in multi-modal representations of a specific situation,
and uncertainty and novelty in the long term model of how
different modalities are related.

What are the open research issues? First of all our approach
to novelty is limited. The work on KDE models provides a
particular approach to this, in a particular domain, but it is far
from complete. There is also a question about how constrained
the tacit design knowledge makes the self-extension. At the
moment Dora, and to a lesser extent George extend their
models within knowledge spaces that are quite well defined.
The Dora design tacitly assumes that placeholders will become
places, and George has the visual features necessary to learn
the correct associations with words describing colour and
shape. In addition the typology we have described for different
types of incompleteness is only a beginning. Most challeng-
ingly, however, we have not yet dealt with the representation
of different kinds of outcome or causal incompleteness. It
is in general very difficult to model and reason about these
in worlds with noisy observations and noisy actions. This is
because an unexpected outcome could be due to observation
noise, action noise, or true novelty. Variations on latent vari-
able models such as factored POMDPs provide a probabilistic
approach, but these are notoriously difficult to learn and reason
with. To identify hidden causes in models of actions is also
difficult. Suppose an action of a robot fails, such as a grasping
action? This could be because of picking a poor grasp position,
failing to grip strongly enough, or estimating wrongly where
the obejct was. These possible causes can be distinguished if
the robot has the a priori notion that they are possible causes
of grasp failure, but in general we want the robot to be able
to discover for itself that they are possible causes. This degree
of open-endedness will take many years to tackle.

In summary if an approach to self-extension based on self-
understanding is to be promising as a long term approach, then
we need to find ways of representing and reasoning about
much more difficult knowledge gaps. We believe we have
developed the first part of such an approach, and that these
are indeed challenging, but achieveable goals.

ACKNOWLEDGMENT

The authors gratefully acknowledge support of the EC FP7
IST project CogX-215181.

REFERENCES

[1] N. Hawes and J. Wyatt, “Engineering intelligent information-processing
systems with cast,” Advanced Engineering Informatics, vol. 24, pp. 27–
39, 2010.

[2] D. Roy, “Semiotic schemas: A framework for grounding language in
action and perception,” Artificial Intelligence, vol. 167, no. 1-2, pp. 170–
205, 2005.

[3] R. Engel and N. Pfleger, “Modality fusion,” in SmartKom: Foundations
of Multimodal Dialogue Systems, W. Wahlster, Ed. Berlin: Springer,
2006, pp. 223–235.

[4] H. Jacobsson, N. Hawes, G.-J. Kruijff, and J. Wyatt, “Crossmodal
content binding in information-processing architectures,” in Proc. of the
3rd International Conference on Human-Robot Interaction (HRI), 2008.

[5] J. Kelleher, “Integrating visual and linguistic salience for reference
resolution,” in Proceedings of the 16th Irish conference on Artificial
Intelligence and Cognitive Science (AICS-05), N. Creaney, Ed., 2005.

[6] E. Punskaya, “Bayesian approaches to multi-sensor data fusion,” Mas-
ter’s thesis, Cambridge University Engineering Department, 1999.

[7] A. Pronobis, K. Sjöö, A. Aydemir, A. N. Bishop, and P. Jensfelt,
“Representing spatial knowledge in mobile cognitive systems,” Kungliga
Tekniska Högskolan, CVAP/CAS, Tech. Rep. TRITA-CSC-CV 2010:1
CVAP 316, March 2010.

[8] J. Folkesson, P. Jensfelt, and H. Christensen, “The m-space feature
representation for slam,” IEEE Transactions on Robotics, vol. 23, no. 5,
pp. 1024–1035, Oct. 2007.

[9] R. Smith, M. Self, and P. Cheeseman, “A stochastic map for uncertain
spatial relationships,” in 4th International Symposium on Robotics
Research, 1987.

[10] A. Aydemir, A. Bishop, and P. Jensfelt, “Simultaneous object class
and pose estimation for mobile robotic applications with minimalistic
recognition,” in Proc. of the International Conference on Robotics and
Automation (ICRA’09), 2010.

[11] González-Banos and Laser, “A randomized art-gallery algorithm for
sensor placement,” in Proceedings of the seventeenth annual symposium
on Computational geometry, 2001.

[12] J. Castellanos, R. Martinez-Cantin, J. Tardos, and J. Neira, “Robocentric
map joining: Improving the consistency of EKF-SLAM,” Robotics and
Autonomous Systems, vol. 55, no. 1, January 2007.

[13] A. N. Bishop and P. Jensfelt, “A stochastically stable solution to the
problem of robocentric mapping,” in Proc. of ICRA’09.

[14] ——, “Stochastically convergent localization of objects and actively
controllable sensor-object pose,” in Proc. of the 10th European Control
Conference (ECC’09).

[15] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast keypoint
recognition using random ferns,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. accepted, 2009.

[16] A. Pronobis, O. M. Mozos, B. Caputo, and P. Jensfelt, “Multi-modal
semantic place classification,” The International Journal of Robotics
Research (IJRR), vol. 29, no. 2-3, pp. 298–320, February 2010.

[17] H. Zender, O. M. Mozos, P. Jensfelt, G.-J. M. Kruijff, and W. Burgard,
“Conceptual spatial representations for indoor mobile robots,” Robotics
and Autonomous Systems, vol. 56, no. 6, pp. 493–502, June 2008.

[18] C. Bäckström and B. Nebel, “Complexity results for SAS+

planning,” Computiational Intelligence, vol. 11, no. 4, pp. 625–655,
1995. [Online]. Available: ftp://ftp.informatik.uni-freiburg.de/papers/ki/
backstrom-nebel-ci-95.ps.gz

[19] M. Brenner and B. Nebel, “Continual planning and acting in dynamic
multiagent environments,” Journal of Autonomous Agents and Multia-
gent Systems, vol. 19, no. 3, pp. 297–331, 2009.

[20] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning About
Knowledge. MIT Press, 1995.

[21] H. J. Levesque, “What is planning in the presence of sensing?” in
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI-
96). AAAI Press, 1996, pp. 1139–1146.

[22] R. Petrick and F. Bacchus, “A knowledge-based approach to planning
with incomplete information and sensing.” in Proceedings of the 6th
International Conference on Artificial Intelligence Planning Systems
(AIPS-02), 2002.

[23] B. J. Grosz and S. Kraus, “Collaborative plans for complex group
action,” Artificial Intelligence Journal, vol. 86, 1996. [Online].
Available: citeseer.ist.psu.edu/grosz96collaborative.html

[24] K. E. Lochbaum, “A collaborative planning model of intentional struc-
ture,” Computational Linguistics, 1998.

[25] M. Kristan and A. Leonardis, “Multivariate online kernel density esti-
mation,” in Computer Vision Winter Workshop, 2010, pp. 77–86.



WYATT et al.: SELF-UNDERSTANDING AND SELF-EXTENSION 20

[26] M. Kristan, D. Skočaj, and A. Leonardis, “Online kernel density
estimation for interactive learning,” Image and Vision Computing, 2009.

[27] D. Skočaj, M. Kristan, and A. Leonardis, “Continuous learning of
simple visual concepts using Incremental Kernel Density Estimation,”
in VISSAP 2008, 2008, pp. 598–604.

[28] L. P. Beaudoin and A. Sloman, “A study of motive processing and
attention,” in Prospects for Artificial Intelligence: Proc. of AISB-93,
A. Sloman, D. Hogg, G. Humphreys, A. Ramsay, and D. Partridge,
Eds. Amsterdam: IOS Press, 1993, pp. 229–238.

[29] M. Ozuysal, P. Fua, and V. Lepetit, “Fast Keypoint Recognition in Ten
Lines of Code,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2007, pp. 1–8.

[30] M. Hanheide, N. Hawes, J. Wyatt, M. Göbelbecker, M. Brenner, K. Sjöö,
A. Aydemir, P. Jensfelt, H. Zender, and G.-J. Kruijff, “A framework for
goal generation and management,” in Proceedings of the AAAI Workshop
on Goal-Directed Autonomy, 2010.

[31] D. Skočaj, M. Kristan, and A. Leonardis, “Formalization of different
learning strategies in a continuous learning framework,” in EPIROB’09,
2009, pp. 153–160.


