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Abstract— In this work we present a system and underlying
representations and mechanisms for continuous learning of visual
concepts in dialogue with a human tutor.

I. INTRODUCTION

Two common and important characteristics of cognitive
systems are the ability to learn and the ability to communicate.
By combining both competencies such a system could also be
capable of interactive learning, i.e., learning in dialogue with
a human, which should significantly facilitate the incremen-
tal learning processes. In this work we briefly describe the
representations and mechanisms that enable such interactive
learning and present a system that was designed to acquire
visual concepts through interaction with a human [1].

Fig. 1 depicts our robot George engaged in a dialogue with
a human tutor1. In this scenario, the main goal is to teach the
robot about object properties (colours and two basic shapes)
in an interactive way. The tutor can teach the robot about
object properties (e.g., ’H: This is a red thing.’), or the robot
can try to learn autonomously or ask the tutor for help when
necessary (e.g., ’G: Is the elongated thing red?’). Our aim
is that the learning process is efficient in terms of learning
progress, is not overly taxing with respect to tutor supervision
and is performed in a natural, user friendly way.

(a) Scenario setup. (b) Observed scene.

Fig. 1. Continuous interactive learning of visual properties.

To enable interactive learning, the system has to be able to,
on one hand, perceive the scene and (partially) interpret the
visual information and build the corresponding representations
of visual objects, and on the other hand, to communicate with
the tutor and interpret the tutor’s utterances, forming the corre-
sponding representations of the linguistic meaning. The system

1The robot can be seen in action in the video accessible at
http://cogx.eu/results/george.

should then relate these two types of modal representations and
on top of them create new, a-modal, representations that enable
further communication and allow for incremental updating of
visual models, therefore facilitate incremental learning. In the
following section we will describe the robot system we have
developed, and the underlying representations and mechanisms
that implement the premises mentioned above.

II. THE SYSTEM

The implementation of the robot is based on a specific
architecture schema, which we call CAS (CoSy Architecture
Schema) [2]. The schema is essentially a distributed working
memory model, where representations are linked within and
across the working memories, and are updated asynchronously
and in parallel. The system is therefore composed of several
subarchitectures (SAs) implementing different functionalities
and communicating through their working memories. The
George system is composed of three such subarchitectures:
the Binder SA, the Communications SA and the Visual SA, as
depicted in Fig. 2.
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Fig. 2. Architecture of the George system.



The Visual SA processes the visual scene as a whole
using stereo pairs of images and identifies regions in the
scene that might be interesting for further visual processing
(3D spaces of interest or SOIs that stick out of the plane).
These regions are further analysed; the potential objects (proto
objects) are segmented using 3D and colour information and
are then subjected to feature extraction. The extracted features
are then used for learning and recognition of qualitative
visual attributes, like colour and shape. These visual concepts
are represented as generative models that take the form of
probability density functions over the feature space. They are
based on online Kernel Density Estimator (oKDE) [3], that
we have developed, and are constructed in an online fashion
from new observations. The oKDE estimates the probability
density functions by a mixture of Gaussians, and is able to
adapt from the positive examples (learning) as well as negative
examples (unlearning) [4]. Our approach also does not assume
the close world assumption; at every step the system also
takes into account the probability that it has encountered a
concept that has not been observed before. Therefore, during
online operation, a multivariate generative model is continually
maintained for each of the visual concepts and for mutually
exclusive sets of concepts (e.g., all colours, or all shapes) the
optimal feature subspace is continually being determined. This
feature subspace is then used to construct a Bayesian classifier
for a set of mutually exclusive concepts, which is used for
recognition of individual object properties.

The recognized visual properties are then forwarded to
the Binder SA, which serves as a central hub for gathering
information from different modalities about entities currently
perceived in the environment. Based on the available infor-
mation, the binder seeks to fuse the perceptual inputs arising
from the various subarchitectures, by checking whether their
respective features correlate with each other. The probability
of these correlations are encoded in a Bayesian network. We
call the resulting (amodal) information structure a belief. The
task of the binder is to decide which perceptual inputs belong
to the same real-world entity, and should therefore be unified
into a belief. The decision algorithm uses a technique from
probabilistic data fusion, called the Independent Likelihood
Pool (ILP) [5]. A belief encodes also additional information
related to the specific situation and perspective in which the
belief was formed, such as spatio-temporal frame, epistemic
status and a saliency value. The beliefs, being high-level
symbolic representations available for the whole cognitive
architecture, provide a unified model of the environment which
can be efficiently used when interacting with the human user.

Beliefs can also be altered by Communication SA. It
analyses an incoming audio signal and parses the created
word lattice. From the space of possible linguistic meaning
representations for the utterance, the contextually most ap-
propriate one is chosen [6]. We represent this meaning as a
logical form, an ontologically richly sorted relational structure.
Given this structure, the Communication SA establishes which
meaningful parts might be referring to objects in the visual
context. The actual reference resolution then takes place when

we perform dialogue interpretation. In this process, we use
weighted abductive inference to establish the intention behind
the utterance.

If the intention was to provide to the system a novel in-
formation that can be learned (Tutor driven learning), a belief
attributed to the human is constructed from the meaning of the
utterance. This event triggers a learning opportunity in Visual
SA, where the corresponding visual concepts are updated. The
learning process can also be initiated by the system itself
(Tutor assisted learning). In the case of missing or ambiguous
modal information (interpretation of the current scene), Visual
SA can send a clarification request to Communication SA,
which formulates a dialogue goal given the information the
system needs to know and how that can be related to the
current dialogue and belief-context. Dialogue planning turns
this goal into a meaning representation that expresses the
request in context. This is then subsequently synthesised,
typically as a polar or open question about a certain object
property, and the tutor’s answer is then used to update the
models.

III. CONCLUSION

In this work we briefly presented the system and underlying
representations and mechanisms for continuous learning of
visual concepts in dialogue with a human tutor. We have made
several contributions at the level of individual components
(modelling beliefs, dialogue processing, incremental learning),
as well as at the system level; all the components presented
in this work have been integrated into a coherent multimodal
distributed asynchronous system. Building on this system, our
final goal is to produce an autonomous robot that will be
able to efficiently learn and adapt to an everchanging world
by capturing and processing cross-modal information in an
interaction with the environment and other cognitive agents.
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