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1 Introduction

Talking robots. They speak to our imagination — C3PO, Sonny, R2-D2. We
are fascinated by the idea of technology we can talk to, work with, all taking
place in the world we live in, the places we inhabit.

And that is, in a nutshell, what makes it challenging to build such systems
— or even just the capabilities for robots to conduct a dialogue , to interact
with a human. Because understanding dialogue is about more than just under-
standing the speech signal, words, or the utterance. For a robot to understand
dialogue when talking with a human, it ultimately needs to understand how
that dialogue relates and refers to the world we live in.

Which brings us to a fundamental point we would like to make: The mean-
ing we communicate is based in how we understand the world we talk about.
Our awareness of the situations to which we refer influences how we under-
stand dialogue — and, through dialogue, we can further our understanding of
those situations. Dialogue, language, is a conduit to the world around us.

Problem is, the world around us provides a robot with very rich, perceptual
experiences. And the combinatoric system of language makes it possible for
us to talk about that world in a wide variety of ways. So, when it comes to
developing an approach to dialogue processing in human-robot interaction ,
how could a robot possibly figure out what an utterance really is supposed
to mean in a given context? Particularly — how can it be related to what the
robot knows about the world, and how different agents intend to act in there?

We can find a possible answer to that when we look at what we humans
do. When we hear an utterance, we do not wait until the end of it and then
try to figure out what it may mean. On the contrary. Evidence shows that,
as soon as we get the first signals, we start processing, building up partial
representations of potential meanings, and linking those potential meanings
to the situated context. As the potential meanings of an utterance unfold,
connecting them to the context helps us select those meanings which make
sense, and discard those that just don’t. And we seem to do the same when
we try to figure out how to say something.

So, it is not just that dialogue meaning is closely related to how we are
aware of the situated context — both levels seem to closely interact when
constructing meaning representations. Through that interaction, we can focus
on constructing those meanings that make sense in that context, and omit the
potential but otherwise irrelevant ones.

The idea that situation awareness and dialogue processing are closely
coupled, forms the hypothesis underlying the work we discuss in this chapter.
If dialogue understanding is based in situation awareness, we propose that a
bi-directional connection between dialogue processing and the various pro-
cesses for building up and maintaining situation awareness, is fundamental to
ensure the system constructs meanings which are interpretable in the situated
contexts to which dialogue refers. The bi-directional nature of this connection
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means that these processes can interchange and interconnect information, to
help focusing and completing understanding.

This sets the approach we will develop apart from more traditional views
on the nature of language processing. Received wisdom has it that language
is processed in a strictly modular fashion. First we process audio, and word
formation. Then we create syntactic structures. Then we see how we can attach
some meaning to the structures we got. And finally, waste-basket style for all
we could never explain before, we apply ”pragmatics” to figure out how those
utterance meanings fit in a context. And most implemented dialogue systems
go about things pretty much the same way.

Thing is, the idea that we want to situate dialogue meaning, and un-
derstand and produce dialogue in a close coupling with situation awareness,
it does not put context last — it puts context first. Context is not an af-
terthought — it is the very ground on which we construct interpretations, be
that dialogue context or situated context. And because we do so, there is
little sense in adopting modularity in our designs, in the sense as suggested
in the 1970s by Fodor and Chomsky. We will still distinguish different levels
at which we construct our representations, and modularize that way. But the
interpretations these structures represent will not be built in isolation from
other levels, nor from the context in which they are formulated. Instead, what
happens at one level is influenced, guided, by what happens in the rest of the
system, in parallel.

Throughout this chapter, we will discuss how this idea of bi-directionality
can be implemented, and what its consequences are on how we can deal with
"real life” situations in human-robot interaction. The settings for our discus-
sions will be the scenarios we have investigated in the CoSy project, including
”home tour”-like interactive spatial exploration, object manipulation, and in-
teractive visual learning. To achieve bi-directionality between the dialogue
system and situation awareness, we have completely integrated our system
with those discussed in other chapters. The system can connect its content
to information about the local visuospatial scene and the overall spatial or-
ganization of the environment, as well as to action plans and motivations,
and use the way these connections work out to focus speech recognition, to
select utterance meanings, and to resolve and produce referring expressions.
We show that including context in dialogue processing leads to (statistically)
significant improvements in speech recognition and utterance comprehension.

The organization of this chapter reflects the basic point we are trying to
make about dialogue meaning, and the hypothesis about bi-directional pro-
cessing. Rather than discussing a system implementation module-by-module,
(reminiscent of that modularity view we would like to avoid), we look at how
we can bring about bi-directional processing. What it means for the way we
process language. How processing becomes more complex as we gradually up
the complexity of language and the situated contexts it refers to. And how bi-
directionality helps — helps in what the system needs to do, given what people
have observed in user studies, and in what it does do, verified in evaluations.

modularity

context
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We first set up a background against which our approach can be placed,
discussing in §2 several approaches in cognitive sciences and Al In §3 we then
start off by discussing the basics for contextualized language processing, show-
ing how bi-directionality influences first of all the design of the processes and
representations we adopt. We continue in §4 with looking into dialogues about
what the robot can see, connecting dialogue meaning with an understanding
of local visuo-spatial scenes. We discuss how we can talk about those scenes,
for example when a human tries to teach the robot more about the objects
it sees, and how bi-directionality helps focusing speech recognition, utterance
analysis, reference resolution, and producing references to objects.

Of course, we do not always need to be talking about what is in front
of us. The Explorer scenario provides us with a setting in which we often
discuss places we can visit, or where we can find objects in the world — with-
out necessarily being right there and then. In §5 we present how we can go
beyond the current situated context, and use information about the larger
world around the robot to talk about other places. One interesting challenge
bi-directionality helps addressing is in resolving and producing references to
such places.

In §6 we take meaning beyond having mostly a referential, indexical na-
ture. We look into how particularly speech acts like questions and commands
express intentionality , and how we can relate that to processes for moti-
vation and planning. Bi-directionality enters the dialogue processing picture
again by indicating which potential utterance interpretations correspond to
possible plans, and which ones do not.

In retrospect, what do we contribute? For one, we discuss here a system
for situated dialogue processing in human-robot interaction which provides a
wider, and deeper, coverage than many other systems. The robot understands
more — in terms of what you can talk about, and how that relates to the
world. But there is a more fundamental contribution we hope to be making
here. We follow out the idea that context matters in situated dialogue pro-
cessing. Situated context, and dialogue context together. Processing meaning
starts and ends in those. We can bring that about by considering processes
to be bi-directionally coupled. This coupling enables them to exchange in-
formation, complement each others representations, and generally help guide
processing by focusing attention on those meanings that are supported by
a given situated context. We argue that this affects the way these processes
should be designed (incremental processing, in parallel across multiple lev-
els of representation) and what representations should facilitate (over- and
under-specification, and packing). And, most importantly, we show what bi-
directionality brings. We discuss added functionality over and beyond what
any individual level or modality would be capable of providing, and present
evaluations which empirically verify the positive effects of bi-directionality on
focusing processing. Particularly, bi-directionality leads to significant improve-
ments in speech recognition and utterance comprehension, with a combined
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effect of improving more than 56% over a baseline including commercial speech
recognition software.

If we would like robots to talk — here is one way we believe we should
walk.

2 Background

Language provides us with virtually unlimited ways in which we can com-
municate meaning. This, of course, raises the question of how precisely we
can then understand an utterance as we hear it. Empirical studies in vari-
ous branches of psycholinguistics and cognitive neuroscience have investigated
what information listeners use when trying to understand spoken utterances
which are about visual scenes. An important observation across these stud-
ies is that interpretation in context plays a crucial role in the comprehension
of utterance as it unfolds. Following [34] we can identify two important di-
mensions of the interaction between the purely linguistic, dialogue context,
and the situated context. One is the temporal dimension. The ways our vi-
sual attention are guided appear to be timed closely with how we proceed
with understanding an utterance. In empirical studies we can witness this by
for example eye movements. The second is the information dimension. This
indicates that listeners not only use linguistic information during utterance
comprehension, but also scene understanding and ”world knowledge.” Below
we discuss aspects of these dimensions in more detail.

2.1 Multi-level integration in language processing

Until the early 1990s, the dominant model of language comprehension was
that of a modular, stage-like process. See for example [23]. On this model,
a language user would sequentially construct each level of linguistic compre-
hension — from auditory recognition all the way to pragmatic, discourse-level
interpretation. As [69] observe, two hypotheses followed from this view. One
hypothesis is that people first construct a local, context-independent repre-
sentation of the communicated meaning. Only once this meaning has been
completely constructed, it is interpreted against the preceding dialogue con-
text. Secondly, and related, is the hypothesis that dialogue context-related
processing only enters the process of language comprehension at a relatively
late stage.

Opposing these hypotheses is the view that language comprehension is an
incremental process. In such a process, each level of linguistic analysis is per-
formed in parallel. Every new word is immediately related to representations
of the preceding input, across several levels — with the possibility for using the
interpretation of a word at one level to co-constrain its interpretation at other
levels. A natural prediction that follows from this view is that interpreta-
tion against dialogue context can in principle affect utterance comprehension
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as the utterance is incrementally analyzed, assisting in restricting the poten-
tial for grammatical forms of ambiguity. [18, 5] phrased this as a principle
of parsimony: those grammatical analyses are selected that for their refer-
ence resolution impose the least presuppositional requirements on a dialogue
context.

Since then, various studies have investigated further possible effects of di-
alogue context during utterance comprehension. Methodologically, psycholin-
guistic studies have primarily investigated the effects of dialogue context by
measuring saccadic eye movements in a visual scene, based on the hypothesis
that eye movements can be used as indications of underlying cognitive pro-
cesses [63, 42]. Alternatively, cognitive neuroscience-based studies use event-
related brain potentials (ERPs) to measure the nature and time course of the
effects of dialogue context on human sentence comprehension [65].

Both lines of study have found that lexical, semantic and discourse-level
integrative effects occur in a closely time-locked fashion, starting already at
the phoneme or sub-word level; see [1], and [68, 69, 70]. Particularly, a range of
dialogue-level integrative effects have observed. Referential binding has been
shown to play a role in the constraining various types of local syntactic ambi-
guities, like garden path-constructions [18, 5, 2], and relative clauses [56, 55];
[66, 68, 69]. These effects primarily concern a disambiguation of already built
structures. Integrating semantic and dialogue-level information during utter-
ance comprehension also has important anticipatory effects. [62, 19]; [67] ob-
serve how contextual information influences what lexical meanings can be an-
ticipated, priming phonological understanding and lexical access. Contextual
information can even override disprefered lexical meaning [45].

Anticipatory effects indicate that utterance comprehension is thus not only
an incremental process of constructing and then disambiguating. Anticipa-
tion enables context-dependent phonological recognition, lexical retrieval, and
syntactic construction - without there being a need to generate and test all
combinatory possible constructions. Incrementality and anticipation based on
multi-level integration appears to give rise to a process in which comprehen-
sion arises through a convergence based on constraining and co-activation.
Dialogue context and the interpretative contexts which are delineated during
utterance comprehension converge to become functionally identical [69]. As a
result, ambiguity need not even arise, or is at least being much more limited
a priori through context.

An important issue in all of the above remains of course the degree to
which integrative effects indeed should commit to a certain understanding.
Garden path sentences are a good example. They show that overcommitment
risks the need for re-interpretation — an issue for cognitive control [11, 30, 46].

2.2 Language processing and situational experience

We already noted before that humans integrate linguistic and non-linguistic
information when processing an utterance. Below we discuss studies which
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investigate how categorical and contextual information from situation aware-
ness can effect utterance comprehension. These studies use eye-trackers to
monitor where people look at in a scene, and when.

[3] present a study revealing that listeners focus their attention on objects
before these objects are referred to in the utterance. For example, consider
a scene with a cat, a mouse, and a piece of cheese. When someone hears
”"The cat chases the mouse”, her gaze already moves to the mouse in the
scene before she has actually heard that word; similarly for ” The mouse eats
the cheese.” Knowing that cats typically chase mice (not cheese), and that
the argument structure of chase reflects this, the listener expects that the
next object to be mentioned will be the mouse, and directs gaze to that
object. We thus see an anticipatory effect arising from the online integration of
lexico-semantic information (verbal argument structure), situational context
(the present objects, and the reported action), and categorical knowledge
(prototypical object-action relations).

» ‘
reachable
objects

v 9
S

Fig. 1. Put, apple, towel, box

Not only world knowledge can influence online utterance comprehension,
also scene understanding can. For example, consider the situation in Figure
1. [63] show that, once the listener has heard "Put the apple on the towel ...”
she faces the ambiguity of whether to put the (lone) apple onto the (empty)
towel, or to take the apple that is on the towel and put it somewhere else. The
ambiguity is revealed as visual search in the scene. Only once she has heard the
continuation ”... into the box” this ambiguity can be resolved. Interestingly, in
[63] the listener cannot directly manipulate the objects. If this is possible (cf.
Figure 1), [16] show that also reachability plays a role in comprehending the
utterance. Because only one apple is reachable, this is taken as the preferred
referent, and as such receives the attention. This underlines the effect physical
embodiment may have on language comprehension.

Scene understanding also concerns the temporal projection towards possi-
ble future events [22]. [4, 31] show how such projection can also affect utterance
comprehension. These studies used a scene with a table, and beside it a glass
and a bottle of wine. Investigated was where listeners look when they hear
”The woman will put the glass on the table. Then, she will pick up the wine,
and pour it carefully into the glass.” It turns out that after hearing the ”pour-
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ing” phrase, listeners look at the table, not the glass. Listeners thus explicitly
project the result of the picking action into the scene, imagining the scene in
which the glass is on the table.

These studies reveal that the interaction between vision and language is
not direct, but mediated [4]. Categorical understanding plays an important
role in the sensorimotoric grounding of language. This is further underlined
by studies like [25, 21], following up on the idea of category systems as medi-
ating between perceptual modalities and language [24, 9]. These studies show
how categorical understanding gives rise to expectations based on affordances,
influencing comprehension of spatial or temporal aspects of action verbs.

In conversational dialogue [29, 48] gaze has been shown to be automatically
aligned in simple collaborative interaction. The time intervals between eye-
fixations during production and comprehension of a referring expression are
shorter than in monologue. This is further evidence for the relevance of visual
common ground of interlocutors and how that accelerates the activation of
jointly relevant concepts.

2.3 Situated language processing in AI/HRI

Studies on how humans process visually situated dialogue show an important
aspect of ”grounding” is based on how we can resolve a referent in the world for
an object reference. In establishing referents, listeners use visual and spatio-
temporal properties of objects, and combine these properties with various
forms of salience.

What have we achieved so far in building Al systems that can relate lan-
guage to the world? Roy & Reiter present a comprehensive overview of existing
approaches (up to 2005) in [50]. They identify several important issues: What
are suitable representations to mediate between language and sensori-motoric
experience? How can linguistic representations be associated with perceptual
and action categories? How does ”context” come into play? It is easy to see
how we can relate these issues to observations in human sentence processing.
And to an extent they have been addressed in implemented systems to date.

One of the earliest systems which connected incrementally built utterance
analyses to a visual world was Winograd’s SHRDLU [73]. Among more re-
cent approaches, the most developed are those by Gorniak & Roy, and Steels
et al. Gorniak & Roy [26, 27| present an approach in which utterance mean-
ing is probabilistically mapped to visual and spatial aspects of objects in the
current scene. Recently, they have extended their approach to include action-
affordances [28]. Their focus has primarily been on the grounding aspect. A
similar comment can be made for SHRDLU. Steels et al [61, 60, 59] have
developed an approach where the connection between word meaning and per-
cepts is modeled as a semiotic network, in which abstract categories mediate
between language and the visual world.

Although they use an incremental approach to constructing utterance
meaning, grounding meanings in the social and physical context as they are
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construed, the (im)possibility to ground alternative meanings does not feed
back into the incremental process to prune inviable analyses. Furthermore,
the approaches focus entirely on category-based mediation (the ”what” di-
mension). They omit most of the spatio-temporal dimension of interpretation
(the ”where/when” and "how”), restricting them to visual information about
the currently perceivable scene.

The approach we present here improves on these approaches along these
lines. Like Scheutz et al [51, 13], we develop a model for incremental utterance
processing in which the analyses are pruned if it is impossible to ground them
in the situated contexts referred to. Furthermore, grounding is not restricted
to the visual scene, but is extended to include the larger spatio-temporal
context.

3 Talking

What does it take to make a robot talk? Specifically, what does it take to
make a robot process situated dialogue?

Simply put, for a robot to talk it first of all needs to be able to listen. It
should be able to process a speech signal, turning it into (possible) sequences
of words. Then, turn those words into utterances, and assign a meaning repre-
sentation to them. These meaning representations should be linked to a model
of the preceding dialogue, so that we can figure out how it refers to things
that were already said before, and how it moves the dialogue along.

That’s one part — listening, comprehending utterances against a model
of the dialogue context, and updating that context model as the dialogue
continues. The other part is the talking part. Based on how the dialogue has
developed so far, the robot should decide how to continue. Then, following
up on this decision, it should see how to formulate the utterances to achieve
that ”goal”, and formulate them such that they refer to the situations in a
contextually appropriate way. It should be clear to the listener what the robot
is referring to, talking about. And once the robot has said what it decided to
say, it should of course again update the model of the dialogue context.

In this section we would like to focus on the comprehension side, and
sketch how the production side is structured. We would like to start simple
here, explaining the basics behind the approach we take to making robots
talk. Explain the design decisions as they result from the bi-directionality
hypothesis, why we do the things the way we propose to do them. Come
the next sections, we will delve into more detail, or where necessary provide
references to more technical discussions.

Adopting the bi-directionality hypothesis poses requirements both on how
we design our processes, and our representations.

As for processes, we already pointed out earlier that we need to drop cer-
tain assumptions regarding modularity. We cannot consider processes in iso-
lation. We need to turn them into ”permeable glass boxes.” While processing,
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it should be possible to take partial results, connect them with information
from other processes, and then use the results to guide how to continue pro-
cessing. One way to design such processes so is to make them incremental. In
incremental processing , a process proceeds from the ”beginning” towards the
”end” of a representation it is to process, in a step-wise fashion. After each
step, bi-directionality can be used to guide how to take the next step. Because
linguistic representations are typically sequential, we can process them incre-
mentally. Much of the benefits of bi-directionality consist therein that they
can help processes focus on sensible analyses, discarding those which are not
supported by the context.

Each process typically maintains several concurrent hypotheses. Particu-
larly if we look at things from an efficiency point of view, there are several
requirements bi-directionality raises for the nature of representations. First
of all, we are looking at dialogue, a context in which interpretations develop
over time. Utterances refer to the preceding context, adding to or correcting
previous information. Connecting information across processes can be more
efficient if these relations are clear. It identifies a history of what previously
was already interconnected. The way we will address this requirement is by
using discourse referents as permanent hooks to relate information to, both
at utterance- and at dialogue-level.

Secondly, even though a process may maintain multiple hypotheses, this
does not imply that they need not share certain similarities in how they in-
terpret something. Representations should identify how alternative analyses
are different, and where there are similarities, so that we can avoid having to
check each hypothesis individually. We will address this requirement by pack-
ing multiple hypotheses into a single, possibly underspecified graph structure,
and determining preference orders over alternatives.

Below we will explain these processes and representations in more detail.
We start with representations, to make it clear what we are working with,
and towards.

Representing an utterance

Loosely speaking, a dialogue is an exchange of utterances between two or
more "interlocutors.” Usually, this exchange serves a particular purpose. In the
context of human-robot interaction, that purpose usually relates to performing
tasks in the real-world.

The thing is, whereas sentences in a text are usually complete, and gram-
matically well-formed, this need not be the case with utterances in spoken
dialogue. Utterances are often incomplete or grammatically incorrect, and
may include self-corrections. ” Take the red uh ... no put that green one next
to the ... you know, yes, the pyramid.” This of course raises the question,
what we should consider an utterance to be.

Most dialogue systems (still) consider an utterance to be like a sentence,
and have a definable beginning and end. We adopt a more flexible notion than
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that. What we ultimately consider to be an utterance, depends on the context
in which linguistically conveyed content is being used. As far as processing
within our system is concerned, an utterance is a stream. There are marked
points at which it can be further interpreted, either within the dialogue system
or beyond it. At such ”points,” the representation of the utterance provides
enough meaning to start off further forms of processing. Each further inter-
pretation modality is thus free in considering when it works with meaning,
and thus —ultimately— what it considers an ”utterance” to be.

Which brings us to how we represent meaning. We represent meaning as
an ontologically richly sorted, relational structure — a logical form [35, 7.
The following is an example of a logical form:

@Qu; :cognition(want A (Moob) ind A (TENSE) pres A
(ACTOR) (41 : person A I A (NUM) sg) A
(EVENT) (p1 : action-non-motion A put A

(ACTOR) y1 : person A
(PATIENT) (mq : thing A mug A

(DELIMITATION) unique A (NUM) sg A (QUANTIFICATION) specific A

(MODIFIER) (71 : g-color A red)) A
(RESULT) (t1 : m-whereto A to A
(ANCHOR) (7 : e-region A right A
(DELIMITATION) unique A
(NuM) sg A
(QUANTIFICATION) specific A
(OWNER) (b : thing A ball A
(

DELIMITATION) unique A (NUM) sg A (QUANTIFICATION) specific)))) A

(PATIENT) (y1 : person A you A (NUM) sg) A
(SUBJECT) i1 : person)

Each node has a unique identifier with an associated ontological sort (e.g.
t1 of sort action—motion), and a proposition (e.g. want). Nodes are connected
through named relations. These indicate how the content of a single node
contributes to the meaning of the whole expression. For example, "you” (y1)
both indicates the one whom something is wanted of (Patient-relation from
wl), and the one who is to perform the put action (Actor-relation from ¢1).
Nodes carry additional features, e.g. il identifies a singular person.

Propositions and relations in such a representation are instances of con-
cepts. This makes it possible for us to interpret logical forms further using
ontological reasoning. We use this possibility in reference resolution, and in
relating meaning representations to interpretations formed outside the dia-
logue system.

The relational nature of our representations provides us with several ad-
vantages. We build up our representations from elementary propositions as we

logical form
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illustrated above — sorted identifiers and propositions, features, and relations.
An interpretation is thus simply a conjunction of such elementary proposi-
tions, and the more we can connect those elementary propositions, the more
complete our interpretation becomes. This makes it relatively straightforward
to represent partial interpretations. For example, for "take the red ...” receives
the following interpretation:

@t; :action-motion(take A (Moob) imp A (TENSE) pres A
(ACTOR) (a1 : entity A addressee) A
(PATIENT) (mq : thing A
(DELIMITATION) unique A (NUM) sg A (QUANTIFICATION) specific A
(MODIFIER) (71 : g-color A red))
(SUBJECT) a1 : entity)

The interpretation shows more than just the content for the three words.
It also shows that ”"red” is expected to be the color of the ”thing” which is
supposed to be taken.

Characteristic for language is that it presents many ways in which we can
say things — and interpret them. This inevitably means that we will usually
get not just one, but multiple alternative interpretations for an utterance.
To keep ambiguity to a minimum, we should look at to what extend these
interpretations are indeed different. Where they show overlaps, we should
ideally have to deal with those identical parts only once.

Using relational structure and elementary propositions enables us to do
so. We represent alternative interpretations as alternative ways in which we
can connect content, whereas identical content across interpretations is rep-
resented once. The procedure to create such ”condensed” representations is
called packing , after [47, 15]. Figure 2 illustrates the development of the
packed packed representation for "here is the ball”. At the first step ("take”),
9 logical forms are packed together, with two alternative roots, and several
possible ontological sorts for the word “here”. The second step reduces the
number of alternative interpretations to one single logical form, rooted on the
verb “be” with a “presentational” ontological sort. The possible meanings for
the determiner is expressed at the dependent node of the “Presented” relation.
At this point we have an overspecified meaning. Although the delimination is
unique, we cannot tell at this point whether we are dealing with a singular
object, or a non-singular (i.e. plural) object — all we know it has to be one or
the other. This becomes determined in the fourth step ("here is the ball”).

In the appendix to this chapter we present a detailed technical discussion
of packing.

Representing the interpretation of an utterance in context

The meaning of an utterance goes well beyond what is expressed just by
the individual words that make it up. Meaning is about how the utterance
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relates to the context — the situation (indexically) and to the actions (to be)
performed therein (intentionally). How it can be taken to refer to things we
already talked about, to beliefs we have, to expectations which may be raised
on the basis of what we are saying. How the utterance helps us to further the
dialogue, helping to reach a goal — or not.

Referent resolution is the first step we take to relate content from the cur-
rent utterance, to that of previous utterances in the dialogue context. The
purpose here is to establish co-reference relations: relations between mentions
referring to the same object(s) or event(s). Examples of references to previ-
ous objects are pronouns (e.g. ”it”), or anaphoric expressions (e.g. "the red
mug”). We are using a (simple) algorithm based on referent resolution in the
segmented dialogue representation theory of [6].

For each index in a logical form, the algorithm determines potential an-
tecedents in the preceding dialogue, using the model of the dialogue context
the system maintains. There are two simple cases. One, we may be talking
about a something new. We then create a new (unique) referent identifier, say
ant,, and represent this as a reference structure [NEW : {ant,, }]. Two, there
is a unique antecedent referent ant;. We represent this as [OLD : {ant;}],
meaning there is a ”discourse old” antecedent ant;. In both cases we relate
the index in the logical form (which only has naming uniqueness within the
scope of the logical form) to the built structure.

Complications arise if a reference cannot be ambiguously resolved. A good
example of such a situation arises when resolving deictic pronouns like ”this”.
How a deictic pronoun needs to be resolved, depends on the dialogue- and
the situated context. If the utterance is not accompanied by a gesture, the
preference is to resolve the reference to a preceding antecedent in the dialogue.
However, if the utterance is accompanied by a gesture, then this preference
may be overridden. It may be that the gesture refers to an object which was
mentioned before, just not most recently; or it may refer to an object which
has not been talked about at all. To capture these possibilities, we allow
for reference structures to specify preference orders over sets of old and new
referents. For example, if a deictic pronoun can be resolved to several old
antecedents, with ant; the most preferred, or to a new referent ant,,, then we
get

[OLD : ant; < {ant;,...,anty} < NEW : {ant, }].

Subsequently, information about grounding the utterance in the situated
context then can help resolving this ambiguity (e.g. by providing support for a
new referent). The example of deictic pronoun nicely illustrates the principle
bi-directional nature of situated dialogue processing as implemented here.
There is no strict pipeline of interpretation processes, invoked at incremental
steps. Instead, interpretation processes interact to mutually constrain and
complement the interpretations they form.

Another aspect of dialogue-level interpretation regards ”speech acts”, or
dialogue moves. A dialogue move specifies how an utterance ” functions in”, i.e.
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contributes to furthering the dialogue. We determine an utterance’s possible
dialogue move(s) on the basis of the shape of the logical form, and expectations
about possible moves to extend the current dialogue. Figure 3 illustrates a
decision tree used to map logical form features to dialogue moves.

it

Fig. 3. Example of a decision tree for determining dialogue moves from LF form

Once the dialogue move for an utterance has been determined, the utter-
ance content, and its referent- and event structures are added to the dialogue
context model maintained by the system. Figure 4 shows a snapshot of such
a model. (We will elaborate on event structures in §6.)

Comprehending an utterance in context

When we try to comprehend an utterance, we analyze it at several linguistic
levels. As we are dealing with spoken dialogue, the first step is the automatic
speech recognition [ASR], which takes an audio signal stream as input and
produces a word recognition lattice as output. This step is known to be partic-
ularly error-prone [44], for several reasons. The first one is the inherent noise
present in the real-world environments in which our robots are deployed. Since
we require the speech recognition system to be speaker-independent, we also
have to deal with the wide variety of voices, accents and styles of speech of
human speakers. And finally, natural spoken dialogue is also characterised by
a high proportion of disfluencies (filled pauses, speech repairs, corrections,
repetitions), and the production of many partial or ill-formed utterances, all
of which negatively affect the performance of the speech recognition.

Our strategy for addressing this issue is to exploit contextual knowledge
about the situated environment and the dialogue history to prime the utter-
ance recognition. This knowledge is represented in the cognitive architecture
as a cross-modal salience model of the situated context. It integrates both
visual salience (objects perceived in the physical scene) and linguistic salience
(previously referred-to objects within the current dialogue). The model is
dynamically updated as the environment evolves, and is used to establish ex-
pectations about uttered words which are most likely to be heard given the
context. The update is realised by continously adapting the word probabilities

automatic speech
recognition

salience model
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specified in the statistical language model of the speech recognizer. We have
shown that this approach yields a statistically significant improvement of the
ASR performance compared to a baseline, non context-sensitive model [41].

As soon as the speech recognizer is able to suggest a (partial) recognition
hypothesis for the utterance, a word recognition lattice is created and inserted
into the working memory for subsequent analysis. A word recognition lat-
tice is a packed representation for the set of potential recognition hypothesis,
combined with their respective confidence scores. The set of recognition hy-
potheses can be easily retrieved by traversing the lattice. Figure 5 illustrates
a typical example of word lattice.

mug, P=0.95 _
now, P=0.6 this, P=0.6 nside, P=07

no, P=0.4 o

mugs, P=0.05

these, P=0.4

it, P=0.8

Fig. 5. A typical word recognition lattice

This word recognition lattice is then further processed incrementally — the
lowest, incremental level being that of grammatical analysis. For modeling nat-
ural language grammar we use the Combinatory Categorial Grammar (CCGQG)
framework [57, 8]. CCG is a lexicalized framework: For each word, there are
one or more lexical entries specifying a syntactic category, and a correspond-
ing lexical meaning. A syntactic category defines how the word can be used
in forming a larger, grammatical expression. The lexical meaning specifies the
word meaning. The meaning of an expression is built up compositionally, in
parallel to its syntactical derivation.

Figure 6 illustrates how meaning is built up in parallel to a grammatical
derivation. The verb "take” has a syntactic category s : e/np : p. This means
that it will yield a sentence s if it is combined to the right / with a noun
phrase np. The indices e and p relate the syntactic material to the meaning
being built: e provides a handle to the index for the verbal meaning, whereas
p indicates that the noun phrase will provide the meaning for the Patient
[7, 35].

The words ”take” and ”the” can be combined incrementally into an expres-
sion ”take the”, using function composition (the B rule in CCG, cf. [57]). The
resulting syntactic category specifies that this expression requires a noun n to
its right to yield a complete sentence. The meaning of the determiner ”the”
circumscribes that of the noun. Finally, "take the” and "mug” are combined
into a complete expression, "take the mug”.

We have factorized (incremental) grammatical analysis into several, inter-
connected functions: the incremental parsing process itself, packing/unpacking
and pruning of incrementally construed analyses of utterance meaning, and
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take the mug

sie / np:p np:x / nix n:x

@x:thing( @x:thing(mug)
& <Delimitation>unique
& <Quantification>singular)

@e:action-motion(take
& <Actor>rl:robot
& <Patient>p)

sie / nix

@e:action-motion(take
& <Actor>rl:robot
& <Patient>(x:thing
& <Delimitation>unique
& <Quantification>singular)

sie
@e:action-motion(take
& <Actor>rl:robot
& <Patient>(x:thing & mug
& <Delimitation>unique
& <Quantification>singular)

Fig. 6. Incremental analysis of ”take the mug”

context-sensitive lexical retrieval. Figure 7 illustrates the interactions between

these different functions.
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Fig. 7. Context-sensitive utterance interpretation at grammatical level: interactive
processes for parsing and lexical retrieval, which can be primed by contextual infor-

mation.
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Parsing begins by retrieving the lexical entries for the first word, and
initializing the chart. A chart is a data structure in which all active and com-
pleted analysis are stored, marking for each analysis what part of the utterance
(from beginning to some position z) it covers. Maintaining partial analyses
makes it possible to re-use them at a later point, when constructing analyses
that span more of the utterance. (This principle of re-using partial analyses
sets chart-based parsing apart from e.g. backtracking, in which analyses are
construed every time anew.) The chart is subsequently updated with the lex-
ical entries for the first word, and a parsing process starts. Parsing is based
on a bottom-up Early chart parser built for incrementally parsing Combi-
natory Categorial Grammar. Its implementation relies on basic functionality
provided by OpenCCG!.

Incremental chart parsing creates partial, and integrated analyses for a
string in a left-to-right fashion. After each increase in position, the parser
checks whether it has reached a frontier. A frontier is specified as a type of
complete grammatical structure at the right branch of a grammatical deriva-
tion. This enables us to specify whether the parser should return after every
word, or e.g. after every phrase. At each frontier check, the chart is pruned us-
ing a category scorer. This scorer ranks the categories for the partial analyses
construed so far, possibly pruning them if they are guaranteed not to lead to
a complete analysis. (For example, in an incremental analysis, any category
requiring an argument to the left \ preceding the beginning of the utterance
will never be completed.)

Once incremental parsing stops, a packed logical form is construed, and
provided to working memory. This packed representation of possible gram-
matical interpretations of an utterance provides the basis for further interpre-
tation steps — for example, referent resolution. Depending on the exact fashion
in which these processes are synchronized, the next phase of incremental pars-
ing is triggered by the becoming available of further information on working
memory (e.g. referents). In this case, the chart is retrieved, and updated with
the lexical entries for the current word, and incremental parsing continues as
described above.

The advantage of factorizing grammatical analysis into separate inference-
and lexical retrieval processes is that the system can use information about
the situated- and task-context to prime attention in both processes, possibly
asynchronously (i.e. ”opportunistically”). Activated categories for objects and
events can help to restrict what lexical meanings are retrieved (”activated”) for
a word. Furthermore, based on what (partial) interpretations can be grounded
in the context, unsupported interpretations (analyses) can be removed from
the chart.

! http://openccg.sf.net
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Picking up the right interpretation

Even with the help of these contextual priming/pruning techniques, the out-
come of the utterance comprehension process will nevertheless remain in many
cases severely ambiguous and underspecified. This is not surprising: ambiguity
is known to be extremely pervasive in natural language, at all processing lev-
els (lexical, syntactic, semantic, pragmatic), and contextual priming/pruning
alone cannot be expected to resolve all ambiguities. This means that most
utterance will still yield tens, if not hundreds, of possible analyses. With-
out mechanisms for interpretations selection/filtering at our disposal, these
ambiguities are inevitably going to hinder any further interpretation.

We therefore implemented a robust parse selection system able to deter-
mine the most probable analysis among a set of alternative interpretations.
The parse selection is based on a statistical linear model which explores a set
of relevant acoustic, syntactic, semantic and contextual features of the parses,
and is applied to compute a likelihood score for each of them.

Our approach can therefore be seen as a discriminative approach to ut-
terance interpretation: we first generate the possible analyses, and then dis-
criminate amongs them according to various features.

The parameters of this linear model are estimated against an automatically
generated corpus of (utterance, logical form) pairs. The learning algorithm is
an averaged perceptron, a simple and efficient technique for parameter estima-
tion which is known to give very good results for this task [17].

The parse selection can be formalised as a function F': X — ) where the
domain X is the set of possible input utterances?, and the range ) is the set
of parses. We assume:

1. A function GEN(z) which enumerates all possible parses for an input x.
In our case, this function simply represents the set of parses of x which
are admissible according to the CCG grammar.

2. A d-dimensional feature vector f(z,y) € R?, representing specific features
of the pair (z,y). It incorporates various acoustic, syntactic, semantic or
contextual features relevant for discriminating the parses.

3. A parameter vector w € R,

The function F', mapping an utterance to its most likely parse, is then
defined as:

F(z) = argmax w’ -f(z,y) (1)

y€EGEN(xz)

where w’ - f(z,y) is the inner product Zle ws fs(z,y), and can be seen
as a measure of the “quality” of the parse.

Given the parameters w, the optimal parse of a given utterance x can be
therefore easily determined by enumerating all the parses generated by the

2 or, in the more general case, a set of possible word recognition lattices.
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grammar, extracting their features, computing the inner product w” - f(x, ),
and selecting the parse with the highest score.

We present evaluation results of parse selection later on in the chapter,
after we have discussed how language and visuo-spatial information can be
combined.

Producing an utterance in context

Just like in comprehension we put context into the production of dialogue.
Planning what to say and how to say it, is all influenced by context — dialogue-,
situation-, and action contexts.

Producing one or more utterances is triggered by a communicative goal.
This goal can arise within the dialogue system, for example to follow up in a
purely communicative way (e.g. matching a greeting with a greeting), or from
outside. The differentiation how communicative goals may arise enables us to
put dialogue in the service of other modalities, e.g. to help clarify something
the robot does not understand [38], and to achieve a continuum between
planning action and interaction (as we will explain further in §6).

A communicative goal specifies a dialogue move, and content which is to
be communicated. We formulate this goal as a logical form. As we describe
in detail in [36], we then use a planner to expand (and possibly rewrite)
this goal logical form into a logical form specifying the content for one or
more utterances. The planner uses a collection of systemic-functional grammar
networks [10] to decide, on the basis of the provided content, the way this
content can be related within the logical form and to the broader context,
how to extend a logical form.

Relating content to context is particularly relevant in the case of generating
referring expressions. This task of can be paraphrased as finding a description
for an entity in the world (the intended referent) that refers to the intended
referent and only the intended referent. This implies that the description must
be chosen in a way that prevents it from referring to another entity in the
current context set. All entities in the context set except the intended referent
form the contrast set. The referring expression must thus distinguish the in-
tended referent from the members of the contrast set. A referring expression
is a noun phrase (NP) of any degree of complexity. In order to provide enough
information to uniquely identify the intended referent, further attributes of
the referent need to be expressed, for instance with adjectives or prepositional
phrases, which in turn might contain a referring expression NP.

One of the best understood and widely accepted approaches for generat-
ing referring expressions, is the incremental algorithm of Dale and Reiter[20].
This algorithm needs a knowledge base that describes the properties of the
domain entities through attributes and values. A special attribute is an en-
tity’s type. The algorithm is initialized with the intended referent, a contrast
set (defined as the context set without the intended referent) and a list of
preferred attributes. The algorithm tries to incrementally rule out members

systemic-functional grammar
networks
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of the contrast set for which a given property of the intended referent does
not hold.

In the course of this chapter we describe various instantiations of this
algorithm, for producing references to aspects of local contexts (§4), and the
larger spatial organization of the environment (§5).

Once content planning has yielded a complete logical form for one or more
utterances, we provide content utterance by utterance to a realizer. This real-
izer uses the same grammar as the parser, to produce a set of possible surface
strings expressing that content [72]. We use statistical models, trained over
a corpus of "usual” utterances for our domain, to select the best realization
[71]. This realization is then provided to the MARY speech synthesis engine,
to produce audio output [52].

4 Talking about what you can see

In the previous section we discussed how model meanings for utterances, in
a linguistic fashion. We put relations between concept instances, to see how
they contribute to the overall meaning — and, by establishing how they relate
to preceding utterances, how they contribute to the overall dialogue. Next,
let’s have a look at how to situate that meaning.

We begin by looking at how we could process situated dialogue about
things you can see. Both the human and the robot are in the same place, and
are talking about objects that are (roughly) in their field of view, often even
within reach. Simply put, they are in the same room and that’s all they talk
about. We call this a small-scale space or closed context .

Looking at the literature, you will often find this problem of relating lan-
guage to "the world” (which, really, mostly means small-scale space) referred
to as symbol grounding . There is a linguistic symbol, representing some mean-
ing, and it needs to be "grounded in” how the world is perceived. The degree
to which this ”grounding” determines the meaning of the linguistic symbol is
one issue for discussion — the way we look at interconnecting content across
modalities is described in more detail in Chapter 2.

But there is more to linguistic meaning than just that. Expressing some-
thing is an act. We convey meaning in a way that makes it clear not just
how a listener should understand what we are saying, but also what she is to
do with it. There is a purpose, an intention to saying something. This goes
beyond trying to understand the dialogue move or speech act of an utterance.
Such a move is —often— a reflection of the action to be undertaken in the real
world. So when it comes to relating language to the world, we need to do more
than connect symbols to perceptions. We also need to connect meanings to
how these perceptions are to be acted upon, or dealt with.

Which brings us to another point we want to raise here. Not every bit of
meaning is created and presented equal, in a contextual sense. As a dialogue
progresses, we build up a collection of references to aspects of the real world.
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They form the common ground for the dialogue, a set of mutually held and
agreed upon beliefs about the dialogue and the situated context in which
that dialogue is set. When we use meanings which refer back to beliefs which
are part of the common ground, such meanings provide ”old information” on
which we can build further, connecting ”new information” to it. The point is,
there is a difference in which new and old information should be grounded.
Whereas the indexicality of old information is generally assumed to hold, for
the meanings providing new information it needs to be established. And how
that is to be done, couples back to the intentional aspect of an utterance.

Let us illustrate these ideas on an example, before we discuss how they
are dealt with in our approach to situated dialogue processing. One popular
setting for human-robot interaction is socially guided learning , in which a
robot interacts with a human while trying to learn more about the world.
As we describe in Chapters 7 and 10, we have explored several aspects of
visual learning in such a setting. For example, when the human would like to
explain more about a particular object to the robot, she could say something
like ”The red mug is big.”

Now what would that mean?

The way she refers to the object in question, ”the red mug,” makes clear
that she assumes that the robot knows what object she is talking about. It
is presented as old information, something already talked about and identi-
fiable not just in the dialogue context but also in the situated context. Next
comes a bit of information about the size of the object. The property ”big”
is being attributed to the object, providing new information which the robot
presumably did not yet know. Finally, the intention behind attributing such
a new property to an already known object is to teach the robot. It should
(still) ground ”red mug” in its visual models of the scene, and try to update
its models so as to be able to classify that object as ”big.” Separating old
from new information thus first of all indicates, what we should be able to
ground. The intention clarifies what to do with the new information. Whether
or not the robot then succeeds in learning how to classify the "red mug’ as
”big” determines how it should react to the utterance. Instead, would we
have have followed ”standard” approaches to grounding, and not make any
such distinctions (old, new; indexicality, intentionality), we would just have
the robot try to connect all the meanings immediately to what it sees. The
almost inevitable outcome of that would have been — "no.” Not knowing that
the property ”big” could be applied to the object, the robot would not be
able to ground the meaning "big red mug” to the visual object (using the
proposition of applying the predicate ”big” to the argument ”red mug”).

What you see and what you mean

Building up a representation of the possible meanings for an utterance, we re-
late these meanings to the various models the robot maintains. These models
can be of the environment, or of actions and plans set therein. We do so in a

common ground

socially guided learning
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mediated way. We explained already before that we model meaning as onto-
logically sorted, relational structures — graphs which related concept instances
through named relations. We can resolve mentions of these instances against
the dialogue context model, so that we know how instances are being talked
about and referred to over the course of a dialogue. Grounding such structures

mediation  using mediation means we use ontologies to mediate the translation of the
representations specific to language as a modality, into representations from
which we can ultimately construct a-modal representations. (See also Chapter
2, on binding of modality-specific structures and the formation of unions as
a-modal representations.)

Since our graph structures are directed and acyclic, we can use recursion
over our structures. At each step, a node in the graph is translated into another
graph structure on the basis of its ontological sort (as defined in the ontology
used in the grammar). A translation can just cover this single node, or a
subgraph governed by that node. It can exclude nominals in that subgraph
from further processing, making it possible to collapse or omit parts of the
graph. An example of that is the translation of spatial expressions, like ”the
box to the left of the ball:”

@b :thing(box A
(DELIMITATION) unique A (NUM) sg A (QUANTIFICATION) specific A
(MODIFIER) (t1 : m-location A to A
(ANCHOR) (ly : e-region A left A
(DELIMITATION) unique A (NUM) sg A (QUANTIFICATION) specific A
(OWNER) (b : thing A ball A
(DELIMITATION) unique A (NUM) sg A (QUANTIFICATION) specific))))

Such a representation is translated —more or less— into a structure there is
a " Location:left-of” between the box and the ball.

Our approach is set apart from other approaches in several ways. First, we
ground meaning as graph structures, not as individual words. Second, we are
dealing with instances to which we assign discourse referents. Whenever we
ground content, we maintain the connection between the discourse referent,
and the content it is grounded to. Next time we have new content pertaining
to that discourse referent, we update the translated content rather than that
we would provide a whole new graph structure to be anchored in the situ-
ated context. Naturally, this connection is also used to inform dialogue about
changes of information about content to which referents are attached — or can
no longer be attached. Thirdly, any ambiguities present in a packed represen-
tation are propagated to content to be grounded. This is one point where it
we make use of the mechanism for informing dialogue about the grounding
possibilities of discourse referents, and any relations between them. As we
will see below, ambiguities which cannot be grounded, can be pruned from

contextual support  the packed representation, not having any contextual support in the current
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context.

When mapping structures are based on ontological sort, content can be
flagged as indexical, intentional, or both. As we describe in Chapters 2, 9
and 10, we assume architecture designs in which we can at least differentiate
between a working memory for visuo-spatial information about the current
context (the "binding” working memory), and a working memory for struc-
tures which will prompt the robot to take actions (the ”motivation” working
memory). Indexical content is put on binding working memory. (Currently,
the architecture designs do not include a form of situated episodic memory.
Where that to be the case, the resolved temporal reference of an utterance
could be used to establish whether to indeed provide the content to the model
of the current scene, or to store it with a future or past episode.)

We store intentional content on motivation working memory, with point-
ers to the indexical content it is related to. Intuitively, intentional content
usually represents processes and ascriptions ("verbs”), with representations
of objects they operate on including pointers to their indexical counterparts.
For example, consider again the command ”take the red mug,” which results
in the following logical form:

@t1 :action-motion(take A (MooD) imp A (TENSE) pres A
(ACTOR) (a1 : entity A addressee) A
(PATIENT) (m1 : thing A mug
(DELIMITATION) unique A (NUM) sg A (QUANTIFICATION) specific A
(MODIFIER) (71 : g-color A red))
(SUBJECT) a; : entity)

Translating this structure into content to be grounded, binding working
memory will end up containing structures for the robot, and the red mug. On
the intentional side, we will have a structure for the take action, identifying
the robot as the Actor of the action, and the red mug as the Patient. The
representations for the robot and the mug on motivation working memory
refer to their corresponding representations on binding working memory, so
that we can situate the intended action.

These translations are based directly on the content of the utterance. We
have already seen that they make use of information from the dialogue con-
text, namely resolved discourse referents, to establish what extra-linguistic
content to connect to. This primarily concerns indexical information. On the
intentional side, information about dialogue move is combined with utterance
mood to provide further information about the kind of intention we are dealing
with — for example, a command, an assertion, or a question.

We will deal with commands later on, in §6, and focus here on questions
and assertions. Particularly in the scenarios we consider in Chapters 9 and 10,
questions and assertions have in common that they involve a predication over
an argument. If we say " The ball is red” we are effectively stating that we can
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predicate having a "red color” over the "ball” object. A question can also be
taken to involve such a predication relation, only now we are quantifying that
predication. We rephrase a question like ”What color is the ball?” to predicate
a color over ”ball,” quantifying that the value of the color attribute. Slightly
more complicated, if we ask ”Is the ball red?” we want to know whether we
can indeed do so — turning quantifying the predication into a higher-order
quantification over the truth of the predication (similar to situation theoretic
semantics). For formal details, see [38].

Practically, we represent this information through additional relational
structure on the working memory dealing with intentions. We connect the
structure produced for the predicate to that for the argument, using two
relations. One relation indicates whether we have a polar or factual question,
i.e. whether we quantify over the truth of, or a value for, the predication. The
other relation indicates what it is that the speaker is after — the intended
belief state, resulting from answering the question. For example, for ”What
color is the ball?” we will connect the predicate ”color” to the argument ”ball”
using a relation "Fact-Q”, and a relation ”SPEAKER-KNOWS:Colour.” For
polar questions like ”Is the ball red?,” the latter relation will also indicate the
value of the color: ?SPEAKER-KNOWS:Colour?red” i.e. the speaker knows
whether the ball indeed has a red color.

The argument of SPEAKER-KNOWS can be a pointer to any type of
elementary predication in a meaning representation. This makes it possible
for to quantify over any type of information represented as predication — be
that a sort (”Is this a ball?”), the value of an attribute, or a relation (”Is
there a ball to the left of the box?”). Assertions only differ from questions
in that we just introduce a relation stating that the hearer knows the as-
serted information (HEARER-KNOWS, with the same type of structure as
SPEAKER-KNOWS).

How we subsequently evaluate whether we can achieve the desired belief
state is dependent on the grounding of the various pieces of content. This is
driven by the information status of content, as we explain next.

What you all know, and what you are saying

We already differentiate content by its intentional or indexical nature. We
make a further division into content which the speaker presents as ”old in-
formation” belonging to the common ground, and that which is presented as
new. Grammatically speaking, we are using a form of information structure
[68]. We determine the information status of an object on the basis of its
semantic features for delimitation and quantification, and how the content
functions in the larger context of an intentional construction [35]. The basic
idea is that if an object is established to be old news, we will immediately
try to ground it. This way, it can provide the basis for forming the relevant
situated context against which we need to consider the intention. Based on
the intentional content, we will next evaluate whether the new information
can indeed be grounded in relation to the already grounded information.
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In §6 we will explain how this works out for commands like ”put the ball
to the left of the box.” We will see there how information structure interacts
with the intention of performing a ”put” action on the mentioned objects,
and the desired state of the ball being to the left of the box, to help establish
how we should evaluate whether this action can indeed be performed. For our
current purposes, we will focus on ascriptions — assertions such as ” This box
is red,” or questions like ”Is the red box to the left of the ball?”

As we saw above, we build additional structure for question- and assertion-
interpretations. This structure reflects a desired update to an interlocutor’s
belief state. Evaluating a question or an assertion then boils down to establish-
ing whether we can obtain that state. How we evaluate is guided by informa-
tion structure. When translating meaning to indexical and intentional content,
we determine the information status of objects on the basis of using semantic
delimitation and quantification. We adopt the overriding exception that we
will always interpret the argument of a SPEAKER- or HEARER-KNOWS
relation to be "new.” Any indexical information with an ”old” information
status will be written to binding working memory. We do this to establish
the relation to common ground. In parallel, we represent the new information
and any purely intentional information on the motivation working memory.
Evaluation then consists therein to establish whether we can in principle up-
date binding working memory with the new information, or check against the
results of grounding whether the new information already holds or could be
retrieved. A felicitous update may in this case provide the trigger for learning
processes, as we discuss in Chapter 7.

The result is a model of information structure and its interaction with
indexical and intentional content that is reminiscent of a dynamic semantics-
based approach to information structure [58]. Where we differ is the use of
multiple indexical and intentional contexts, and the evaluation of the update
on one context relative to the intended use of information as stated in another
context.

Using what you see to rank alternative interpretations

As we already outlined in section 3, a discriminative model is used to assign
a score to each possible semantic interpretation of a given spoken input. The
discriminative model includes a wide range of linguistic as well as contez-
tual features. The linguistic features are defined on the analyses construed
at the different processing levels: the acoustic level (based on ASR scores),
the syntactic level (based on the derivational history of the parse), and the
semantic level (based on substructures of the logical form). As for the con-
textual features, they are defined using information from both the situated
context (the objects in the visual scene) and the dialogue context (previously
referred entities in the dialogue history).

Ezperimental evaluation We performed a quantitative evaluation of our ap-
proach to parse selection. To set up the experiments for the evaluation, we
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have gathered a corpus of human-robot spoken dialogue for our task-domain,
which we segmented and annotated manually with their expected semantic
interpretation. The current data set contains 195 individual utterances along
with their complete logical form.

Three types of quantitative results are extracted from the evaluation re-
sults: exact-match, partial-match, and word error rate. Tables 1, 2 and 3 illus-
trate the results, broken down by activated features, use of grammar relax-
ation, and number of recognition hypotheses considered.
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Table 1. Exact-match accuracy results, broken down by activated features, use
of grammar relaxation, and number of recognition hypotheses considered. For each
configuration, we give the precision, recall, and F} value (all in percents).

Each line in the tables corresponds to a possible configuration. For each
configuration, we analyse the accuracy results on different NBests, and give
the precision, recall and F} value for each.

The first cell of the first line corresponds to the baseline: no grammar relax-
ation, no activated features, and use of the first NBest recognition hypothesis.
The last line corresponds to the final results with all features, combined with
the grammar relaxation mechanism.

Two elements are worth noticing in the results:

1. In each of the three tables, we observe that no configuration is able to
beat the results obtained with all activated features. In other words, it
shows that all features types are playing a positive role on the task.

2. Likewise, we observe that taking into account more ASR recognition hy-
potheses has a positive effect on the results: the results obtained using
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Table 2. Partial-match accuracy results, broken down by activated features, use
of grammar relaxation, and number of recognition hypotheses considered. For each
configuration, we give the precision, recall, and Fy value (all in percents).
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Table 3. Word Error Rate results, broken down by activated features, use of gram-
mar relaxation, and number of recognition hypotheses considered. For each config-
uration, we give the error rate (in percents).
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five recognition hypotheses are substantially better than those obtained
based only on the first hypothesis.

Comparison with baseline Here are the comparative results we obtained:

e Regarding the exact-match accuracy results, the difference between the
baseline results and the results with our approach (grammar relaxation
and all features activated for NBest 10) is striking: the Fj-measure climbs
from 43.0 % to 67.2 %, which means a relative difference of 56.3 %.

e Tor the partial-match, the Fj-measure goes from 68.0 % for the baseline
to 87.3 % for our approach — a relative increase of 28.4 %.

e Finally, the decrease in Word Error Rate is also worth noting: we go from
20.5 % for the baseline to 15.7 % with our approach. The difference is sta-
tistically significant (p-value for t-tests is 0.036), and the relative decrease
is of 23.4 %.

Using what you see to figure out what is meant

If we have a packed representation that includes alternative interpretations,
any indexical ambiguity will end up as alternative relational structures on
binding working memory. By monitoring which relational structures can be
grounded in the current context, and which ones cannot, we can prune the
set of interpretations we maintain for the dialogue. We thus handle examples
such as those discussed in [13] through an interaction between binding, and
dialogue processing. Below we provide a detailed example of resolving syntac-
tic attachment ambiguities using the situated context. (Lexical ambiguities
based in different semantic categories are resolved against visual categories.)

"8 €e

Fig. 8. Situated context for "put the ball near the mug to the left of the box.”

Consider the visual scene in Figure 8, and the utterance ”put the ball
near the mug to the left of the box”. Linguistically speaking, this utterance
is ambiguous. There are several ways in which we can combine the modifiers
”the ball”, "near the mug”, and "to the left of the box.” Is the ball near the
mug? Or is "near the mug” the place where the robot is to put the ball, with
”the mug” supposedly being located left of the box?

On its own, the utterance is highly ambiguous. But, this ambiguity some-
how vanishes when we consider the visual scene in Figure 8. Then it is clear
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that there is only one sensible way to understand the utterance. The ball is
near the mug, and it should end up to the left of the box (as indicated by the
arrow). The system achieves the same disambiguation effects through (incre-
mental) pruning of linguistic interpretations, based on whether they can be
grounded in the visuo-spatial situated context.

ball
senit
et
pO

put mug

namic o N

: right : near :

'*. box box mug ball

Fig. 9. Ambiguous (complete) packed logical form for ”put the ball near the mug
to the left of the box” (1.) and the spatial relations for the visual scene (r.)

Figure 9 (right) gives the spatial model for the visual scene in Figure 8
[33]. On the left is the (complete) packed logical form we obtain for ”put
the ball near the mug to the left of the box”. Up to "put the ball near the
mug” the modifier "near the mug” remains ambiguous between being the
destination for where to put the mug, or specifying a location for ”the ball.”
The visuo-spatial scene provides support for both interpretations, (although
planning may prefer the locative reading, as the ball is already near the mug
thus pre-empting execution of the action). As soon as "to the left of the box”
is being processed, the spatial model invalidates the reading on which the
mug is located left of the box. This resolves ”to the left of the box” to be the
destination of the put action, and (by grammatical inference over the resulting
syntactic categories) "near the mug” to be the location modifier of ”the ball.”

Referring to what you see

A robot isn’t just to understand what we are saying. It should also be able to
produce dialogue which refers to the environment in meaningful and appropri-
ate ways. In the context of small-scale space, what is particularly important
is that the robot can refer to objects and the spatial relations between them.

This presents an interesting challenge. If the robot is to generate any form
of spatial language, is needs to construct and maintain a model that explic-
itly marks the spatial relations between objects in the scene. However, the
construction of such a model is prone to the issue of combinatorial explosion
both in terms of the number objects in the context (the location of each ob-
ject in the scene must be checked against all the other objects in the scene)
and number of inter-object spatial relations (as a greater number of spatial
relations will require a greater number of comparisons between each pair of
objects. This becomes particularly problematic when we consider that a scene
may be dynamic, requiring the robot to update its models.
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We present in [32] a framework that addresses this issue. We provide a way
to define the set of objects in the context that may function as a landmark,
and then sequence the order in which spatial relations are considered using a
cognitively motivated hierarchy of relations. Defining the set of objects in the
scene that may function as a landmark reduces the number of object pairs
that a spatial relation must be computed over. Sequencing the consideration
of spatial relations means that in each context model only one relation needs
to be checked and in some instances the agent need not compute some of
the spatial relations, as it may have succeeded in generating a distinguishing
locative using a relation earlier in the sequence.

A further advantage of our approach stems from the partitioning of the
context into those objects that may function as a landmark and those that
may not. As a result of this partitioning the algorithm avoids the issue of
infinite recursion, as the partitioning of the context stops the algorithm from
distinguishing a landmark using its target.

In recapitulation

When it comes to talking about what you see, we discussed above several
aspects in which the bi-directionality hypothesis turns up. The possible lin-
guistic meanings we can provide for an utterance are connected to the way
the situation is understood, which is coupled back to what meanings are es-
tablished as contextually supported. We use this mechanism in post-filtering
during incremental parsing, in parallel to predictive mechanisms such as parse
selection and word lattice re-scoring, and during production in the generation
of referring expressions.

We illustrated how we ground meanings, by looking at intentional and
indexical aspects, and the information status of content. Instead of grounding
all content wholesale word-by-word in visuo-spatial models, as is usually done,
we first only ground meaning already part of the common ground, and then
evaluate whether new information can be grounded in the sense as indicated
by the intention of the utterance. This yields a situated form of dynamic,
context-sensitive interpretation of linguistic meaning.

5 Talking about places you can visit

Above we discussed how we process situated dialogue about small-scale space.
The human and the robot are in the same location, and talk about things that
are in view. Already there we faced the problem to determine what part of
that space forms the current context — which objects, and what aspects of
spatial organization, we can consider common ground.

This becomes an even bigger issue when we want to talk about large-
scale space — that kind of “space which cannot be perceived at once” [40].
Discussing aspects of large-scale space, for example where a particular room
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is or where the robot could find a specific object, is typical for the Explorer
scenario, see [39] and Chapter 9. Most of these referents will, however, not be
in view for the interlocutors.

So, whereas in situated dialogue set in small-scale space we can call upon
visuo-spatial content stored on a short-term ‘binding’ working memory, we
need to go beyond that in the case of large-scale space. In this section we will
discuss how we can integrate content from situated dialogue with ontological
reasoning and conceptual spatial mapping [39, 74, 75].

5.1 Talking about places

When it comes to talking about places, various Wizard-of-Oz studies have
investigated how humans tend to inform robots about the spatial organization
of an environment. For example, [64] discuss a study on how a human presents
a familiar indoor environment to a robot, and [53] when a human talks with a
robot wheelchair while being seated in it. These studies have yielded various
important insights.

The experimental setup in [64] models a typical guided tour scenario. The
human guides the robot around and names places and objects. One result of
the experiment is the observation that people tend to employ many differ-
ent strategies to introduce new locations. Besides naming whole rooms (“this
is the kitchen” referring to the room itself) or specific locations in rooms
(“this is the kitchen” referring to the cooking area), another frequently used
strategy was to name specific locations by the objects found there (“this is
the coffee machine”). Any combination of these individual strategies could be
found during the experiments. Moreover, it has been found that subjects only
name those objects and locations that they find interesting or relevant, thus
personalizing the representation of the environment that the robot constructs.

In [53], the subjects are seated in a robot wheelchair and asked to guide it
around using verbal commands. This setup has a major impact on the data
collected. The tutors must use verbal commands containing deictic references
in order to steer the robot. Since the perspective of the human tutor is identical
to that of the robot, deictic references can be mapped one-to-one to the robot’s
frame of reference. One interesting finding is that people tend to name areas
that are only passed by. This can either happen in a ‘virtual tour’ when giving
route directions or in a ‘real guided tour’ (“here to the right of me is the door
to the room with the mailboxes.”). A robust conceptual mapping system must
therefore be able to handle information about areas that have not yet been
visited.

Next we discuss how we deal with the above findings, combining informa-
tion from dialogue and commonsense knowledge about indoor environments.

5.2 Representing places to talk about

In Chapter 5, we present our approach to semantic modeling of space. In this
approach, we use a multi-layered spatial map that represents space at different
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leveles of abstraction. The most abstract layer, the ‘conceptual map’, char-
acterizes spatial units (e.g. rooms) by assigning them human concepts (e.g.
“kitchen”), which can be used to resolve or generate linguistic expressions. The
‘conceptual map’ is represented as a Description Logics ontology, consisting
of a concept taxonomy and a storage of instances, which form the T-Box
and A-Box of a Description Logics reasoning framework.? The concept tax-
onomy is a hand-written common sense ontology representing various aspects
of an indoor environment (different kinds of areas and other spatial struc-
tures, different kinds of objects, agents, and several different relations that
can hold between any of these). During run-time the ontology is populated
with instances of spatial units and objects through evaluation and interpre-
tation of sensory data (e.g. laser range scans, and visual object detection). A
conceptual map that is constructed only from sensory input, e.g. during an
autonomous exploration of the robot’s environment, will consist of instances of
the abstract concept Area (corresponding to the units of the topological map
layer), which are further specified by the appropriate sub-concepts Room and
Corridor (based on the laser-based semantic place labeling method), and
also instances of Object, further specified by their respective visual object
class, e.g. Couch or TV. On the basis of this object information, the reasoner
can even further specify the area instances, for instance by inferring that a
Room instance containing some KitchenObject instance (e.g. an instance of
Coffeemachine) is an instance of the more special concept Kitchen.

Through this approach, the robot achieves a level of spatial understanding
that is already compatible with the linguistic categories that humans use to
refer to places in an indoor environment. The conceptual map, however, also
holds information about the environment given by human users, for example
in a ‘guided home tour’ interactive mapping set-up.

Our approach to interactive map acquisition accomodates the previously
mentioned findings in studies on Human-Augmented Mapping [64] through
the following properties:

References to whole rooms or specific locations are used to assert that the
instance of the corresponding topological area is of the mentioned concept,
even if the reasoner could not infer that knowledge on the basis of the robots
own information.

References to specific objects, and thus omitting naming the whole room,
will assert that an instance of the mentioned object type is present, which
allows the reasoner to draw further inferences about the current topological
area. In the above example, the user only points out that “there is the coffee
machine”. On the basis of its knowledge that the current area is a Room in-
stance, which is asserted to contain a Coffeemachine instance, the reasoner
now infers the new concept Kitchen.

3 We have used different 3rd party reasoners in our experiments, including RACER,
Pellet, and Jena.
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Like this, our system can combine sensor-based information and informa-
tion provided through dialogue with a human user. This allows the system
to cope with otherwise incomplete information, and with highly personalized
information. Our approach yields a conceptual representation of space that
is suitable for understanding linguistic references to spatial entities, and for
producing expressions that can be understood by human users.

5.3 Referring to elsewhere

A conversational autonomous mobile robot will inevitably face situations in
which it needs to refer to an entity (an object, a locality, or even an event)
that is located somewhere outside the current scene. In technical terms, the
robot must be able to produce a referring expression to an entity in large-scale
space [76].

There are conceivably many ways in which a robot might to refer to things
in the world, but many such expressions are unsuitable in most human-robot
dialogues. Consider the following set of examples:

1. “the location at position (X = 5.56,Y = —3.92,60 = 0.45)”

2. “the mug left of the plate right of the mug left of the plate”

3. “Peter’s office no. 200 at the end of the corridor on the third floor of the
Acme Corp. building 3 in the Acme Corp. building complex, 47 Evergreen
Terrace, Calisota, Planet Earth, (...)”

4. “the area”

These referring expressions are valid descriptions of their respective refer-
ents. Still they fail to achieve their communicative goal, which is to specify
the right amount of information that the hearer needs to uniquely identify the
referent. First of all, robots are good at measuring exact distances, humans
are not. So the robot should employ qualitative descriptions that make use of
the same concepts as a human-produced utterance would. Second, specifying
a referent with respect to another referent that is only identifiable relative
to the first one leads to infinite recursion instead of the communicative goal.
Finally, the robot might have a vast knowledge about facts and entities in the
world, but it should not always try to uniquely separate the referent from all
entities in the world. At the same time, it is necessary to provide enough in-
formation to distinguish the intended referent from those entities in the world
that potentially distract the hearer. The following expressions might serve as
more appropriate variants of the previous examples:

“the kitchen around the corner”
“the red mug left of the china plate”
“Peter’s office”

“the large hall on the first floor”

Ll e
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The fact that these might (or might not!) be successful referring expres-
sions points to the importance of knowing what the given context in a situation
is. This is especially the case for a mobile robot that operates and interacts
in large-scale space. It is thus an important basis to endow the robot with
a spatial representation that resembles the way humans conceive of their en-
vironment. But it is not enough; the robot must also be able to determine
which entities in the world might act as potential distractors with respect to
the hearer’s knowledge.

In the following paragraphs we will show how our multi-layered concep-
tual spatial map provides a suitable knowledge base for Dale and Reiter’s
incremental GRE algorithm[20]. Furthermore, we will propose a method for
a proper construction of the context set for successfully referring to entities
in large-scale space.

The instances in the ontology are the entities of the world model. The con-
ceptual hierarchy provides the taxonomical type information of the instances
that the GRE algorithm requires. Furthermore, a number of concepts such as
Office, Kitchen, Corridor, Table, etc. are marked as basic level categories,
cf. [14] and [49]. The relations between instances are the attributes that the
algorithm can use to further specify a referent. In terms of the Dale and Reiter
algorithm, we currently use the following list of attributes, ordered by their
preference: { type, topological inclusion, ownership, name ).

Type

We represent an entity’s type as the (asserted and inferred) concepts of the
corresponding instance. Through ontological reasoning, we can retrieve an
instance’s most specific concept, its basic level category, and all the instances
of a concept.

Topological inclusion

If the current context spans topological units at different hierarchical levels (cf.
Figure 10) it is important to specify the intended referent with respect to the
topological unit that contains the referent, e.g. when referring to “the kitchen
on the 3rd floor”, or “the table in the lab”. In the ontology the transitive
property topoIncluded(X,Y) and its inverse property topoContains(Y,X)
represent topological positions of entities. By constructing a query to the
reasoner that only returns those ‘topological containers’ of an entity that don’t
contain any other entities which in turn also contain the entity, we assure to
only take into account direct topological inclusion despite the transitivity of
the ontological properties.

Ownership

Areas in an environment are often referred to by identifying their owners,
e.g. “Bob’s office”. In our ontology instances of Area can be related to a
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Person instance via the owns(X,y)/isOwnedBy(Y,X) relation pair. People
are instances of the ontological concept Person. The name of a person is
represented as a string datatype property.

Name

As names are usually (locally) unique, e.g. “the Occam meeting room”, or
“office 1207, they are definitely a highly discriminating attribute for the GRE
task. However, names do not seem to be a preferred category for referring to
rooms as they seldom contain more useful information than a generic NP + PP
referring expression, e.g. “the meeting room on the first floor next to the large
hall”. On the contrary, such a generic referring expression might even bear
additional useful information. Moreover, remembering the inherently artificial
name for an entity might involve a higher cognitive load than processing
the information encoded in a more generic referential description. For other
scenarios though, such as an information desk agent at a hospital, or any other
institution in which there is a specific naming scheme, such as e.g. encoding
floor number and department, and numbering them in sequential order, the
name feature can conceivably be placed in a higher-ranking position in the
preference list. In our ontology names for areas are represented as a string
datatype property.

Determining the appropriate contrast set

In order to successfully identify a referent it is important to determine a cor-
rect and appropriate contrast set. If the contrast set is chosen too small, the
hearer might find it difficult to uniquely identify the intended referent with
respect to his or her knowledge. If, on the other hand, a too large contrast
set is assumed, the generated referring expression might violate Grice’s Max-
ims, here the Maxim of Quality, in that it contains too much unnecessary
information.

Since the contrast set is defined relative to a context set, the crucial task is
hence to determine which part of the environment constitutes the current con-
text. For one, the context needs to include the intended referent. The context
must also include the current referential anchor, i.e. what is considered the
current position of the two interlocutors. In the simple case, this referential
anchor is the physical location where the dialogue takes place. But as a dia-
logue evolves, the referential anchor moves through space and time. Consider
the following example dialogue:

Person A: “Where is the exit?”

Person B: “You first go down this corridor. Then you turn right. After a
few steps you will see the big glass doors.”

Person A: “And the bus station? Is it to the left?”
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Fig. 10. A topology of places, rooms and floors. Stars depict navigation nodes that
denote free and reachable space for our robotic system. The set of navigation nodes
is partitioned into distinct spatial areas, such as e.g. rooms. Areas in turn can belong
to a floors, which are on the next level of abstraction. Using topology abstraction,
we construct an appropriate context set for the GRE task.

As can be seen, any utterance in such a collaborative dialogue is grounded
in previously introduced discourse referents, both temporally and spatially.

Assuming the last mentioned discourse referent (or the physical location of
a conversation) as the referential anchor, the question remains which other en-
tities constitute the current discourse context. In other words: when referring
to things, places, and actions in large-scale space, what possible distractors
must one rule out in order for a referential description to be successful?

It is a widely accepted theory that humans tend to represent large-scale
space in terms of topologies, rather than using exact measures. Following this
view, we claim that the context for a dialogue situated in large-scale space
can be determined on the basis of a topological representation.

Figure 10 shows a topological segmentation of an indoor space like the one
used in our robotic system. The smallest unit in this representation is a graph-
like structure of ‘place nodes’ (distinct places of approx. 1m in diameter that
can be reached by the robot) and ‘object nodes’ (places from which objects are
visible). These nodes are linked by edges that denote accessibility or visibility
of one node from another. Through a number of processes, cf. Chapter 5, this
graph is segmented into distinct areas, corresponding to e.g. rooms, corridors,
or special regions within larger spatial structures. This segmentation into areas
yields a first topological abstraction of space, in which the information about
containment and reachability of its units is preserved, but metric distances
don’t play a role.
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Require: r = intended referent; a = referential anchor
Initialize: CONTEXT = {}
CONTEXT = CONTEXT U topological Children(a) U {a}
if r € CONTEXT then
return CONTEXT
else
Initialize topological containers to check: CONTAINERS = {a}
while r ¢ CONTEXT do
if CONTAINERS = {} then
return failure
end if
for each c € CONTAINERS do
for each p € topological Parents(c) do
CONTAINERS = CONTAINERS U {p}
CONTEXT = CONTEXT U topological Children(p)
end for
end for
end while
return CONTEXT
end if

Fig. 11. Topological abstraction algorithm for context generation.

Our process of topology abstraction for determining the context set is
depicted in Figure 11. It can be paraphrased as “Start with the referential
anchor and check whether the intended referent is a member of the set of the
referential anchor and its child nodes. If so, this set is the referential con-
text. If not, construct the set of the referential anchor’s parent nodes and
their children, and check again. Repeat this procedure of topological abstrac-
tion until the intended referent is a member of this growing context set.”
With respect to the ontological representation of the conceptual spatial map,
the function topologicalChildren(z) corresponds to a query that matches all
instances ¢ for which topoContains(x,i) applies. topologicalChildren(x) is
defined as the set of instances ¢ for which the direct, intransitive variant
direct-topoContains(x,1i) is true.

This means that if an object is located in the same room as the user and
the robot, only local landmarks should be considered potential distractors.
Likewise, if the robot is to produce a referring expression to a room on a
different floor, all known entities inside the building will form the context.
Using topological inclusion as the most preferred attribute (after type) will
then essentially function as an early pruning of the hierarchically ordered
context set.

5.4 Understanding references to elsewhere

A conversational robot should not only be able to produce meaningful speech,
but also must be able to understand verbal descriptions given by its users.
Similar to the challenge of generating referring expressions to entities in large-
scale space, a dialogue system for a mobile robot will have to deal with its
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user’s referring expressions. The robot essentially needs to match a complex
nominal construction with its internal knowledge base. Analogous to the task
of generating referring expressions, an appropriate context against which to
compare the referential description is crucial.

The first step is to translate the semantic interpretation of an utterance
into a query to the ontology reasoner. This is being done through the archi-
tectural binding subarchitecture. A Logical Form is translated into a proxy
structure, i.e. a number of proxies with well-defined ‘concept’ features, and
labelled relations between them. The subarchitecture that holds the concep-
tual spatial mapping and reasoning functionality then reads the full relational
proxy structure and converts the provided features into attribute-value pairs
in the representation of the ontology. The relations are also reconstructed
in the ontology language. Iteratively, an ontological description of the refer-
ring expression is generated. This description will then serve as a query to
the reasoner. Upon such a query the reasoner will return all instances in its
knowledge base that fulfill the criteria specified by features and relations.

In order to not overgenerate possible referents, the resulting query needs to
be evaluated against a subset of the full knowledge base. The relevant subset
is the discourse context. Following the approach described above, the query is
first evaluated against the child nodes of the current discourse anchor and the
discourse anchor itself. If the reasoner does not find any instances that satisfy
the description, the context set is increased using the method of topological
abstraction until at least one possible referent can be identified within the
context.

6 Talking about things you can do

So far we have seen how bi-directionality figures in situated dialogue process-
ing, when talking about things and space. We are using information about the
situated context to predictively filter interpretations in speech recognition and
incremental parsing, and later on use grounding of content to further zoom in
on those interpretations which are contextually supported. Furthermore, go-
ing back and forth between what we know about the scene, the environment,
and what we would like to say, we can generate referring expressions which
are contextually appropriate.

But how about action? And where do we draw the line between action and
interaction, in situated dialogue? We know from human communication that
the very situatedness of such dialogues allows us to ”overload” actions, giving
them also a communicative function. If we want to provide similar possibil-
ities for human-robot interaction, we need to consider how action planning,
and dialogue planning, should interact. This takes the bi-directionality even
further, from sharing content to sharing decision making processes.
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Below we first discuss how action planning and situated dialogue process-
ing interact at content-level, and then close with a discussion on the spectrum
between planning for action and interaction.

Things you can do

When we talk about performing an action, it’s about more than just the act
itself. There are the objects involved, who is to do something. There is what
we assume as outset, and what we expect to be the outcome of the action.
And it is all these aspects that somehow need to match up in context — in the
dialogue context as well as in the situated context.

What we do is to interpret the action further. We follow [43] and assign the
action a so-called event nucleus . The event nucleus models the action as an
event with temporal and causal dimensions. It models what needs to be done
before this action could be performed, and what would result from performing
this action — in as far as we can determine this linguistically, of course. In [37]
we discussed detail how we formally model the event nucleus. Here we will
focus on the basic intuitions behind these models, and discuss their interaction
with the ideas about indexicality, intentionality, and information structure we
discussed already earlier.

@{handle0:accomplishment}(nucleus)

@{handle | :activity}(preparationprop) @{handle3:consqntstate}(consqntprop)

Contains

»,

Zep o

@{handle2:achievement}(eventprop)

Fig. 12. Event nucleus, from [37]

Figure 12 provides the basic model we use for an event nucleus. Like all
our other representations, it is a relational structure, with variables which are
ontologically sorted. The sorts model a temporal ontology of types of events
[43], whereas the variables themselves gives us the possibility to explicitly
refer to these aspects of an event. We resolve any explicit or implicit temporal
references to these variables, so that we can establish the temporal relations
between events. After all, the ways in which events may be related need to
match the order in which we have been talking about them. For example,
consider we have a sequence of instructions like ” First take the mug, then put
it to the left the plate.” This sequence already indicates that we first need to do
the taking, then putting. Using the event nuclei associated with these actions,
we can establish a much richer interpretation though. The consequence of the
”take” action is that we have the mug — which is exactly what needs to be

event nucleus
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the case for the "put” action. Together with the fact that these actions are
to apply to the same object ("the mug” / ”it”), we can associate "take” as
a preparatory action to ”put.” Finally, we can establish that being "near the
plate” is an intended state for the mug — the goal we are trying to achieve
with the put action.

When we look at the nature of the content we provide for this intended
state or goal, we again see there is a need to differentiate between the infor-
mation status of content. We consider content which specifies the kernel (or
the root) of the content for the intended state to be "new.” Thus, if we have
"put [the mug] to the left of the plate” we start out with considering the mug
and the plate to be "o0ld” and part of the identifiable common ground. The
intended location of the mug, being left of the plate, is new. Before grounding
it in binding working memory, we need to establish whether there is a suitable
location given the action(s) we want to perform.

We thus follow in principle the same approach as we do for questions and
assertions. Considering the command as intentional content, we provide it to
motivation working memory with pointers to the indexical content for "mug”
and "plate.” Action planning in turn tries to establish a suitable location
and plans for executing the action, as described in more detail in [12]. Bi-
directionality between planning, motivation, binding working memory and
dialogue processing subsequently provides feedback on the basis of which we
post-filter out any potential linguistic interpretation for which we cannot find a
suitable, situated plan, and provide communicative feedback on the command.

Between saying and doing

In situated dialogue, there is no clear division between action and interaction.
As a simple example, consider reacting to a put-command like the one above.
The robot could listen. Then provide an elaborate response to make clear it
has understood: ” Okay, let me put the mug to the left of the plate.” And then
do it. This is possible, but it stands in some contrast to what humans tend to
do. There, you often see that someone says ”fine” and moves the mug around.
Or she even just does the latter. The action is the feedback, performing it
gets overloaded with a communicative function of providing feedback.

What we can observe here is the next step in following out the bi-
directionality hypothesis. For most of this chapter, we have considered bi-
directionality in situating the linguistic content construed in a dialogue, be
that during comprehension or production of utterances. Here we go one small
step further, and take bi-directionality to the level of decision processes. We
go from how to understand communication, to how to direct it in a given
situation.

This builds forth on the bi-directional links we have already established, at
an intentional level, between action planning and situated dialogue process-
ing. We pointed out how dialogue meaning has two interrelated dimensions,
namely an indexical and an intentional one. These dimensions determine how
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meaning gets related to content in other modalities in a cognitive architecture.
Notably, intentional content is used within the motivational subsystem of the
architecture to establish plans for action.

It is on this basis we make a first attempt to establish a spectrum of in-
tentions between planning for action and interaction. Dialogue planning can
—naturally— generate dialogue moves from purely linguistic intentions, e.g.
those arising at engagement level [54]. At the same time, it can handle inten-
tions which originate outside the realm of dialogue. Typically, these intentions
stem from an action plan created on the basis of a communicated intention.
The intentions are always accompanied by indexical content, to which they
apply. For example, an externally raised need to inquire with the user about
a property of a particular object will be modeled as a ”question” intention
together with references to the object and the property. We can integrate such
an external intention as a continuation in the dialogue context model, by us-
ing the links we maintain between dialogue referents, and the cross-modally
connected indexical and intentional content they figure in. We provide several
examples of how this works out in a cross-modal clarification context in [38].

7 Conclusions

We started out with the idea that, when it comes to processing, context is
the first and last that situated dialogue is about. It drives what we want to
say, it drives how we want to say or understand something, it drives how
we want to communicate. The way context comes into play, we hypothesize,
is through bi-directionality. Processes can mutually influence each other by
sharing information — about the content they are forming, and the decisions
they are proposing to make.

Throughout this chapter, we have discussed how that works out. We
started out with just talking about ... talking. How we propose the linguistic
aspects of processing situated dialogue can be set up, and how information
about what is salient in the current context (be that the situated context or
the dialogue one) can act as predictor for how to recognize speech or how to
interpret an utterance, and how it naturally influences how we want to refer
to aspects of the environment.

We then continued by gradually investigating more and more aspects of
bi-directionality in situated dialogue processing. We looked at dialogue about
the current visual scene. We saw how relating linguistic content to that scene
requires distinguishing the indexical aspects of what you are talking about,
from the intentional aspects of how you mean what you are saying — against
the background of "old” and "new” information, relative to a common ground
already formed. And the other way round, feeding back into the language sys-
tem, we saw that alternative interpretations could be pruned in post-filtering
on the basis of whether they could be grounded in the situated context.
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Next, we moved perspective from the scene in front of us to the larger
environment around us — where not everything we want to talk about can be
seen all at once. This required to establish connections with further models
for situation awareness, and ontological reasoning to establish how aspects
of the environment could be referred to. Bi-directionality made it possible to
complement linguistic content with further information necessary to resolve
what it is someone is referring to.

Finally, we put bi-directionality into action. We looked at how communi-
cated content about actions could be enriched with event information, so that
we could establish when, how and what was to be done. We established bi-
directional links between planning, motivation and dialogue processing. This
provided the possibility to create plans on the basis of what was being talked
about — and, again, to use information about possible and impossible plans to
weed out irrelevant linguistic interpretations. But, bi-directionality between
action and dialogue can mean even more than that. We saw that, if we con-
sider action and interaction to be a spectrum, rather than two isolated forms of
acting, we can also consider bi-directionality at the level of decision processes.

In retrospect, what do we contribute? We discussed here a system for dia-
logue in human-robot interaction with which the robot can understand more
— what you talk about, and how that relates to the world. More fundamen-
tally, we have argued how one can follow out the idea that context matters in
situated dialogue processing. We can involve context, be that situated context
or any type of deliberative context, by connecting processes in a bi-directional
fashion. This way, processes canexchange information, complement and extend
each others content, and generally help guide processing by focusing attention
on content which makes sense a given situated context. To make this possi-
ble, we designed our processing to be incremental and multi-level, and use
rich representations which can easily capture various levels of specificity and
ambiguity of content. And, most importantly, we show what bi-directionality
brings. For dialogue, involving context helps building the right interpreta-
tions, the right expressions — or at least, as we show (in various referenced
publications) we can significantly improve performance over not using any
context. But there is more. We understand more, say things better, because
we have access to information outside of the language system. Information,
like ontological reasoning, spatial organization, or planning, which we could
not establish using purely linguistic means. Ultimately, when it comes to sit-
uated dialogue, what we really understand about dialogue — is about how
we understand how dialogue receives its meaning from the environment we
experience.
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A Packing algorithm

A packing mechanism [47, 15] is used by the incremental parser to efficiently
represent and manipulate logical forms accross the communication subarchi-
tecture. A packed logical form [PLF] represents content similar across the
different analyses of a given input as a single graph, using over- and under-
specification of how different nodes can be connected to capture lexical and
syntactic forms of ambiguity.

After each incremental step, the resulting set of logical forms is compacted
into a single representation, which can then be directly manipulated by various
processes, in order, for example, to prune unsupported interpretations. It can
also be unpacked, ie. the original logical forms can be completely regenerated
(this is done by traversing the packed structure).

The packed representations are made of two basic elements: packing nodes
and packing edges. A packing node groups a set of nominals sharing identical
properties and named relations under a particular subset of the logical forms.
Packing edges are responsible for connecting the different packing nodes to-
gether, thus ensuring the correspondence between the packed structure and
the set of logical forms it represents.

The packing of logical forms is performed in two main steps:

1. An initial PLF is first constructed on the basis of the set of logical forms
(Step 1 of algorithm 6). To this end, each logical form is traversed and its
nominals are used to populate the packed structure.

2. The resulting structure is then compacted by merging particular substruc-
tures (Step 2 of algorithm 6).
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A.1 Example

The Figures 13-15 below exemplify a simple case of packing operation. The
parsed utterance is " Take the ball to the left of the box”. Two distinct readings
can be derived, depending on the interpretation of the phrase "to the left of
the box". In the first reading (LF} in the figure 13), the robot is asked to take
the ball and put it to the left of the box - the phrase is thus seen as indicating
the direction of the move. In the second reading (LF») however, "to the left
of the box" indicates the location of the ball to take.

LEL LF2
take
take actor patient
direction rob ball
rob _ left
patient location
ball arg left
box arg
box

Fig. 13. The two initial logical forms LF; and LF» retrieved from parsing the
utterance " Take the ball to the left of the box”

Figure 14 illustrates the application of the first step of the packing oper-
ation. A packing node - drawn in the figure as a square - is created for each
nominal. A packing edge is constituted for each relation found in the logical
forms. As shown in the figure, some packing edges are shared by both logical
forms, whereas others are only evidenced in one of them. An example of the
first case is the edge between "take” and "robot", which shared by the two
logical forms LF} and LF5. The edge between "take” and "left” illustrates the
second case: it is only evidenced in LF.

In the example we present here, all packing edges have only one pack-
ing node target. In the general case however, several distinct targets can be
specified within the same edge.

During the second step, the packed structure is compacted by merging
packing nodes. The criteria to decide whether two packing nodes can be
merged is the following: if (1) two packing nodes are connected by a packing
edge, and if (2) the logical form identifiers for the head node, the edge and
the target node are all identical, then the two packing nodes can be merged.
For example, the packing node surrounding "take" and the one surrounding
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take
. direction
i patient .. (LF1)
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Fig. 14. The resulting packed logical form, before compacting

LV

"robot” can be merged, since the two nodes and the edge between them are

present both in LF; and LF5.

The compacting operation is repeated until no more merges are possible.
In our case, illustrated in the figure 15, we are left with two packing nodes,
one rooted on the nominal "take”, and one on "left”.

take -
direction
.__(LFl]l
........ O
: X
% location
i (LF2) left
i arg
box

Fig. 15. The final packed logical form, after compacting
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A.2 Data structures

We present below the informal specifications of the various data structures

used to construct PLF's. See figure 17 for a graphical representation.

PackedLogicalForm:

id: packed logical form identifier
packingNodes: set of packing
nodes

root: root packing node

PackingNode:

id: packing node identifier
packedNominals: set of packed
nominals

Iflds: set of LF identifiers, enu-
merating the logical forms in
which the nominals included in
the packing node are present
root: root nominal

PackedNominal:

id: packed nominal identifier
sort: ontological sort

prop: logical proposition
features: set of packed features
relations: set of internal relations
packingEdges: set of outgoing
packing edges

PackedFeature:

feature: name of the feature
value: value of the feature

Iflds: set of the LF identifiers,
enumerating the logical forms
in which the feature holds

PackingEdge:

id: packing edge identifier

head: head nominal

mode: edge label
packingNodeTargets: set of pack-
ing node targets

PackingNodeTarget:

Iflds: set of LF identifiers, enu-
merating the logical forms in
which the edge exists

target: packing node targeted by
the edge

Fig. 16. Data structures used to construct PLFs
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PackingNode |
IntemaIReIationﬁ
PackedNominal |
PackingEdge |
' "( """""""""" PackingMNodeTarget |
Iy 4

O O

Fig. 17. Graphical representation of the data structures
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A.3 Pseudo-code

We finally describe the details of the algorithms used in the packing mecha-
nism we implemented.

Algorithm 1 : Pack(LFs) - Packing of a set of logical forms

Require: LFs is a set of logical forms (describing the same utterance)

% Step 0: Initialization

rootNominal « ( rootSort, 'root’, 0,0, 0)
rootNode « ( {rootNominal}, (), rootNominal )
packingNodes <« {rootNode}

PLF «— ( packingNodes, rootNode )

% Step 1: Construction of the packed logical form
for 1f € LFs do

AddLFInformation(1f, PLF)
end for

% Step 2: Merge of the packed logical form
PLF = MergePackedLogicalForm(PLF)

return PLF

Algorithm 2 : CreateNewNode (nom) - using the information in nom, create
(1) a new packing node, (2) a new packed nominal inside it and (3) new
packing edges connected to the latter.

Require: A well-formed nominal nom

newEdges «— 0
for every relation rel in rels(nom) do
% A packing edge is defined with a head nominal, a mode (”edge label”), a set of packing
node targets, and a set of logical form identifiers
newEdge < ( head(rel), mode(rel), {target(rel)}, {1fId(nom)}),
newEdges < newPackingEdges U {newEdge}
end for

% A packing nominal comprises an ontological sort, a logical proposition, a set of features,
a set of internal relations, and a set of outgoing packing edges
newNom < ( sort(nom), prop(nom), feats(nom), (), newEdges )

% A packing node is a triple comprising a set of packing nominals, a set of LF identifiers,

and a reference to the root nominal
newPackingNode < ({newNom},{1fId(nom)}, newNom)

return newPackingNode
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Algorithm 3 : AddLFInformation(lf, PLF) - Add the information con-
tained in 1f to the packed logical form.

Require: 1f is a well-formed logical form
for every nominal nom in nominals(1f) do

if there is no packing node in PLF which encapsulates a packed nominal with the ontological
sort sort(nom) and the logical proposition prop(nom) then

% We create a new packing node and its related substructures
newPackingNode «— CreateNewPackingNode (nom)

% We add the packing node to the PLF structure
packingNodes (PLF) «— packingNodes(PLF) U {newPackingNode}

else
% We update the existing nominal and its dependent edges
let pNom = the packed nominal with sort(nom) and prop(nom)
let pNode = the packing node encapsulating pNom

pNode «— IntegrateNominalToPackingNode(nom, pNode)
end if

if nom is the root nominal in 1f then
% We establish a connection between the root node and the current one

let packingNode = the packing node which encapsulates nom in PLF
Add a packing edge between root (PLF) and packingNode
1fIds(root (PLF)) = 1fIds(root(PLF)) U {id(1f)}

end if

end for

return PLF
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Algorithm 4 : IntegrateNominalToPackingNode (nom, pNode) - integrate
the information contained in nom to the existing packing node pNode

Require: A well-formed nominal nom
Require: A well formed packing node pNode which already encapsulates a nominal with the same
ontological sort and logical proposition as nom

let pNom = the nominal encapsulated in pNode

for every relation rel in rels(nom) do
if J edge € edges(pNom) where mode(rel) = mode(edge) then
% If there is already a packing edge with same mode, add one packing node target and
the LF identifier
targets(edge) —targets(edge) U {target(rel)}
1fIds(edge) « lfIds(edge) U {1fId(nom)}
else
% Else, we create a new packing edge
newEdge < ( head(rel), mode(rel), {target(rel)}, {1fId(nom)})
edges (pNom) «— edges(pNom) U {newEdge}
end if
end for

% Update the features in the nominal, and the LF identifiers in the packing node

feats(pNom) « feats(pNom) U {feats(nom)}
1fIds(pNode) « 1fIds(pNode) U {1fId(nom)}

return pNode

Algorithm 5 : MergePackedLogicalForm(PLF) - compact the PLF repre-
sentation by merging nominals

Require: PLF a well formed packed logical form

while there are packing nodes in PLF which can be merged do
for every packing node packingNode € PLF do
for every nominal nom € nominals(packingNode) do
for every edge edge € edges(nom) do
if edge has only one packing node target then

let LF'S}eqqa = set of logical forms identifiers in packingNode
let LFScqqe = set of logical forms identifiers in edge
let LFStarget = set of logical forms identifiers in target (edge)

if LFSheqd = LFSedgE = LFStaTget then
% If the set of logical forms shared by the two packing nodes (and the
packing edge between them) is identical, then they can be merged in one
packing node

let targetNom = the head nominal of target (edge)
Merge packingNode and targetNom into a single packing node

Transform edge into an internal relation (in the merged packing node) be-
tween nom and targetNom

end if
end if
end for
end for
end for
end while

return PLF
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