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Representing the epistemic state of the robot and how that epistemic
state changes under action is one of the key tasks in CogX. In this report we
describe progress on this in the first 18 months of the project, and set out
a typology of epistemic knowledge. We describe the specific representations
we have developed for different domains or modalities, or are planning to
develop, and how those are related to one another.
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1 Tasks, objectives, results

1.1 Planned work

Work reported in this deliverable mainly concerns Task 1.1:

Beliefs and beliefs about knowledge producing actions. We will
examine how a system can represent, in a unified way, beliefs
about incompleteness and uncertainty in knowledge. This will
start with work on their representation that will feed into WPs
2, 3 & 4, and it will later unify the modality specific represen-
tations of incompleteness and uncertainty coming up from these
packages. Representations of knowledge producing actions will
utilise these to represent the preconditions and effects of knowl-
edge producing actions. These knowledge action effects will be
used in WP4 for planning information gathering and processing.
This task will also support work on introspection.

1.2 Actual work performed

1.3 Relation to the state-of-the-art

EU FP7 CogX 5



DR 1.2: Unifying representations of beliefs Wyatt et al.

2 Introduction

Central to the approach in CogX is the notion of self-understanding. We
define this as an agent being in possession of representations and algorithms
that explicitly represent and reason about what that agent does and doesn’t
know, and the uncertainty in its knowledge. This report gathers together the
different types of representations we employ in the project, and relates them
together through a typology. This is a first, but important step to providing
a unified framework for representations that support self-understanding. In
the project we have already written often about gaps and uncertainty in
knowledge. These are not the same, but what useful definitions of them can
we arrive at, and what different types of gaps and uncertainty are there? To
help us, while it is not an entirely satisfactory term, we use incompleteness
as an umbrella term to cover many different types of knowledge gaps and un-
certainty about knowledge. We can think about a typology of incompleteness
in knowledge based on three dimensions of variability. These are the nature
of the incompleteness, the type of knowledge that is incomplete, and whether
the incompleteness is represented in a quantitative or qualitative manner.
We illustrate these, together with some examples for each in Figure 2.

With regard to the nature of the incompleteness, in the simplest case we
may have a variable or variables that have a defined set of possible values
or hypotheses from which the true value is known to be drawn. We refer
to this as variable value uncertainty. We can also have uncertainty about
the number of variables needed in a model, i.e. about the model complexity.
Finally we can also have cases where the agent knows that a variable is
of an unexperienced class, i.e. that it is experiencing novelty. This can
include cases where the variables are continuous but where the observation
models for a class are quite confident and do not generalise well to some new
observation. The type of knowledge that is incomplete may vary enormously.
Four simple types that cover a variety of cases include contingent knowledge
about the current world state, structural knowledge about the relationships
that typically hold between variables, knowledge consisting of predictions of
action outcomes or events, and knowledge about their causes. Finally there
is a question about whether the representation is qualitative or quantitative.
In qualitative representations of gaps or uncertainty we have a set of possible
values for the variable, or a statement that the variable value is unknown,
or knowledge that there may be many variables that are unmodelled. In
quantitative representations we will have some kind of scalar values attached
to hypotheses (e.g. is this a cup or mug) or statements (such as whether there
is novelty or not), and in our case these will typically be probabilities. Note
that by a quantitative gap or quantitative uncertainty we do not mean that
the underlying space for the variable is continuous or discrete, but instead
that the way the incompleteness is represented involves an expression of
preference for one hypothesis or statement versus another.

EU FP7 CogX 6
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Nature of the
incompleteness

Type of 
knowledge

Quantitative 
vs. Qualitative

Variable value

Model complexity

Novelty

State

Structure

Effect

Cause

Quantitative

Qualitative

Figure 1: Three dimensions of variation in gaps and uncertainty.

Based on these distinctions we can give some examples of specific types
of uncertainty and gaps that populate the space defined by the typology. In
the remaining sections we will relate the representations we have developed
to these.

1. State value uncertainty: here a possible set of values for a variable
describing part of the environment state (e.g. the identity of an object)
is known. But the specific value that holds for a specific situation is
unknown. If the uncertainty is qualitatively represented the set will be
all the information the gent has. If the uncertainty is quantitatively
represented it will be the case that a probability density is defined over
that set.

2. Uncertainty about state model complexity: here it is uncertain how
many features there are of a particular type (e.g. how many objects
there are in the room). The space here being the set of natural num-
bers. Again if the uncertainty is qualitative it will the possible numbers
of objects will be known. If it is quantitatively captured there will be
a probability density over some subset of the natural numbers. Other
examples include not knowing how many possible rooms there are in
building, or how many categories of rooms are possible, or how many
different equivalent configurations two objects might have.

3. State novelty: it is possible that the value of a variable is not drawn
from the set of normal experienced values for that variable type, e.g.
this is a colour of object I haven’t seen before. It could be that there
is some combination of this with state value uncertainty. In this case
there may be a likelihood that the variable value is novel or not. In
the case of continuous variables this would be a value that lies outside
the previously existing range of values, in other words we have an
experience that is extrapolating our previous range of experience.

EU FP7 CogX 7
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4. Structural variable value: structural knowledge defines how the vari-
ables in an environmental model, i.e. a model of state, are related to
one another. Examples of this include the relationship between two
variables in an ontology. For example a kitchen is a sub-type of room,
and a particular kitchen is an instance of that type. Kitchens con-
tain objects such as mugs, cookers and sinks. Alternatively having
an association between variables is also a type of structural knowl-
edge. There is for example a particular subset of the hue space that
is conventionally labelled blue by most English speakers, or it may be
known that one location is directly linked to another. All these struc-
tures may have uncertainty as to whether relationships exist within a
set of variables, and if so what those relationships might be.

5. Structural model complexity: for some kinds of structural knowledge
it may be useful express the uncertainty about the possible structural
complexity of an agent’s models. In map learning, for example there
may be some uncertainty about how many places in a building are
directly connected to one another.

6. Structural novelty: it may be the case that an ontology does not cap-
ture the current type of experience adequately, and that new types
need to be added to the ontology. So that for example, there may be
no notion that there is a kind of thing called a colour, but that after
learning an associative model of blue, red, green and yellow the learner
becomes aware that these labels all refer to portions of a similar space.
It may be that if the wrong representation is used, e.g. RGB is used
to encode colour, that the space must be re-represented in order to
separate one kind of variation from another, e.g. the brightness of a
colour from the hue. Spotting structural novelty means spotting the
gap in an ontology, or spotting that the relationships between variables
is new.

7. Effect value uncertainty: this concerns cases where the effect of an
action is not determined, but drawn from a known set. Possibly the
likelihood of particular outcomes may be known.

8. Effect model complexity: it may simply be uncertain as to how many
effects of an action there are.

9. Effect novelty: it may be that an action has been taken, and that its
effect or outcome is novel in some respect.

10. Causal value uncertainty: it may be that an action has uncertain
outcomes, but that this non-determinism can be eliminated, or the
uncertainty in the effects reduced. To do this variables and values for

EU FP7 CogX 8
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them must be identified which tell us which outcomes are more or less
likely.

11. Causal model complexity: here it is unknown how many variables may
influence the outcome of an action or event, and the precise relation-
ship between them may be unknown.

12. Causal novelty: here is it known that an action which normally has a
reliable effect has an unexpected outcome, i.e. there is a suprise, and
that there must therefore be a cause of that suprising outcome.

In the following sections we describe in detail the representations we use
in different aspects of the project. We also relate them to this typology.
This is the first step towards a unified account of representations for self-
understanding.

3 Multi-modal representation of beliefs

Intelligent robots needs to be aware of their own surroundings. This aware-
ness is usually encoded in some implicit or explicit representation of the
situated context. Such representation must be grounded in multiple sensory
modalities and be capable of evolving dynamically over time. Moreover, it
must be able to capture both the rich relational structure of the environment
and the uncertainty arising from the noise and incompleteness of low-level
sensory data.

In this section, we present a new framework for constructing rich belief
models of the robot’s environment. We start by describing the architecture
in which our approach has been integrated, then detail the formal represen-
tations used to specify multi-modal beliefs, and finally briefly explain how
such beliefs can be constructred from perceptual inputs.

Beliefs also incorporate various contextual information such as spatio-
temporal framing, multi-agent epistemic status, and saliency measures. Such
rich annotation scheme allows us to easily interface beliefs with high-level
cognitive functions such as action planning or communication. Beliefs can
therefore be easily referenced, controlled and extended “top-down” by ex-
ternal processes to reach beyond the current perceptual horizon and include
past, future or hypothetical knowledge.

The interested reader is invited to look at the extended report entitled
“Belief Modelling for Situation Awareness in Human-Robot Interaction” at-
tached to this document for more detailed information.

3.1 Architecture

Our approach to rich multi-modal belief modelling is implemented in a spe-
cific module called the “binder”. The binder is directly connected to all

EU FP7 CogX 9
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subsystems in the architecture (i.e. vision, navigation, manipulation, etc.),
and serves as a central hub for the information gathered about the environ-
ment.

The core of the binder system is a shared working memory where beliefs
are formed and refined based on incoming perceptual inputs. Fig. 2 illus-
trates the connection between the binder and the rest of the architecture.

Binder

Working 
Memory

Processing components

... ...

Subsystem 1 Subsystem 2 Subsystem 3

Local 
WM

... ...

Local 
WM

... ...

Local 
WM

... ...

refine

update

Figure 2: Schema of the cognitive architecture in relation with the binder

3.2 Representation of beliefs

Each unit of information manipulated by the binder is expressed as a prob-
ability distribution over a space of possible values. Such unit of information
is called a belief.

Beliefs are constrained both spatio-temporally and epistemically. They
include a frame stating where and when the information is assumed to be
valid, and an epistemic status stating for which agent(s) the information
holds.

Formally, a belief is a tuple 〈i, e, σ, c, δ, h〉, where i is the belief identifier,
e is an epistemic status, σ a spatio-temporal frame, c an ontological category,
δ is the belief content (specified as a probability distribution), and h is the
history of the belief.

We describe below each of these components one by one.

3.2.1 Epistemic status e

Interactive robots must be able to distinguish between their own knowledge,
knowledge of others, and shared knowledge (common ground). We specify
such information in the epistemic status of the belief. For a given agent a,
the epistemic status e can be either:
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• private, denoted K{a}: private beliefs come from within the agent
a. In other words, they are a direct or indirect result of agent a’s
perception of the environment;

• attributed, denoted K{a[b1, ..., bn]}: Attributed beliefs are beliefs which
are ascribed to other agents. They are a’s conjecture about the mental
states of other agents b1, ..., bn, usually as a result of a’s interpretations
of previous communicative acts performed by b1, ..., bn.

• shared, denoted K{a1, ..., am}: Shared beliefs contain information which
is part of the common ground for the group [8].

3.2.2 Spatio-temporal frame σ

The spatio-temporal frame σ defines a contiguous spatio-temporal inter-
val, the nature of which depends on the application domain. In the simplest
case, the spatial dimension can be modelled by a discrete set of regions and
the temporal dimension via intervals defined on real-valued time points.

It is important to note that beliefs can express past or future knowledge
(i.e. memories and anticipations). That is, beliefs need not be directly
grounded in the “here-and-now” observations.

3.2.3 Ontological category c

The ontological category is used to sort the various belief types which
can be created. Various levels of beliefs are defined, from the lowest to the
highest abstraction level. Figure 5 illustrates the role of these categories in
the belief formation process.

1. The lowest-level type of beliefs is the percept (or perceptual belief ),
which is a uni-modal representation of a given entity1 or relation be-
tween entities in the environment. Perceptual beliefs are inserted onto
the binder by the various subsystems included in the architecture. The
epistemic status of a percept is private per default, and the spatio-
temporal frame is the robot’s present place and time-point.

2. If several percepts (from distinct modalities) are assumed to originate
from the same entity, they can be grouped into a percept union. A
percept union is just another belief, whose content is the combination
of all the features from the included percepts.

3. The features of a percept union can be abstracted using multi-modal
fusion and yield a multi-modal belief.

1The term “entity” should be understood here in a very general sense. An entity can
be an object, a place, a landmark, a person, etc.
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4. If the current multi-modal belief (which is constrained to the present
spatio-temporal frame) is combined with beliefs encoded in past or
future spatio-temporal frames, it forms a temporal union.

5. Finally, the temporal unions can be refined over time to improve the
estimations, leading to a stable belief, which is both multi-modal and
spans an extended spatio-temporal frame.

3.2.4 Belief content δ

The distribution δ defines the possible content values for the belief. In
general, each alternative value can be expressed as a (propositional) logical
formula. In most practical cases, such formula can be represented as a flat
list of features. The feature values can be either discrete (as for categorical
knowledge) or continuous (as for real-valued measures). A feature value can
also specify a pointer to another belief, allowing us to capture the relational
structure of the environment we want to model. The resulting relational
structure can be of arbitrary complexity.

Discrete probability distributions can be expressed as a set of pairs 〈ϕ, p〉
with ϕ a formula, and p a probability value, where the values of pmust satisfy
the usual constraints for probability values. For continuous distribution, we
generally assume a known distribution (for instance, a normal distribution)
combined with the required parameters (e.g. its mean and variance).

The distribution can usually be decomposed into a list of smaller distri-
butions over parts of the belief content. This can be done by breaking down
the formulae into elementary predications, and assuming conditional inde-
pendence between these elementary predicates. The probability distribution
δ can then be factored into smaller distributions δ1...δn.

3.2.5 Belief history h

Finally, via the belief history h, each belief contains bookkeeping infor-
mation detailing the history of its formation. This is expressed as two set
of pointers: one set of pointers to the belief ancestors (i.e. the beliefs which
contributed to the emergence of this particular belief) and one set of point-
ers to the belief offspring (the ones which themselves emerged out of this
particular belief).

3.2.6 Example of belief representation

Figure 3: A blue mug

Consider an environment with a blue mug such
as the one pictured in Figure 3. The mug is per-
ceived by the robot sensors (for instance, by one
binocular camera). Sensory data is extracted and
processed by the sensory subarchitecture(s). A

EU FP7 CogX 12
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the end of the process, a perceptual belief is cre-
ated, with four features: object label, colour, lo-
cation, and height.

Due to the noise and uncertainty of sensory data, the perceived charac-
teristics of the object are uncertain. Let us assume two uncertainties:

• The colour value of the object is uncertain (the vision system hesitates
between blue with probability 0.77 and purple with probability 0.22),

• and the recognition of the object itself is also uncertain (the recognised
object might be a false positive with no corresponding entity in the
real world. The probability of a false positive is 0.1).

Such perceptual belief i would be formally defined as:

〈i, {robot}, σ[here-and-now], percept, δ, h〉 (1)

with a probability distribution δ containing three alternative formulae ϕ1,
ϕ2 and ϕ3. A graphical illustration of the belief i is provided in Figure 4.

We can see in Figure 4 that the formula ϕ2 specifies the existence (with
probability 0.7) of a blue mug entity of size 11.2 cm, at location k, perceived
by the robot in the current spatio-temporal frame (“here-and-now”). Notice
that the location is described as a pointer to another belief k. Such pointers
are crucial to capture relational structures between entities.

Belief i

Epistemic status:
σ[here-and-now]

{robot}
percept

Spatio-temporal frame:

Ontological category:

k

...ϕ2Formula

Probability:

ϕ1Formula

Probability:

Exists ∧
〈Label〉 mug ∧
〈Colour〉 blue ∧
〈Location〉 k ∧
〈Height〉 11.2

Exists ∧
〈Label〉 mug ∧
〈Colour〉 purple ∧
〈Location〉 k ∧
〈Height〉 11.2

Probability distribution δ

¬Exists

Formula ϕ3

0.70.2

0.1Probability:

Belief 

Belief history:

Origin o

[
ancestors : [o]
offspring : [b1, b2]

]

Belief b1 Belief b2

Figure 4: Schematic view of a belief representation.

EU FP7 CogX 13



DR 1.2: Unifying representations of beliefs Wyatt et al.

The belief i also specifies a belief history h. The belief i being a percept,
its history is defined as a pointer to a local data structure o in the subarchi-
tecture responsible for the belief’s creation. The belief history also contains
two pointers b1 and b2 to the belief’s offspring.

3.3 Bottom-up belief formation

We now turn our attention to the way a belief model can be constructed
bottom-up from the initial input provided by the perceptual beliefs. The
formation of belief models proceeds in four consecutive steps: (1) perceptual
grouping, (2) multi-modal fusion, (3) tracking and (4) temporal smoothing.
Figure 5 provides a graphical illustration of this process.

The rules governing the construction process are specified using a first-
order probabilistic language, Markov Logic. Markov Logic is a combination
of first-order logic and probabilistic graphical models. Its expressive power
allows us to capture both the rich relational structure of the environment
and the uncertainty arising from the noise and incompleteness of low-level
sensory data. Due to space constraints, we cannot detail the formal prop-
erties of Markov Logic here, the interested reader is advised to look at the
extended report for further information.

...

...Time

Tracking

...

t - 1 t t + 1

Multi-modal fusion

Temporal smoothing

Perceptual 
grouping

Multi-modal belief

Percept

Percept union

Temporal union

Stable belief

Levels of beliefs

Figure 5: Bottom-up belief model formation.
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3.3.1 Perceptual grouping

The first step is to decide which percepts from different modalities belong
to the same real-world entity, and should therefore be grouped into a belief.
For a pair of two percepts p1 and p2, we infer the likelihood of these two
percepts being generated from the same underlying entity in the real-world.
This is realised by checking whether their respective features correlate with
each other.

The probability of these correlations are encoded in a Markov Logic
Network. The formulae might for instance express a high compatibility
between the haptic feature “shape: cylindrical” and the visual feature “object:

mug” (since most mugs are cylindrical), but a very low compatibility between
the features “shape: cylindrical” and “object: ball”. Eq. (2) illustrates the
correlation between the cylindrical shape (Cyl) and the object label “mug”
(Mug).

wi Shape(x, Cyl) ∧ Label(y, Mug)→ Unify(x, y) (2)

Markov Logic formulae can also express incompatibility between fea-
tures, for instance between a spherical shape and a object labelled as a
mug:

wj Shape(x, Spherical) ∧ Label(y, Mug)→ ¬Unify(x, y) (3)

Additional formulae are used to specify generic requirements on the per-
ceptual grouping process, for instance that x and y must be distinct beliefs
and originate from distinct subarchitectures. The prior probability of a
grouping is also specified as a Markov Logic formula.

A grouping of two percepts will be given a high probability if (1) one
or more feature pairs correlate with each other, and (2) there are no in-
compatible feature pairs. This perceptual grouping process is triggered at
each insertion or update of percepts on the binder (provided the number
of modalities in the system > 1). The outcome is a set of possible unions,
each of which has an existence probability describing the likelihood of the
grouping.

3.3.2 Multi-modal fusion

We want multi-modal beliefs to go beyond the simple superposition of iso-
lated modal contents. Multi-modal information should be fused. In other
words, the modalities should co-constrain and refine each other, yielding
new multi-modal estimations which are globally more accurate than the
uni-modal ones.

Multi-modal fusion is also specified in a Markov Logic Network. As an
illustration, assume a multi-modal belief B with a predicate Position(B, loc)
expressing the positional coordinates of an entity, and assume the value loc
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can be estimated via distinct modalities a and b by way of two predicates
Position(a)(U, loc) and Position(b)(U, loc) included in a percept union U.

wi Position(a)(U, loc)→ Position(B, loc) (4)

wj Position(b)(U, loc)→ Position(B, loc) (5)

The weights wi and wj specify the relative confidence of the measurements
for the modality a and b, respectively.

3.3.3 Tracking

Environments are dynamic and evolve over time – and so should beliefs.
Analogous to perceptual grouping which seeks to bind observations over
modalities, tracking seeks to bind beliefs over time. Both past beliefs (mem-
orisation) and future beliefs (anticipation) are considered. The outcome of
the tracking step is a distribution over temporal unions, which are combi-
nations of beliefs from different spatio-temporal frames.

The Markov Logic Network for tracking works as follows. First, the
newly created belief is compared to the already existing beliefs for similarity.
The similarity of a pair of beliefs is based on the correlation of their content
(and spatial frame), plus other parameters such as the time distance between
beliefs.

Eq. (6) illustrates a simple example where two beliefs are compared on
their shape feature to determine their potential similarity:

wi Shape(x, Cyl) ∧ Shape(y, Cyl)→ Unify(x, y) (6)

If two beliefs B1 and B2 turn out to be similar, they can be grouped in a
temporal union U whose temporal interval is defined as [start(B1), end(B2)].

3.3.4 Temporal smoothing

Finally, temporal smoothing is used to refine the estimates of the belief
content over time. Parameters such as recency have to be taken into account,
in order to discard outdated observations.

The Markov Logic Network for temporal smoothing is similar to the one
used for multi-modal fusion:

wi Position(t-1)(U, loc)→ Position(B, loc) (7)

wj Position(t)(U, loc)→ Position(B, loc) (8)

4 Beliefs about Space

Spatial knowledge constitutes a fundamental component of the knowledge
base of a mobile agent, such as Dora, and many functionalities directly
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depend on the structure of the spatial knowledge representation, ranging
from navigation, over spatial understanding and communication.

In our system, spatial knowledge is represented in multiple layers, at
different levels of abstraction, from low-level sensory input to high level
conceptual symbols. Moreover, continuous space is discretised into a finite
number of spatial units. The abstraction and discretisation processes is one
of the most important abstracting steps in representing spatial knowledge
as it allows to make the representation compact, tractable and robust to
changes that occur in the world. Discretization drastically reduces the num-
ber of states that have to be considered e.g. during the planning process [13]
and serves as a basis for higher level conceptualization [31].

This section explains how different domains of spatial knowledge are
represented in our system. The representation focuses on structuring and
abstracting what is known, but also on representing uncertainty and knowl-
edge gaps explicitly.

4.1 Spatial Knowledge Representation for Mobile Cognitive
Systems

Before designing a representation of spatial knowledge, it is important to
review the aspects a representation should focus on. In this work, we
focus on mobile cognitive systems. Based on the analysis of existing ap-
proaches [10, 9, 29] as well as the ongoing research in CogX on artificial
cognitive systems, we have identified several areas of functionality, usually
realized through separate subsystems, that must be supported by the rep-
resentation. These include localization, navigation, and autonomous ex-
ploration, but also understanding and exploiting semantics associated with
space, human-like conceptualization and categorization of space, reasoning
about spatial units and their relations, human-robot communication, ac-
tion planning, object finding and visual servoing, and finally recording and
recalling episodic memories.

Having in mind the aforementioned functionalities, aspects covered by
a representation of spatial knowledge as well as limitations resulting from
practical implementations, we have designed a representation having the
following properties.

The representation is designed for representing complex, cross-modal,
spatial knowledge that is inherently uncertain and dynamic. Therefore, it
is futile to represent the world as accurately as possible. A very accurate
representation must be complex, require a substantial effort to synchronize
with the dynamic world and still cannot guarantee that sound inferences
will lead to correct conclusions [11]. Our primary assumption is that the
representation should instead be minimal and inherently coarse and the
spatial knowledge should be represented only as accurately as it is required
to provide all the necessary functionality of the system. Furthermore, re-
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dundancy is avoided and whenever possible and affordable, new knowledge
should should be inferred from the existing information. It is important
to note that uncertainties associated with represented symbols should are
explicitly modeled.

Information is abstracted as much as possible in order to make it robust
to the dynamic changes in the world and representations that are more
abstract are used for longer-term storage. At the same time, knowledge
extracted from immediate observations can be much more accurate (e.g. for
the purpose of visual servoing). In other words, the agent uses the world as
an accurate representation whenever possible. It is important to mention
that rich and detailed representations do not constitute a permanent base
for more abstract ones (as is the case in [31]). Similarly to abstraction levels,
space is represented on different spatial scales from single scenes to whole
environments. Moreover, space is discretized into a finite number of spatial
units to make planning and higher level conceptualization tractable.

A representation should allow not only for representing instantiations of
spatial segments visited by the robot. It is equally important to provide
means for representing unexplored space. In our representation, unexplored
space (which is a gap in spatial knowledge) is explicitely modeled. Fur-
thermore, categorical knowledge is represented that is not specific to any
particular location and instead corresponds to general knowledge about the
world. Typical examples are categorical models of appearance of places [25],
objects [23] or properties of space recognized by humans (e.g. shape, size
etc.).

Finally, we focus on the fundamental role of the representation in human-
robot interaction. The representation models correspondence between the
represented symbols and human concepts of space. This correspondence can
be used to generat and resolve spatial referring expressions [30] as well as
path descriptions.

4.2 Structure of the Representation

Figure 6 on the following page gives a general overview of the structure of
the representation. It is sub-divided into layers of specific representations.
We distinguish between four layers which focus on different aspects of the
world, abstraction levels of the spatial knowledge and different spatial scales.
Moreover, each layer defines its own spatial entities and the way the agent’s
position in the world is represented. The properties characterizing each
layer is summarized in Table 1. At the lowest abstraction level we have
the sensory layer which maintains an accurate representation of the robot’s
immediate environment extracted directly from the robot’s sensory input.
Higher, we have the place and categorical layers. The place layer provides
fundamental discretisation of the continuous space explored by the robot
into a set of distinct places. The categorical layer focuses on low-level, long-
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Figure 6: The layered structure of the spatial representation. The position
of each layer within the representation corresponds to the level of abstraction
of the spatial knowledge.
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Property Sensory
Layer

Place Layer Categorical
Layer

Conceptual
Layer

Aspects rep-
resented

Accurate ge-
ometry and
appearance

Local spatial
relations,
coarse ap-
pearance,
geometry

Perceptual
categorical
knowledge

High-level
spatial con-
cepts / Links
concepts ↔
entities

Agent’s posi-
tion

Pose within
the local
map

Place ID Relationship
to the cat-
egorical
models

Expressed in
terms of high
level spatial
concepts

Spatial scope Small-scale,
local

Large-scale Global Global

Knowledge
persistence

Short-term Long-term Very long-
term

Life-long
/ Very
long-term

Knowledge
decay

Replacement Generalization,
forgetting

Generalization None / For-
getting

Information
flow

Bottom-up Primarily
bottom-up

Primarily
bottom-up

Top-down
and bottom-
up

Table 1: Comparison of properties of the four layers of the spatial represen-
tation.

term categorical models of the robot’s sensory information. Finally, at the
top, we have the conceptual layer, which associates human concepts (e.g.,
object or room category) with the categorical models in the categorical layer
and groups places into human-compatible spatial segments such as rooms.

The following subsections provide additional details about each of the
layers and their instantiations within our system. For a detailed theoretical
discussion on those principles and optimal implementations, we refer the
reader to [27].

4.2.1 Sensory Layer

In the sensory layer, a detailed model of the robot’s immediate environment
is represented based on direct sensory input as well as data fusion over space
around the robot. The sensory layer stores low-level features and landmarks
extracted from the sensory input together with their exact position with
respect to the robot. The uncertainty associated with the pose of the robot
and the location of all landmarks in the local surrounding is explicitly repre-
sented using a multivariate Gaussian distribution [28, 12]. Landmarks that
move beyond a certain distance are forgotten and replaced by new infor-
mation. Thus, the representation in the sensory layer is akin to a sliding
window, with robot-centric and up-to-date direct perceptual information.
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It is also essentially bottom-up only, though directives and criteria, such as
guiding the attentional process, may be imposed from upper layers. It can
contain data of both a 2D and 3D nature.

The representation in the sensory layer helps to maintain stable and
accurate information about the robot’s relative movements. Moreover, it
allows for maintaining and tracking the position of various features while
they are nearby. This can be useful for providing ”virtual sensing” such as
360◦ laser scans based on short-term temporal sensory integration as well as
generation of features based on spatial constellations of landmarks located
outside the field of view of the sensor. Additionally, it could be used for
temporal filtering of sensory input or providing robustness to occlusions.
Finally, the sensory layer provides the low level robotic movement systems
with data for deriving basic control laws, e.g., for obstacle avoidance or
visual servoing.

In addition to the landmark based representation, local gridmaps are
maintained, centered on each Place. These are metrical representations of
explored and unexplored space, covering a single Place and its immediate
surroundings. Figure 7 on page 23 shows two examples of local grid maps of
adjacent Places. The white area is “known empty” space: open areas swept
out by the robot’s laser scanner from within the Place. The black regions
represent obstacles, and gray denotes unexplored space, which constitutes
a knowledge gap. The local grid maps are used to generate placeholders,
which allow for exploratory behavior (see below).

The visual search routine maintains hypotheses about existence of ob-
jects of specific categories at specific locations using a probabilistic grid
representation [3]. The probabilistic grid representation is shaped based on
multiple cues providing evidence about the existance of the particular object
class. Examples of such evidence is the presence of occupied space which
may either be an observation of the object itself or a supporting structure
for the object. Another example is planar surfaces which afford placing ob-
jects on top. Besides the high level gaps regarding the position or existence
of the object the robot is looking for, there are two types of gaps in knowl-
edge that are explicitly represented in the context of AVS. The first one is
unexplored space, described above, representing a gap in that the structural
information of space provides very strong clues in the search process. The
second gap relates to the part of space that the robot has not yet visually
searched. This is represented explictly in a grid with the same dimensions
as the probabilistic grid holding the object location probability.

4.2.2 Place Layer

The place layer is responsible for the fundamental, bottom-up discretisation
of continuous space. In the place layer, the world is represented as a collec-
tion of basic spatial entities called places as well as their spatial relations.
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Each place is defined in terms of features that are represented in the sensory
layer, but also spatial relations to other places. The aim of this representa-
tion is not to represent the world as accurately as possible, but at the level
of accuracy sufficient for performing required actions and robust localisation
despite uncertainty and dynamic variations. Similarly, the relations do not
have to be globally consistent as long as they are preserved locally with
sufficient accuracy. The representation of places in the place layer persists
over long term; however, knowledge that is not accessed or updated can be
compressed, generalized and finally forgotten.

The place layer also defines paths between the places. The semantic sig-
nificance of a path between two places is the possibility of moving directly
between one and the other. This does not necessarily imply that the robot
has traveled this path previously. A link might be created for unexplored
place e.g. based on top-down cues resulting from the dialogue with the user
(e.g. when the robot is guided and the user indicates part of the environment
that should be of interest to the robot, but not immediately). In addition,
the place layer explicitly represents gaps in knowledge about explored space.
Space that has not yet been explored by the robot has no places in it. There-
fore, tentative places are generated, which the robot would probably uncover
if it moved in a certain direction. These hypothetical places allow for rea-
soning about unknown space, and for planning and executing exploratory
activities. They are annotated as placeholders to keep them apart from
ordinary, actual places, but are otherwise identically represented and inter-
connected. For an illustrative example of several places and placeholders
identified during spatial exploration, see Figure ?? on page ??. Placeholders
are generated wherever there is a frontier between explored and unexplored
space near the current Place. The robot can then explore that frontier by
moving towards the placeholder, possibly giving rise to a new Place there.
Two quantitative measures are associated with each placeholder providing
an estimate of information gain related to each exploration task. They are
computed from the local grid map associated with the current Place, and
are used by the motivation system, described later in Section ?? on page ??.
The measures used are the coverage estimate (CE) and the frontier length
estimate (FLE), cf. Figure 8 on the following page. The former is obtained
by measuring the free space visible from the current node and not near to
any existing node, and assigning it to the closest placeholder. This heuris-
tically estimates the number of new places that would result from exploring
that direction. The FLE is analogously extracted from the length of the
border to unknown space. By prioritising these two measures differently,
the motivation mechanism can produce different exploratory behaviours.

The place layer operates on distinct places as well as their connectivity
and spatial relations to neighboring places. No global representation of
the whole environment is maintained. Still, since the local connectivity is
available, global representation (e.g. a global metric map) can be derived
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Figure 7: Example of exploration grid maps

A

B

C

D

Figure 8: Placeholder creation. Dashed circles are placeholders, each rep-
resenting one placeholder. A and B are frontier length estimates, C and D
are coverage estimates for the respective placeholders.

when needed. This representation will not be precise, but will preserve the
connectivity and relaxed spatial relations between all the places.

4.2.3 Categorical Layer

The categorical layer contains long-term, low-level representations of cat-
egorical models of the robot’s sensory information. The knowledge repre-
sented in this layer is not specific to any particular location in the envi-
ronment. Instead, it represents a general long-term knowledge about the
world at the sensory level. For instance, this is the layer where multi-modal
models of landmarks, objects or appearance-based room category or other
properties of spatial segments such as shape, size or color are defined in
terms of low-level features. The position of this layer in the spatial repre-
sentation reflects the assumption that the ability to categorise and group
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Figure 9: Architecture of the multi-modal place classification system.

sensory observations is the most fundamental one and can be performed
in a feed-forward manner without any need for higher-level feedback from
cognitive processes.

The categorical models stored in this layer give rise to concepts utilised
by higher-level layers. In many cases complex models are required that
can only be inferred from training data samples. In case of models that
correspond to human concepts, they can be learnt in a supervised fashion,
using a top-down supervision signal. Due to the high complexity of the
models, unused knowledge might be compressed and generalized.

The architecture of the place classification system [26] is illustrated in
Figure 9. The system relies on multiple visual cues corresponding to dif-
ferent types of image features as well as simple geometrical cues extracted
from laser range scans [20]. In particular, we employed local features based
on the SIFT descriptor [19] and global descriptor based on the Composed
Receptive Field Histograms [16]. The cues are processed independently. For
each cue, there is a separate path in the system which consists of two main
building blocks: a feature extractor and the SVM classifier [?]. Each clas-
sifier relies on an independent model trained on a single cue and produces
a set of outputs indicating its decision and the uncertainty associated with
that decision [24]. These outputs can be used directly to obtain the final
decision separately for each cue. In cases when several cues are available,
the single-cue outputs are combined using a high-level discriminative accu-
mulation scheme producing integrated outputs from which the final decision
is derived. Since each of the cues is treated independently, the system can
decide to acquire and process additional information only when necessary
e.g. only in difficult cases. This scheme is referred to as Confidence-based
Cue Integration [24].

The visual search routine uses the object recognition method proposed
in [22] and the models associated with object classes reside in the categorical
layer. However, using only this algorithm does not provide object pose
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with the uncertainty associated with it and is not robust to cases where
two objects appears similar from a certain viewpoint. Therefore, a natural
extension to this procedure which estimates the pose and class of objects is
also implemented [3].

4.2.4 Conceptual Layer

The conceptual layer provides an ontology that represents taxonomy of the
spatial concepts and properties of spatial entities that are linked to the
low-level categorical models stored in the categorical layer. This associates
semantic interpretations with the low-level models and can be used to specify
which properties are meaningful e.g. from the point of view of human-robot
interaction. Moreover, the conceptual layer represents relations between
the concepts and instances of those concepts linked to the spatial entities
represented in the place layer. This makes the layer central for verbalization
of spatial knowledge and interpreting and disambiguating verbal expressions
referring to spatial entities.

The second important role of the conceptual layer is to provide definitions
of the spatial concepts related to the semantic segmentation of space based
on the properties of segments observed the environment. A building, floor,
room or area are examples of such concepts. The conceptual layer contains
information that floors are usually separated by staircases or elevators and
that rooms usually share the same general appearance and are separated by
doorways. Those definitions can be either given or learned based on asserted
knowledge about the structure of a training environment introduced to the
system.

Finally, the conceptual layer provides definitions of semantic categories
of segments of space (e.g. areas or rooms) in terms of the values of properties
of those segments. These properties can reflect the general appearance of a
segment as observed from a place, its geometrical features or objects that
are likely to be found in that place.

The representation underlying the conceptual map is an OWL-DL on-
tology2, consisting of a taxonomy of concepts (TBox ) and the knowledge
about individuals in the domain (ABox ), cf. Figure 6 on page 19, cf. [31].
Here is an example of a concept definition in the current implementation
which defines a kitchen as a room that contains at least two typical objects:

Kitchen ≡ Roomu ≥ 2contains.KitchenObject

Besides the usual inferences performed by the OWL-DL reasoner, namely
subsumption checking for concepts in the TBox (i.e., establishing subclass/-
superclass relations between concepts) and instance checking for ABox mem-
bers (i.e., inferring which concepts an individual instantiates), an additional

2http://www.w3.org/TR/owl-guide/
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rule engine is used to maintain a symbolic model of space under incomplete
and changing information.

The discrete places from the place layer and their adjacency are the
main pieces of knowledge that constitute the input for that reasoning. One,
it maintains a representation that groups places into rooms. Furthermore,
using observations (visually detected objects, appearance- and geometry-
based room categories) it can infer human-compatible concepts for a room,
and raise expectations about which other kinds of objects are proto-typically
likely to be present. The ongoing construction of the conceptual map is
potentially nonmonotonic. The overall room organisation may be revised
on the basis of new observations. The further association between room
concepts and salient, proto-typical object types is established through the
“locations” table of the OpenMind Indoor Common Sense3 database by
Honda Research Institute USA Inc.

In the current implementation, the conceptual layer can be used to de-
termine knowledge gaps in the categorisation of rooms. It is considered a
gap in knowledge if for a given room (i.e., an instance of PhysicalRoom) its
basic level category is unknown. This is assumed to be the case if no more
specific concept than PhysicalRoom (i.e., Office or Kitchen, cf. Figure 6 on
page 19) can be inferred for the individual. This knowledge gap persists
until the robot has gathered enough evidence (i.e., contained objects) for
inferring a subconcept.

3http://openmind.hri-us.com/
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5 Beliefs about situated dialogue

A gap in dialogue typically is seen as a lack of understanding, leading po-
tentially to a breakdown in communication. Clarification mechanisms can
help to resolve this. Several discourse theories identify levels at which such
gaps can arise. This can go all the way down to problems in situationally
grounding dialogue. In this paper, we follow out the viewpoint that if we
want to investigate self-introspection and self-extension in situated dialogue
processing, we need to look both at representation and processing. We de-
scribe how various levels of representing meaning can make gaps in their
interpretation explicit, and available for self-introspection. Given a gap, we
show how a robot can act upon it, driving behavior to extend its knowledge,
ultimately to adapt its processing models so as avoid making the same gap
twice.

5.1 Introduction

Representations are reflections. They are signs, of what an agent under-
stands – and therefore, of how an agent understands. Signs are processes.
This fundamental idea is familiar from semiotics. Its relevance for cognitive
systems that are (to be) capable of self-introspection and self-extension is
arguably this: Representations can only improve by improving the processes
and models that give rise to them. Development in a cognitive system is one
part acquiring more representational power, and the ability to interconnect
different modalities of meaning. For another part, it is the development of
the very ability to compose meaning, and attending to those modal aspects
that can drive that composition in context.

In this paper, we describe results and ongoing research in dealing with
self-introspection and self-extension in situated dialogue processing. Typi-
cally, a gap in dialogue is seen as a lack of understanding, that can lead to
a breakdown in communication. Clarification mechanisms can help resolve
this, for example through question/answer sub-dialogues. Several discourse
theories identify levels at which gaps arise, cf. Allwood [1] or Clark [7]. This
can go all the way down to problems in situationally grounding dialogue.
We explored the latter problem in more detail in [15]. Ultimately, though,
clarification is just a means to an end. It helps a cognitive system to improve
on, or correct, behavior that went wrong. In this paper for WP1, we focus
on how gaps can be represented. (In Task 6.3 (DR 6.2, WP6 year 2) we
deal with how these representations can then later on drive adaptation at
the processing levels.)

We start by looking at logical forms, in §5.2. Logical forms are the basic
level at which we represent linguistic meaning. Words and syntactic struc-
ture are in some sense all just “artifacts.” They are means we use to get
us to a first level of meaning for an audio signal. It is at this level that
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we represent gaps in interpretation. We deal with the structural reflections
of typical dialogue phenomena such as ambiguity, incompleteness, even un-
grammaticality. But this is just linguistic meaning – meaning in as far as
expressed through linguistic means. We do construct meaning in context,
using contextually salient information to drive the processes that build up
logical forms. At the same time, we need to interpret meaning construed in
situated dialogue further, against the background of a collaborative activity.

In §5.3 we then elaborate on how beliefs are bound to the robot’s models
of the world. We discuss how gaps can be represented as missing information
on an open-world assumption, and how we can deal with the dynamics of
revising and extending beliefs in situated multi-agent belief models. These
models are grounded in the multi-modal belief models we discussed earlier,
in §3. This provides us with grounded meaning, which may have gaps in
how to understand what is being communicated. This grounding is subject
to the uncertainty and incompleteness inherent to a robot’s experience of
reality. In §3 we describe the probabilistic approach we use to deal with
estimation and inference in the context of belief content. Below, we “lift”
this to how we can logically reason with (uncertain) beliefs in processing
situated dialogue, to determine how to interpret and follow up on what is
being talked about.

5.2 Logic forms for representing meaning

We represent linguistic meaning as an ontologically richly sorted, relational
structure. This structure is a logical form [14, 4] in a decidable fragment of
modal logic [5, 2]. The modal-logical aspect of the logic makes it possible
to build up structures using named relations. A novel construct, called
a “nominal” [5] provides us with an explicit way to index and reference
individual structures in a logical form.

The following is an example of a logical form. It expresses a linguistic
meaning for the utterance “I want you to put the red mug to the right of
the ball.” Each node in the logical form has a nominal, acting as unique
identifier for that node. We associate the nominal with an ontological sort,
e.g. p1 : action −motion means that p1 is of sort action −motion, and a
proposition, e.g. put for p1. We connect nodes through named relations.
These indicate how the content of a single node contributes to the meaning
of the whole expression. For example, ”you” (y1) both indicates the one
whom something is wanted of (Patient-relation from w1), and the one who
is to perform the put action (Actor-relation from p1). Nodes carry additional
features, e.g. i1 identifies a singular person.
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@w1 :cognition(want ∧ 〈Mood〉 ind ∧ 〈Tense〉 pres ∧
〈Actor〉 (i1 : person ∧ I ∧ 〈Num〉 sg) ∧
〈Event〉 (p1 : action-motion ∧ put ∧

〈Actor〉 y1 : person ∧
〈Patient〉 (m1 : thing ∧ mug ∧

〈Delimitation〉 unique ∧ 〈Num〉 sg ∧ 〈Quantification〉 specific ∧
〈Modifier〉 (r1 : q-color ∧ red)) ∧

〈Result〉 (t1 : m-whereto ∧ to ∧
〈Anchor〉 (r2 : e-region ∧ right ∧
〈Delimitation〉 unique ∧
〈Num〉 sg ∧
〈Quantification〉 specific ∧
〈Owner〉 (b1 : thing ∧ ball ∧
〈Delimitation〉 unique ∧ 〈Num〉 sg ∧ 〈Quantification〉 specific)))) ∧

〈Patient〉 (y1 : person ∧ you ∧ 〈Num〉 sg) ∧
〈Subject〉 i1 : person)

Propositions and relations in such a representation are instances of con-
cepts. This makes it possible for us to interpret logical forms further using
ontological reasoning. We use this possibility in reference resolution, and
in relating meaning representations to interpretations formed outside the
dialogue system. Furthermore, the combination of sorting and propositional
information provides a basic way of representing gaps. Both can be under-
specified: An indicated sort may vary in specificity, and a lack of a propo-
sition indicates (under an open-world assumption) a gap in information.

The relational nature of our representations provides us with several
consequences. We build up our representations from elementary propositions
as we illustrated above – sorted identifiers and propositions, features, and
relations. An interpretation is thus simply a conjunction of such elementary
propositions, and the more we can connect those elementary propositions,
the more complete our interpretation becomes. This has several important
consequences. For one, it means that we can break up linguistic meaning
into small, interconnected parts. Each elementary proposition acts as a sign,
signifying a particular meaningful dimension of the whole it is connected to
(by virtue of interconnected identifiers). Second, elementary propositions
make it relatively straightforward to represent partial interpretations. For
example, for ”take the red ...” receives the following interpretation:
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@t1 :action-motion(take ∧ 〈Mood〉 imp ∧ 〈Tense〉 pres ∧
〈Actor〉(a1 : entity ∧ addressee) ∧
〈Patient〉 (m1 : thing ∧

〈Delimitation〉 unique ∧ 〈Num〉 sg ∧ 〈Quantification〉 specific ∧
〈Modifier〉 (r1 : q-color ∧ red))

〈Subject〉 a1 : entity)

The interpretation shows more than just the content for the three words.
It also shows that ”red” is expected to be the color of the ”thing” which is
supposed to be taken.

Third, characteristic for language is that it presents many ways in which
we can say things – and interpret them. This inevitably means that we
will usually get not just one, but multiple alternative interpretations for an
utterance. To keep ambiguity to a minimum, we should look at to what
extent these interpretations are indeed different. Where they show over-
laps, we should ideally have to deal with those identical parts only once.
Using relational structure and elementary propositions enables us to do so.
We represent alternative interpretations as alternative ways in which we
can connect content, whereas identical content across interpretations is rep-
resented once. The procedure to create such ”condensed” representations
is called packing, after [21, 6]. Figure 10 illustrates the development of
the packed packed representation for ”here is the ball”. At the first step
(”take”), 9 logical forms are packed together, with two alternative roots,
and several possible ontological sorts for the word “here”. The second step
reduces the number of alternative interpretations to one single logical form,
rooted on the verb “be” with a “presentational” ontological sort. The pos-
sible meanings for the determiner is expressed at the dependent node of the
“Presented” relation. At this point we have an overspecified meaning. Al-
though the delimination is unique, we cannot tell at this point whether we
are dealing with a singular object, or a non-singular (i.e. plural) object –
all we know it has to be one or the other. This becomes determined in the
fourth step (”here is the ball”).

Detailed accounts of how contextual information can be used to guide
the construction of logical forms in situated dialogue are provided in [17, 18].

5.3 Grounding meaning in belief models

In the previous section we discussed how linguistic meaning can be seen as a
relational structure over small signs. We gradually build up such a structure,
using incremental processing that is guided by what is currently contextually
salient. A structure can indicate what information may be still lacking
(sortal or propositional), what further information is expected, and what
alternative ways there appear to be to connect signs. In the current section,
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we present an approach to how situated beliefs are formed. We exploit the
idea of small signs in grounding linguistic meaning in the cognitive system’s
models of the world, and forming relational belief structures.

A belief is a formula Ke/σ : φ that consists of three parts: a content
formula φ from a domain logic Ldom, the assignment e of the content formula
to agents, which we call an epistemic status and the spatio-temporal frame
σ in which this assignment is valid.

We distinguish three classes of epistemic statuses, that give rise to three
classes of beliefs:

• private belief of agent a, denoted {a}, comes from within the agent a,
i.e. it is an interpretation of sensor output or a result of deliberation.

• a belief attributed by agent a to other agents b1, ..., bn, denoted
{a[b1, ..., bn]}, is a result of a’s deliberation about the mental states
of b1, ..., bn (e.g. an interpretation of an action that they performed).

• a belief shared by the group of agents a1, ..., am, denoted {a1, ..., am},
is common ground among them.

A spatio-temporal frame is a contiguous spatio-temporal interval. The
belief is only valid in the spatio-temporal frame σ and frames that are sub-
sumed by σ. This way, spatio-temporal framing accounts for situatedness
and the dynamics of the world. The underlying spatio-temporal structure
may feature more complex spatial or temporal features.

Finally, the domain logic Ldom is a propositional modal logic. We do not
require Ldom to have any specific form, except for it to be sound, complete
and decidable.

Multiple beliefs form a belief model. A belief model is a tuple B =
(A,S ,K ,F ) where A is a set of agents, S is a set of spatio-temporal frames,
K is a set of beliefs formed using A and S and F ⊆ K is a set of activated
beliefs.

Belief models are assigned semantics based on a modal-logical transla-
tion of beliefs into a poly-modal logic that is formed as a fusion of KD45CA
(doxastic logic with a common belief operator [?]) for epistemic statuses,
K4 for subsumption-based spatio-temporal reasoning and Ldom for content
formulas. This gives us a straightforward notion of belief model consistency:
a belief model is consistent if and only if its modal-logical translation has a
model.

The belief model keeps track of the beliefs’ evolution in a directed graph
called the history. The nodes of the history are beliefs and operations on the
belief model (such as retraction) with (labeled) edges denoting the opera-
tions’s arguments. The nodes that are beliefs and have no outcoming edges
form a consistent, most recent belief model.
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5.3.1 Attaining and maintaining common ground

A shared belief of a group G that φ implies all private beliefs and all possible
attributed beliefs that φ within that group. For example, if φ is common
ground between the human user, h, and robot, r, then (i) implies (ii):

B |= K{r, h}/σ : φ ⇒
B |= K{r}/σ : φ
B |= K{r[h]}/σ : φ
B |= K{h}/σ : φ *
B |= K{h[r]}/σ : φ *

(i) (ii)

Since (i) and (ii) are inferentially equivalent within belief models, the relation
is in fact equivalence. If (ii) holds in the belief model B, it also satisfies (i).

However, the agents’ private and attributed beliefs cannot be observed
by other agents, they are not ominiscient. The beliefs above marked by
asterisk (*) cannot be present in the robot’s belief model. The validity of
such beliefs can only be assumed. An invalidation of the assumptions then
invalidates the premise (ii) and thus the conclusion (i). As long as they are
not invalidated, agents may act upon them: they may assume that common
ground has been attained.

But how can these assumptions be in principle mandated or falsified?
Given a communication channel C, we consider a class of protocols PC that
supply the means for falsification of the assumptions. If these means are
provided, then the protocol is able to reach common ground. We assume
that the agents are faithful to Grice’s Maxim of Quality [?], i.e. that they
are truthful and only say what they believe to be true and for what they
have evidence.

5.4 Conclusions

Looking back at the discussion in this paper, from the viewpoint of cog-
nitive systems, we can say simply this: Gaps can arise everywhere. Lit-
erally. No aspect is too small for a system not to have a hole in it, to
lack a certain degree of understanding. Representations can indicate this
lack, and processing can help overcome this lack by combining with other
sources of information (the multi-sensor fusion hypothesis), by filtering it
out (the attention hypothesis) – or by self-extension to ultimately achieve
better interpretations (the continual development hypothesis). Not just at
representing things better, but processing it better. We showed here the
representational side of self-understanding and self-extension, with regard
to situated dialogue processing. In WP6, we look at how we can take the
self-understanding aspect in representation then to the self-extending aspect
in processing, to yield adaptive dialogue processing.
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6 Beliefs about vision

The purpose of vision in the context of an embodied, situated agent is to
purposefully interpret the visual scene. There will typically be a task or
tasks to pursue and embodiment will define certain constraints. Together
these form a dynamically changing context in which vision operates.

For the remainder of this section we will be concerned with locating,
identifying and tracking objects, though bear in mind that this is only one
of many things vision does. For tasks like identifying discourse referents
(“Get me the cup”) or fetch-and-carry (locate the cup and grasp it) objects
happen to be the key ingredients.

Information obtainable by visual methods will often be incomplete (oc-
clusions, backsides of objects, objects missed alltogether) or inaccurate (un-
certainties with regard to object identity or pose).

Visual knowledge can be characterised by the question “What is this?”.
This actually involves two unknowns: what and this. Vision must first
segment the scene into things to reason about (where are objects?) and
then gather information about those things (what are they?). Note that of
course once we have learned object models, scene segmentation is no longer
necessary and where and what are answered simultaneously. But for a self-
extending, on-line learning system known object models can not be assumed
a priori but rather are the results of learning activities. Furthermore search
for known objects typically strongly benefits from knowledge where to con-
centrate search on.

So we have two types of knowledge gaps regarding scene interpretation:

1. Where are objects?

2. What are the properties of objects (besides location)?

In the current architecture the former is addressed by a 3D attentional
mechanism (plane pop-out) which produces 3D spaces of interest (SOIs)
that serve as object candidates. The latter is done by associating properties
of SOIs (colour, shape) with learned labels or recognising learned object
instances. Finally, once we have a hypothesis about location and identity of
an object we can track it over time.

Observation Functions

Each detector (planes, SOIs, objects) has some associated confidence c. Us-
ing labeled training data we learn observation functions for each detector:
P (c |object = true). This will produce a monomodal distribution (if not the
confidence measure is chosen badly) to be expressed e.g. as a Gaussian. This
allows using disparate confidence values which are not themselves probabil-
ities within a probabilistic framework.
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6.1 Where?

The first type of gap “Where are objects?” or to be more precise “Where is a
high likelihood of objects?” is addressed by bottom-up attention. Attention
operators based on 2D image cues (such as colour, texture) are well known
and discussed extensively in the vision literature but are not ideally suited
for robotic applications. In such contexts it is the 3D structure of scene
elements that makes them interesting or not. So our attention operator,
plane pop-out, selects spaces of interest (SOIs) based on scene elements
that pop out from supporting planes. SOIs extracted from 3D stereo data
are further refined by back-projection onto the 2D image and colour-based
segmentation.

6.1.1 Planes

Supporting planes are detected in the 3D point cloud reconstructed by
stereo. To detect multiple planes, we apply an iterative RANSAC scheme,
where the consensus set of a detected plane is removed from the input points
and search is repeated until eventually no further planes can be found. Hy-
pothesis generation uses a bias where neighbouring points are selected in the
sample set with a higher probability. Furthermore plane hypotheses that are
not horizontal (note that we know the camera tilt angle) are rejected imme-
diately. To estimate the confidence of a plane hypothesis i independent of
the absolute number of inliers we use the point density

ρi =
ni
Ai

where ni is the number of inliers of plane i and Ai is the area of the convex
hull of the inliers projected onto the plane. High values of ρ indicate good
plane hypotheses but ρ is of course no actual probability, so as a next step
we will learn observation functions using labeled training data

P (ρ | plane = true)

6.1.2 SOIs

Points not belonging to a plane are clustered and form popping-out spaces
of interest (SOIs). SOIs are represented using the following data structure.

SOI

boundingSphere

foreGroundPoints

backGroundPoints

ambiguousPoints

The foreground points are those 3D points that stick out from the support-
ing plane and are enclosed by the bounding sphere. Background points are
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points that also fall inside the bounding sphere but are part of the support-
ing plane. These points capture the appearance of the local background
around the objects. Finally ambiguous points form the boundary between
supporting plane and segmented points and could not be labelled as fore-
ground or background with certainty, i.e. they are near the RANSAC inlier
threshold.

SOIs are tracked in the sequence of stereo frames by simply comparing
their centers and sizes and a decision is made whether a new SOI was de-
tected or an existing SOI was re-detected. As a next step we will replace this
crisp decision with a confidence value c based on the overlap between SOI
hypotheses. Using labeled training data we can then learn an observation
function

P (c | soi = true)

6.1.3 Proto Objects

SOIs are object candiates which are segmented from their supporting planes.
The quality of the segmentation depends on texture available for stereo
reconstruction and often this segmenation is not very precise, especially
concerning the above mentioned ambiguous points. To further move in the
direction of proper objects the segmentation therefore is refined. To this
end we backproject all 3D points into the image and perform 2D colour
based segmentation, where colour samples for foreground and background
are taken from the respective projected points. This leads to the definition
of proto objects.

ProtoObject

imagePatch

segmentationMask

foreGroundPoints

SOI

The image patch contains the 2D image of the backprojected SOI and the
segmentation mask the corresponding refined foreground/background la-
belling. Foreground points is the refined list of 3D points corresponding
to the precise segmentation mask. Furthermore the proto object contains a
reference to its soure SOI. Proto objects now are entities already considered
objects but with unknown attributes (apart from location). Filling in the
attributes, answering the what question, is explained in the next section.

6.2 What?

The second type of gap “What are the properties of objects?” is addressed
by (1) incremental learning and recognition of visual properties as well as
(2) learning and recognising object shape and identities. The former is
addressed in Section 11about cross-modal beliefs.
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Once a proto object is detected, properties like colour and shape are
filled in or object identity is recognised and the proto object is promoted to
a visual object.

VisualObject

// geometry

geometryModel

pose

// identity

identityLabels

identityDistribution

// properties

propertyLabels

propertyDistribution

protoObject

A visual object is composed of several slots: geometry, identity and proper-
ties. Geometry encodes the 3D shape as a triangle mesh plus the 6D object
pose, where pose can also represent the uncertainty of pose estimation. Ob-
ject recognition will output various recognition hypotheses represented as
a discrete probability density distribution over identities. Similarly recog-
nition of properties outputs recognised properties as continous probability
density distribution.

6.3 Recognition

Object instance recognition is based on SIFT features, which are mapped
onto the surface of an object during the learning phase. SIFT descriptors are
then used to build a codebook, where SIFT descriptors are clustered using
an incremental mean-shift procedure and each 3D location on the object
surface is assigned to the according codebook entry.

In the recognition phase SIFT features are detected in the current image
and matched with the codebook. According to the codebook entry each
matched feature has several corresponding 3D model locations. To robustly
estimate the 6D object pose we use the OpenCV pose estimation procedure
in a RANSAC scheme with a probabilistic termination criterion. Given an
acceptable failure rate η0, i.e. the accepted probability that no valid sample
set could be found we can derive the number of iterations k necessary to
achieve a desired detection probability (1 − η0) using an estimate of the
inlier ratio ε̂, which is taken to be the inlier ratio of the best hypothesis so
far:

while η = (1− ε̂m)k ≤ η0) do
...

end while

with m the size of the minimum sample set. So the number of RANSAC
iterations is adapted to the difficulty of the current situation and accordingly
easy cases quickly converge.
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To distinguish between hallucinating false detections and correct object
locations we define the object confidence

c =
ninlier
ndetected

of detection as the ratio between the matched interest points ninlier and
the number of detected interest points ndetected located within the object
boundary projected to the current image. This provides a good estimate
independent of the total number of features in the model and independent
of current scale.

This confidence is no proper probability however so we will again learn
observation functions

P (c | object = true)

6.3.1 Detection

6.4 Tracking

7 Planning: how beliefs change under action
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8 Representations in Planning

Planning is concerned with the synthesis of action strategies that bring about
the achievement of objectives. Planning procedures derive such strategies
given a model of the environment. That model describes the starting con-
ditions of the robot, along with the actions that it can execute, and the
objectives that it seeks to achieve. Essentially, the model corresponds to a
detailed description of an agent’s knowledge about its environment.

In the sequel we formally describe how we represent models of the en-
vironment for the purposes of planning. We give a description of what we
consider to be a propositional planning problem where action effects are de-
terministic. Equivalent to STRIPS planning [], that model corresponds to
a coarse-grained solution to the: (1) frame problem —i.e., modelling what
does not change in the environment when the robot acts in the environment;
(2) its dual, the ramification problem —i.e., modelling what changes as the
robot acts; and (3) qualification problem —i.e., modelling what precondi-
tions must be met in order for an operation to be performed. Following
our exposition of propositional planning we motivate a relational formalism,
called PDDL,4 that we use to represent planning problems. Making all the
above ideas concrete, we describe a simple version of the CogX dora scenario
using PDDL.

Of course, that is not sufficient to address the ongoing concerns we have
in CogX about beliefs, and in particular representations of a machine’s belief
about its environment. In particular, we cannot deal with situations where
the robot believes it could be in any one of a number of states, that it
believes an action can have one of a number of effects, and where it believes
that inference to the true world-state is based on a concrete probabilistic
scheme for gathering perceptual evidence. Concretely, thus far we cannot
address:

• Uncertainty in state —e.g., The cornflakes could be in the kitchen, or
in the lounge room.

• Uncertainty in acting —e.g., When dora opens a door, it could be
locked and therefore might not open. A priori (before acting) dora
does not know the outcome of trying to open the door.

• Uncertainty in perception —e.g., Just because dora perceives corn-
flakes, how should that effect her belief that cornflakes are really in
her visual field?

In order to address those requirements, we appeal to much more powerful
representational mechanisms, in particular the Markov Decision Process5 for

4Planning Domain Definition Language.
5Markov Decision Process.
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modelling uncertainty in actions and state, and the POMDP6 for modelling
uncertainty in perceptions/observations. In the sequel we review those in
turn, and then motivate a more expressive variant of PDDL, called DT-
PDDL,7 a relational formalism that is rich enough to describe stochastic
domains with partial observability. The details of that language are given
in Appendix A. Making all the above ideas concrete, we describe a simple
version of the CogX dora scenario using DTPDDL.

8.1 Classical Planning

Here we describe deterministic propositional planning formally. In the fol-
lowing section we motivate PDDL for CogX; That is the de facto planning
domain definition language for propositional planning. Subsequently we
make these ideas concrete with an example, before developing representa-
tional extensions to this material that we use in CogX.

A propositional planning problem is given in terms of a finite set of
objects O, first-order STRIPS-like planning operators of the form:

〈o, pre(o), add(o), del(o)〉
and predicates Π. Here, o is an expression of the form O(x1, . . . , xn) where
O is an operator name and xi are variable symbols, pre(o) are the operator
preconditions, add(o) are the add effects, and del(o) the delete effects. By
grounding Π over O we obtain the set of propositions P that characterise
problem states. For example, suppose we have a robot called dora who can
be in the Library or the Kitchen. Then we can have a binary predicate In,
one grounding of which is the proposition In(Dora, Library). A planning
problem is posed in terms of a starting state s0 ⊆ P , a goal G ⊆ P , and a
small set of domain operators.

An action a is a ground operator having a set of ground preconditions
pre(a), add effects add(a), and delete effects del(a). The contents of each
of those sets are made up of elements from P . An action a can be executed
at a state s ⊆ P when pre(a) ⊆ s. We denote A(s) the set of actions that
can be executed at state s. When a ∈ A(s) is executed at s the resultant
state is (s ∪ add(a))\del(a). Actions cannot both add and delete the same
proposition – i.e., add(a) ∩ del(a) ≡ ∅.

A state s is a goal state iff G ⊆ s. A plan is a prescription of non-
conflicting actions to each of n time steps. We say that a plan solves a
planning problem when executing all the actions at each step starting from
so achieves a goal state. A plan is optimal iff no other plan can achieve the
goal in a shorter number of time steps. The planning problem just described

6Partially Observable Markov Decision Process.
7Decision-Theoretic PDDL.
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is PSPACE-complete in general, and NP-Complete under fairly reasonable
restrictions to plan length.

8.2 PDDL

We have just describe planning in a propositional sense, and thus far only
alluded to the fact that in practice we employ a more sophisticated and gen-
eral formalism. This is required because in robotics applications, collections
of problems usually exhibit a strong relational structure and are therefore
best represented using first-order languages supporting the declaration of
objects and relations over them as well as the use of quantification over
objects [?]. The 3rd Planning Domain Definition Language (PDDL3.0 –
pronounced “pea-diddle”) is the language of choice of the planning commu-
nity [?, ?, ?]. This language and its predecessors have been developed for
and adopted at the International Planning Competitions since 1998.

A PDDL-based language forms the basis of domain and problem descrip-
tion in the planning subarchitecture of CogX. The details of that grammar
are given in Appendix A. For the purposes of this document, we shall make
the ideas of the previous section and Appendix A by given an example from
a familiar CogX scenario.

8.2.1 Example: Classical Representations

Suppose we have a robot, dora, that can be located in one of four places:

1. Kitchen

2. Library

3. Office

4. Hall

We suppose all of those places are connected via the hall. For example,
to traverse from the kitchen to the library, Dora must pass through the
hall. Now, suppose that dora has knowledge about the appearance of 4
types of object:

1. Bookshelves

2. Desktops

3. Chefs

4. Cornflakes
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Here, cornflakes are a special type of object that she can interact with
– For our purposes, the object cornflakes is a member of a type called
widget. We typically have that the starting environment is characterised
by the set of facts that are true. In PDDL, dora’s starting environment as
follows.

First, we describe a problem, called “dora the explorer problem1”, that
is an instance of a domain, called “dora the explorer”. We then describe the
objects that occur for this problem, along with their type.

( d e f i n e ( problem dora the exp lo r e r p rob l em1 )

( : domain do r a th e exp l o r e r )

( : ob j e c t s

Hal l R1 R2 R3 − p lace

Library Kitchen O f f i c e Hall−Label − l a b e l

Corn f lakes − widget

Bookshe l f Desktop Chef − f e a t u r e

)

Following this, we describe the starting state, that corresponds to the
set of facts that are true in the initial configuration of dora.

( : i n i t ( connected Hal l R1) ( connected R1 Hal l )
( connected Hal l R2) ( connected R2 Hal l )
( connected Hal l R3) ( connected R3 Hal l )

( a s s i gn ( l a b e l l e d R1) Library )
( a s s i gn ( l a b e l l e d R2) Kitchen )
( a s s i gn ( l a b e l l e d R3) O f f i c e )

( widget−l o c a t i o n Corn f lakes R2)
( featured−at Bookshe l f R1)
( f eatured−at Chef R2)
( featured−at Desktop R3)

( a s s i gn ( l o ca t ed ) Hal l )
)

Above, we have put the cornflakes in the kitchen along with the chef, and
then a bookshelf in the library, and a desktop in the office. We have
also reflected the connectivity between the rooms in dora’s environment, and
placed her in the hall initially.

Lastly, we can describe what objectives/goals dora should act to achieve.
In this case, we suppose she wants to be in the same room as where the
cornflakes are located.

( : goa l (= ( l o ca t ed ) R2) )
)

EU FP7 CogX 42



DR 1.2: Unifying representations of beliefs Wyatt et al.

Recapping, we have now described dora’s starting configuration, along
with the goal configuration. We have also described the objects in her world,
along with their respective types. In order to complete the model, it is left
to describe a type hierarchy (over object types), along with a description
of the relations that exists between objects in dora’s world, and the actions
that can effect changes in her world. These aspects of the model form part
of what we call the domain (resp. problem) description. In this case, the
domain is what we referred to earlier as “dora the explorer”. The prefix to
a domain description gives an identifying string, along with a list of classes
of descriptive elements we required, called the “:requirements string”.

( d e f i n e ( domain do r a th e exp l o r e r )

( : requ i rements
: typing
: s t r i p s
: e qua l i t y
: f l u e n t s )

Here, inclusion of :typing means that objects in our domain are typed and
that the domain description shall contain a type hierarchy. The string
“:strips” means that we want to use PDDLs syntactic elements for describ-
ing propositional planning problems. String “:equality” gives us access to
the equality – i.e., “(= . . . )” predicate. Finally, “:fluents” allows us to use
functional elements in our model – e.g., “(assign (location) Hall)” in our
starting state description.

The type hierarchy for dora occurs as follows:

( : types
p lace l a b e l widget f e a tu r e − ob j e c t
model − ( e i t h e r widget f e a t u r e )
)

Above, we suppose widgets, features, and places and their associated
labels are all objects. We also introduce a model type, instances of which
are either widgets or features.

Following a description of the model types, we can describe the relations
and concepts that further exists withing the world. In particular, we give the
:predicates and state functions :s-functions. All of these we used to describe
dora’s starting configuration earlier.

( : p r ed i c a t e s

( connected ?p1 − p lace ?p2 − p lace )
( widget−l o c a t i o n ?o − widget ?p − p lace )
( f eatured−at ?model − f e a t u r e ? l o c a t i o n − p lace )

)

( : s−f un c t i on s
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( l a b e l l e d ? r − p lace ) − l a b e l

( l o ca t ed ) − p lace
)

Above, symbols have a ’?’ prefix if they are a variable name. Those are
included in the predicate specification here for pedagogical reasons. For
example, above predicate connected is binary, taking arguments of type
place.

Lastly, in the domain description we give the action-physics of dora’s
world. In this case, we describe how dora can move between connected
places using the action schema that follows.

( : a c t i on move−to−connected−p lace
: parameters (? to − p lace ? from − p lace )
: p r e cond i t i on
( and
(= ( l o ca t ed ) ? from )
( connected ? from ? to )
)

: e f f e c t
( and
( a s s i gn ( l o ca t ed ) ? to )
)

)
)

Given our starting configuration, we have that a ground instance of this
action is:

move-to-connected-place(Hall, Kitchen)

This ground action is only executable when dora is located in the hall.
Recall, from our starting configuration, that the hall is connected to the
kitchen). The effect of executing that action is to have the function that
tracks dora’s location, i.e., located, changed to reflect that dora moved
from the hall to the kitchen.

9 Decision-Theoretic Planning

Here we examine the representations of beliefs in planning. First we exam-
ine the case that there is quantified uncertainty about the effects of actions.
Then, we move on to the case where the state of the world is only partially
observable. Here there is quantified uncertainty about the state of the envi-
ronment, and also the robot can only gather evidence, via perception, about
the true environment.

9.1 Markov Decision Processes (MDPs)

The following notes describe the MDP formalism developed in [?]. A much
more detailed coverage of the material of this section can be found in [?]
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and [?].
A Markov decision process (MDP) is defined in terms of a four-tuple

〈S,A,Pr,R〉. S is a finite set of states. We write S∗ for the set of finite
sequences of states over S. Also, Γ is a member of S∗, and where i is
a natural number, Γi is the state at index i in Γ, and Γ(i) is the prefix
〈Γ0, . . . ,Γi〉 ∈ S∗ of Γ. A is a finite set of actions. Where s, s′ ∈ S, a ∈ A
then Pr(s, a, s′) is the probability of a transition from state s to s′ given
action a is executed at state s. Naturally then, for any s and a we have the
following constraint:

∑

s′∈S
Pr(s, a, s′) = 1

A Markov decision process (MDP) is defined in terms of a four-tuple
〈S,A,Pr,R〉. S is a finite set of states. We write S∗ for the set of finite
sequences of states over S. Also, Γ is a member of S∗, and where i is
a natural number, Γi is the state at index i in Γ, and Γ(i) is the prefix
〈Γ0, . . . ,Γi〉 ∈ S∗ of Γ. A is a finite set of actions. Where s, s′ ∈ S, a ∈ A
then Pr(s, a, s′) is the probability of a transition from state s to s′ given
action a is executed at state s. Naturally then, for any s and a we have the
following constraint:

∑

s′∈S
Pr(s, a, s′) = 1

Also present is a bounded real-valued reward function R : S ×A → <. R
is bounded if there is a positive constant c so that for all s ∈ S and a ∈ A,
|R(s, a)| < c.

The solution to an MDP is called a policy, which is a prescription of how
actions are chosen at a history. Popular classes of policy include:

• A stationary (deterministic) policy π : S → A as a total function
mapping states to actions,

• A stochastic memoryless policy π : S → PA so that πa(s) is the prob-
ability that we execute a given we are in s, and

• A policy as a deterministic function of the state history π : S∗ → A.8

We typically suppose the robot will act in the MDP forever, thus an
optimal policy is one that maximises the discounted cumulative reward over
an infinite horizon. Writing Rπseq for the reward function that accumulates
R over some finite prefix Γi generated according to stationary policy π, the
value of a policy is as follows.

8We will see that the latter are not very interesting for the case of MDPs, however
are necessary for acting optimally in the n-horizon POMDP problem to be discussed in a
moment.

EU FP7 CogX 45



DR 1.2: Unifying representations of beliefs Wyatt et al.

Vπ(s) = lim
n→∞

E

[ n∑

i=0

βiRπseq(Γi) | π,Γ0 = s

]
(9)

Where π is stationary and deterministic, as a matter of convenience we often
prefer to express the value function in terms of a Bellman equation:

Vπ(s) = R(s, π(s)) + β
∑

s′∈S
Pr(s, π(s), s′)Vπ(s′) (10)

In (Eqns 9 and 10) 0 < β < 1 is a discount factor expressing the relative
importance of imminent versus distant rewards. A policy π∗ is optimal if,
for all π of any type, we have ∀s ∈ S, Vπ∗(s) ≥ Vπ(s). There is always an
optimal policy π∗ that is stationary – I.e., π∗ : S → A. Thus, the solution
to a discounted infinite horizon fully-observable decision-theoretic planning
problem is a stationary policy.

Given MDP 〈S,A,Pr,R〉, we seek an ε-optimal policy π∗ for discount
factor 0 < β < 1.

Definition 1. The Bellman operator T is a mapping defined so that T (V ) =
V ′ if for every state s ∈ S

V ′(s) = max
a∈A

[R(s, a) + β
∑

s′∈S
Pr(s, a, s′)V (s′)]

We have that the value function associated with an optimal policy is the
unique fixed-point solution to this set of equations. I.e.,

Vπ∗ = T (Vπ∗) (11)

Existence and uniqueness follow from the fact that T is an infinity-norm con-
traction. Indeed, where ‖X‖∞ = maxx∈X |x| – writing |x| for the absolute
value of x – we have that for any two value functions V1 and V2

‖T (V1)− T (V2)‖∞ ≤ β‖V1 − V2‖∞ (12)

From Banach’s fixed-point theorem, we have the following for any π∗.

lim
n→∞

Tn(V ) = Vπ∗ (13)

For any V , acting greedily according to limn→∞ Tn(V ) corresponds to acting
optimally.
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9.2 Partially Observable Markov Decision Processes (POMDPs)

The current de facto model for probabilistic decision-theoretic planning with
partial observability is the POMDP. For our purposes, a POMDP is a six-
tuple 〈S,A,Pr,R,O, v〉. Here, S, A, Pr, and R are states, actions, state-
transition function, and reward function, respectively – They provide an
MDP-based specification of the underlying world state, dynamics, and re-
ward. O is a set of observations. For each s ∈ S and action a ∈ A, an
observation o ∈ O is generated independently according to some probability
distribution v(s, a). We denote vo(s, a) the probability of getting observation
o in state s. For s and a we have the following constraint:

∑

o∈O
vo(s, a) = 1

The optimal solution to a finite-horizon POMDP problem can be ex-
pressed as a policy µ : O∗ → PA where µa(o0, .., ot) is the probability that
we execute action a given observation history o0, .., ot.

9 A finite-state con-
troller (FSC) is a more useful policy representation mechanism in the case
that the robot has ongoing interactions with the environment modelled by
the POMDP at hand. This is a three-tuple 〈N , ψ, η〉 where: n ∈ N is a set
of nodes, ψn(a) = P (a|n), and ηn(a, o, n′) = P (n′|n, a, o). The value of state
s at node n of the FSC for a given POMDP is:

Vn(s) =
∑

a∈A
ψn(a)R(s, a) + β

∑

a,o,s′,n′

ηn(a, o, n′)Pr(s, a, s′)vo(s′, a)Vn′(s
′)

(14)
If b is a POMDP belief state – i.e, b(s) gives the probability that the

robot is in state s – then the value of b according to the FSC is:

VFSC(b) = max
n∈N

∑

s∈S
b(s)Vn(s) (15)

9.3 DTPDDL

DTPDDL extends PPDDL in four key respects. First, the effects of actions
can be stochastic, and therefore the language facilitates the specification
of actions effects with quantified uncertainty. Second, a DTPDDL domain
description explicitly labels predicate and function symbols as being about
the underlying state (unobservable) or about the agents perceptions (ob-
servable). Thirdly, we introduce syntax for describing observation schemata.
This is used to specify how action executions in states generate observations.
Finally, the fragment of PPDDL for problem definitions did not support

9Such a policy can oftentimes be compactly represented as a tree or algebraic decision
diagram (ADD).
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specification of a problem start state distribution – i.e., full observability
was assumed, and hence the starting state was fully observable. For DT-
PDDL we have introduced syntax for compactly specifying the starting state
distribution.

9.4 Example: Representations of Quantified Uncertainty

Here we extend the dora scenario given earlier by adding a Bayesian-style
personal belief about the world, in the form of a starting-state distribu-
tion. We also make the underlying task much more complicated, by adding
partial observability. Here dora must commit to the true location of the
cornflakes. If she makes the correct commitment on that point, then she
is rewarded strongly, and otherwise she is punished terribly. Thus, she has an
interest in disambiguating through perception to find the underlying world
state, especially where that state information pertains to the true location
of cornflakes.

Suppose that dora can be a little bit forgetful, and thus keeps a photo-
graph of the models that occur in the world, including a photo of cornflakes.
Photos that she can refer to while searching occur in slots that she keeps in
a pouch around her tummy. Unfortunately, there is usually a very limited
number of slots, and therefore she has to be very careful what photos she
keeps in her slots when deliberating towards a particular disambiguation
objective.

For our new example, the problem model prefix defines the available
objects as follows:

( d e f i n e ( problem dora the explorer POMDP )

( : domain dora the explorer POMDP )

( : ob j e c t s

Hal l R1 R2 R3 − p lace

Library Kitchen O f f i c e Hall−Label − l a b e l

Corn f lakes − widget

Bookshe l f Desktop Chef − f e a t u r e

S1 − model−s l o t

)

Here, we suppose dora has a single slot S1. The initial state is signifi-
cantly different from the deterministic case, because now we must detail the
set of states dora might be in, and the probability that she is in any partic-
ular state – i.e., describe her Bayesian belief-state about her environment.
Thus, we have a few deterministic state elements:
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( : i n i t ( connected Hal l R1) ( connected R1 Hal l )
( connected Hal l R2) ( connected R2 Hal l )
( connected Hal l R3) ( connected R3 Hal l )

(= ( foregrounded−model S1 ) Empty)

(= ( reward ) 0)

( d e l e t ab l e S1 )

( a s s i gn ( l o ca t ed ) Hal l )

( l a b e l l e d Hal l Hall−Label )

And then, we have to describe the probability that places have particular
labels, and that a place features a model or not. A partial description of
the starting state distribution follows:

( p r o b a b i l i s t i c 1/8 ( and ( a s s i gn ( l a b e l l e d R1) Library )
( a s s i gn ( l a b e l l e d R2) Kitchen )
( a s s i gn ( l a b e l l e d R3) O f f i c e )
( p r o b a b i l i s t i c 0 . 9 ( f eatured−at Bookshe l f R1) )
( p r o b a b i l i s t i c 0 . 3 ( f eatured−at Bookshe l f R3) )
( p r o b a b i l i s t i c 0 . 8 ( f eatured−at Chef R2)
0 .1 ( f eatured−at Chef R1)
0 .1 ( f eatured−at Chef R3) )

( p r o b a b i l i s t i c 0 . 9 ( f eatured−at Desktop R3) )
( p r o b a b i l i s t i c 0 . 3 ( f eatured−at Desktop R1) )
( p r o b a b i l i s t i c 0 . 1 ( f eatured−at Desktop R2) )
( p r o b a b i l i s t i c 0 . 8 ( widget−l o c a t i o n Corn f lakes R2)
0 .2 ( widget−l o c a t i o n Corn f lakes R3) )

)

1/8 ( and ( a s s i gn ( l a b e l l e d R1) Library )
( a s s i gn ( l a b e l l e d R2) O f f i c e )
( a s s i gn ( l a b e l l e d R3) Kitchen )
( p r o b a b i l i s t i c 0 . 9 ( f eatured−at Bookshe l f R1) )
( p r o b a b i l i s t i c 0 . 3 ( f eatured−at Bookshe l f R2) )
( p r o b a b i l i s t i c 0 . 8 ( f eatured−at Chef R3)
0 .1 ( f eatured−at Chef R1)
0 .1 ( f eatured−at Chef R2) )

( p r o b a b i l i s t i c 0 . 9 ( f eatured−at Desktop R2) )
( p r o b a b i l i s t i c 0 . 3 ( f eatured−at Desktop R1) )
( p r o b a b i l i s t i c 0 . 1 ( f eatured−at Desktop R3) )
( p r o b a b i l i s t i c 0 . 8 ( widget−l o c a t i o n Corn f lakes R3)
0 .2 ( widget−l o c a t i o n Corn f lakes R2) )

)

. . . . .

Above, we have that there is a 1/8 chance that place R2 is a kitchen, and
a 1/8 that it is rather an office. In the first case it is very likely (90%
chance) that the library features a bookshelf, and so on.

We also should describe, for the starting configuration, the probability
that dora observes a feature at a place supposing that place has a partic-
ular label. In other words, we must given a model of her perception. That
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model determines how dora can change her belief about the labels of places,
and the locations of features – i.e., by placing photos in her slot and then
exploring the world. In the starting state description we have:

( a s s i gn ( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l
i f t r u e R1 Bookshe l f L ibrary ) 0 .9 )

( a s s i gn ( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l
i f t r u e R1 Bookshe l f Kitchen ) 0 .1 )

( a s s i gn ( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l
i f t r u e R1 Bookshe l f O f f i c e ) 0 . 3 )

. . . . . . . . . . . .
( a s s i gn ( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l

i f f e a t u r e f a l s e R3 Chef Library ) 0 .2 )
( a s s i gn ( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l

i f f e a t u r e f a l s e R3 Chef Kitchen ) 0 .3 )
( a s s i gn ( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l

i f f e a t u r e f a l s e R3 Chef O f f i c e ) 0 . 2 )
. . . . . . . . . . . .

From the first three assignments above, we have that if the true label of
R1 is library, then dora shall observe a bookshelf at R1 90% of the time
when she explores that place, provided a bookshelf is indeed present.
From the second three assignments, dora has a %20 chance of observing a
chef in R3 labelled library given the chef is not actually present – i.e.,
She cannot trust her perception of chef. The purpose of these observational
probabilities shall be further clarified when we give the observation schema
to describe dora’s perceptual model for our POMDP setting.

We also have to describe the probability of observing a widget in a place

given it has a particular label. Here, the “ T” suffix indicates that we are
expressing the probability when the widget is present, and “ F” is for the
case that it is not present.

( a s s i gn ( p r obab i l i t y ob s e r v e w i d g e t mode l a t l a b e l T Library
Corn f lakes )

. 7 )

( a s s i gn ( p r obab i l i t y ob s e r v e w i d g e t mode l a t l a b e l T Kitchen
Corn f lakes )

. 7 )
( a s s i gn ( p r obab i l i t y ob s e r v e w i d g e t mode l a t l a b e l T O f f i c e

Corn f lakes )
. 7 )

( a s s i gn ( p r obab i l i t y ob s e r v e w i d g e t mode l a t l a b e l F Library
Corn f lakes )

. 1 )
( a s s i gn ( p r obab i l i t y ob s e r v e w i d g e t mode l a t l a b e l F Kitchen

Corn f lakes )
. 1 )

( a s s i gn ( p r obab i l i t y ob s e r v e w i d g e t mode l a t l a b e l F O f f i c e
Corn f lakes )

. 1 )

Finally, we have to give dora’s overall objective. In this case, we have:

( : metr ic maximize ( reward ) )
)
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The above specifies that dora should try to maximise her reward. We shall
see how she might go about that in a moment, when we describe how dora
can act and perceive with stochastic actions and partial observability.

The domain description prefix is more detailed for our reworked example,
as our “:requirements” string must specify that we have stochastic actions
with probabilistic effects, and that we will give observation schemata – i.e.,
use “:observe” schemata to model dora’s perception.

( d e f i n e ( domain dora the explorer POMDP )

( : requ i rements
: typing
: s t r i p s
: e qua l i t y
: f l u e n t s

: p r o b a b i l i s t i c−e f f e c t s

: un ive r sa l−e f f e c t s
: c ond i t i ona l−e f f e c t s

: p a r t i a l−ob s e r v ab i l i t y
)

The description of types in dora’s environment is only altered slightly from
our deterministic domain description. These modifications take into account
dora’s photo pouch (cf. model-slot).

( : types
p lace l a b e l widget f e a tu r e model−s l o t − ob j e c t
model − ( e i t h e r widget f e a t u r e )
)

In describing the predicates of dora’s world, we add one binary predicate
absolute belief widget location to those given for the deterministic sce-
nario. That expresses the commitments dora has made to the locations of
widgets. In particular, we have:

( : p r ed i c a t e s
( exp lored ?p − p lace )
( connected ?p1 − p lace ?p2 − p lace )
( widget−l o c a t i o n ?o − widget ?p − p lace )
( f eatured−at ?model − f e a t u r e ? l o c a t i o n − p lace )

; ; What commitments has Dora made so the l o c a t i o n ? l o c o f widget ?w
( a b s o l u t e b e l i e f w i d g e t l o c a t i o n ?w − widget ? l o c − p lace )
)

We must also give the functions that we use to encapsulate dora’s environ-
ment.

( : s−f un c t i on s
( l a b e l l e d ? r − p lace ) − l a b e l ; ; The l a b e l o f a p lace
( l o ca t ed ) − p lace ; ; Where Dora i s l o ca t ed
( reward ) − double ; ; The reward Dora has accumulated

; ; What model/photo i s Dora s t o r i n g in s l o t ? s ?
( foregrounded−model ? s − model−s l o t ) − model
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; ; P robab i l i t y Dora s e e s ?m, and i t i s the re .
( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l

i f t r u e
? l o c − p lace
?m − f e a t u r e
? l − l a b e l

) − double

; ; P robab i l i t y Dora s e e s ?m, but i t i s not the re .
( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l

i f f e a t u r e f a l s e
? l o c − p lace
?m − f e a t u r e
? l − l a b e l

) − double

; ; P robab i l i t y Dora s e e s ?w, and i t i s the re .
( p r ob ab i l i t y ob s e r v e w i d g e t mod e l a t l a b e l

T
? l − l a b e l
?w − widget

) − double

; ; P robab i l i t y Dora s e e s ?w, but i t i s not the re .
( p r ob ab i l i t y ob s e r v e w i d g e t mod e l a t l a b e l

F
? l − l a b e l
?w − widget

) − double

)

We also suppose there is a constant in this domain that we use to model the
notion that dora’s model-slot is Empty – i.e.,

( : cons tant s

Empty − f e a t u r e

)

For example, the condition that dora has no photos in model-slot S1 is
expressed in DTPDDL as:10

(= (foregrounded-model S1) Empty)

Whereas in our deterministic example dora was able to perceive the state
of her environment exactly, in this example she only has access to atoms of
observation called “percepts”. That is, dora can not observe elements in
“s-functions” and “:predicates” description elements unless they are known
with certainty according to her belief-state distribution. However, she can

10The constant Empty is an artifact of the fact that we cannot specify partial object
valued fluents —i.e., functions with finite range— in PDDL.
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observe her “observation” state exactly. The propositions that make up
the observation state are given in a “:percepts” description fragment. In
particular, we suppose that dora is able to instantaneously perceive models
in places.

( : pe r c ept s

( obse rved mode l a t p l ace ?n − p lace ?m − model )

)

For example, we write:

(observed model at place Kitchen Cornflakes) (16)

to express the observational fact that dora has perceived Cornflakes in the
Kitchen.

We can now describe the action physics for our dora scenario. In the first
place, dora can move between connected places, and also “explore” a place
she is in. We suppose that when exploration is invoked that dora’s visual
abilities are employed to discern whether a photograph in her slot occurs
in the place she is exploring. The details of that perceptive inference are
modelled later in terms of an “:observe” schema.

( : a c t i on move−to−connected−p lace
: parameters (? to − p lace ? from − p lace )
: p r e cond i t i on
( and
(= ( l o ca t ed ) ? from )
( connected ? from ? to )
)

: e f f e c t
( and
( a s s i gn ( l o ca t ed ) ? to )
)

)
)

( : a c t i on explore−p lace
: parameters (? l o c − p lace )
: p r e cond i t i on ( and

(= ( l o ca t ed ) ? l o c )
)

: e f f e c t ( and ( exp lored ? l o c ) )
)

We also give dora the ability to focus or change the photographs she keeps
in her slot. We suppose she can “foreground” a model by retrieving it from
her pouch and placing it in a free model-slot. Moreover, she can return
a “foregrounded” model to her pouch from an occupied model-slot, thus
freeing that slot for further use. The latter we suppose is a “backgrounding”
action. Those two actions, foregrounding and backgrounding, are represented
as follows.
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( : a c t i on foreground model
: parameters (?m − model ? s − model−s l o t )
: p r e cond i t i on ( and
; ; Can only foreground a model to an empty model−s l o t .
(= ( foregrounded−model ? s ) Empty)
; ; Test that Dora has not a l r eady foregrounded the model
( f o r a l l (? s2 − model−s l o t )
( not (= ( foregrounded−model ? s2 ) ?m) ) )

)
: e f f e c t ( a s s i gn ( foregrounded−model ? s ) ?m)

)

( : a c t i on background model
: parameters (? s − model−s l o t )
: p r e cond i t i on ( )
: e f f e c t ( a s s i gn ( foregrounded−model ? s ) Empty)

)

Another action we allow dora to perform is that of making a commitment
to the location of a widget. Here, we suppose she achieves a large reward,
$1000, when she commits to the correct location, and is punished with a
$500 fine when she makes an incorrect commitment.

( : a c t i on commit w idge t l oca t i on
: parameters (?w − widget ? l o c − p lace )

: p r e cond i t i on ( f o r a l l (? l o c2 − p lace )
( not ( a b s o l u t e b e l i e f w i d g e t l o c a t i o n ?w ? lo c2 ) ) )

: e f f e c t ( and ( a b s o l u t e b e l i e f w i d g e t l o c a t i o n ?w ? l o c )
(when ( widget−l o c a t i o n ?w ? l o c )

( i n c r e a s e ( reward ) 1000 . 0 ) )
(when ( not ( widget−l o c a t i o n ?w ? l o c ) )

( dec r ea s e ( reward ) 5 0 0 . 0 ) ) )
)

We now provide the details of dora’s perceptual model. This is achieved
by giving “:observe” schemata whose preconditions are over state predicates
(and functions), and whose effects are over observational predicates. Such
schemata also contain an “:execution” precondition, that details what action
must have been executed for this perceptual schema to be invoked. Essen-
tially, these describe how a POMDP observation over perceptual proposi-
tions is generated after we execute an action and arrive at a successor state.

Giving an example, the following schema expresses that dora cannot
observe a model ?m at a place ?loc unless she has a photo of ?m in a
model-slot.

( : observe r e s e t mod e l o b s e r v a t i o n s on s t a t e
: parameters
(? l o c − p lace ?m − model )

: execut ion
( )

: p r e cond i t i on
( and ( obse rved mode l a t p l ace ? l o c ?m)

( f o r a l l (? s − model−s l o t )
( not (= ( foregrounded−model ? s ) ?m) ) ) )
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: e f f e c t
( and ( not ( obse rved mode l a t p l ace ? l o c ?m) ) )
)

The next schema expresses that dora cannot have perceptions about
the models that are present in a place unless she has just executed an
explore-place action.

( : observe r e s e t mode l ob s e r va t i on s on ex e cu t i on
: parameters
(? l o c − p lace ?m − model )

: execut ion
( not ( explore−p lace ? l o c ) )

: p r e cond i t i on
( and ( obse rved mode l a t p l ace ? l o c ?m) )

: e f f e c t
( and ( not ( obse rved mode l a t p l ace ? l o c ?m) ) )
)

Finally, when dora does execute an explore-place action, we give schemata
that describe the likelihood of her observing a feature or widget at the
place she explored. In the case of a feature we have.

( : observe mode l f ea ture
: parameters
(? l o c a t i o n − p lace ? l − l a b e l ?model − f e a t u r e )

: execut ion
( e xp l o r e p l a c e ? l o c a t i o n )

: p r e cond i t i on
( and

( e x i s t s (? s − s l o t ) (= ( foregrounded−model ? s ) ?model ) )

)
: e f f e c t
( and
(when ( and ( featured−at ?model ? l o c a t i o n )

(= ( l a b e l l e d ? l o c a t i o n ) ? l ) )
( p r o b a b i l i s t i c
( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l

i f t r u e ? l o c a t i o n ?model ? l )
( obse rved mode l a t p l ace ? l o c a t i o n ?model )
)

)

(when ( and ( not ( f eatured−at ?model ? l o c a t i o n ) )
(= ( l a b e l l e d ? l o c a t i o n ) ? l ) )

( p r o b a b i l i s t i c
( p r o b a b i l i t y o b s e r v e f e a t u r e a t p l a c e w i t h l a b e l

i f f e a t u r e f a l s e ? l o c a t i o n ?model ? l )
( obse rved mode l a t p l ace ? l o c a t i o n ?model )
)

)
)
)

)
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Here, we have that when dora has explored the place ?location, she can
observe features at ?location according to the ...observe feature at place...
entries. For example, if there is some feature ?model at the explored
?location, then with probability:

probability observe feature at place with

label if true ?location ?model ?l)

dora makes the observation that ?model is at place ?l.
Finishing our example, in the case of perception with regards to a widget

we have the following schema.

( : observe model widget
: parameters
(? l o c a t i o n − p lace ? l − l a b e l ?model − widget )

: execut ion
( explore−p lace ? l o c a t i o n )

: p r e cond i t i on
( and
( e x i s t s (? s − s l o t ) (= ( foregrounded−model ? s ) ?model ) )

(= ( l a b e l l e d ? l o c a t i o n ) ? l )
)

: e f f e c t
( and
(when ( widget−l o c a t i o n ?model ? l o c a t i o n )

( p r o b a b i l i s t i c
( p r obab i l i t y ob s e r v e w i d g e t mod e l a t l a b e l

i f t r u e ? l ?model )
( obse rved mode l a t p l ace ? l o c a t i o n ?model )
)

)

(when ( not ( widget−l o c a t i o n ?model ? l o c a t i o n ) )
( p r o b a b i l i s t i c
( p r obab i l i t y ob s e r v e w i d g e t mod e l a t l a b e l

i f f a l s e ? l ?model )
( obse rved mode l a t p l ace ? l o c a t i o n ?model )
)

)
)

)
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10 Representations for Continual Planning

The representation used by the continual planning system is based on the
SAS+ formalism [?]. Here, instead of propositions, we use multi-valued state
variables (MVSVs) v, each with an associated domain vdom(v) describing
the set of possible values x ∈ vdom(v) that v may assume.

A state is defined as a function s associating variables v with values from
their domain vdom(v). If, for a given set of variables V, s is not defined for
all v ∈ V, then s is called a partial state over V.

There are several motivations for our using an SAS+-based representa-
tion:

1. In recent years, SAS+ has been shown to enable powerful reasoning
techniques in planning algorithms, which has lead to systems based on
this representation now dominating the International Planning Com-
petition. Using a similar representation, we can exploit this develop-
ment.

2. One of the explanations for the success of SAS+ is the fact that it di-
rectly models natural mutual-exclusivity invariants between the values
of MVSVs. For example, modelling the position of an object o using
an MVSV pos(o) explicitly states that this object is at one and only
one position in any given state. This is not true for representations
based on propositional logic, like STRIPS or PDDL, where any num-
ber of propositions (posoloc1 ), (posoloc2 ), .., (posolocn) could be true
in the same state.

3. In the context of our robotic architecture, the functional state repre-
sentation of SAS+ is also closer to the feature/value model used by
other subarchitectures, in particular the representation uses by the Be-
lief Model, from which planning states are generated. Roughly, each
feature f of a belief b in a belief model is mapped onto a state variable
f(b). For example, if the belief model describes that a room has been
categorised as a kitchen by attributing the areaclass : kitchen to a be-
lief b, this would correspond to an assignment areaclass(b) = kitchen
in a planning state.

4. The main reason for using an SAS+-based representation is that we
can employ it to explicitly model knowledge and gaps in knowledge,
so that the planner can efficiently reason about them. The rest of this
section is dedicated to this aspect of our representation.

For the modelling needs of CogX, we have defined a specific formal lan-
guage based on SAS+ the multiagent planning language MAPL [?]. In
MAPL, as in other planning formalisms, the general rules of the world are
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specified in a planning domain whereas a specific problem to be planned for
in that domain in specified by a planning task.

A planning domain is a tuple D = (A,V, C, E) consisting of agents A,
state variables V, constants C, and events E .1 1) This

describes a
“grounded” do-
main. Maybe
we should be
even more
general. Cf.
Notes section.

MAPL states s are allowed to be partially defined, i. e., some MVSV
values may be “unknown”.

If, for some variable v currently unknown, possible candidate values are
known, those can nevertheless be reasoned about in the planning state. The
domain vdom(v) is explicitly represented and can be changed by planning
operators. For example, after unsuccessfully searching for an object o in a
room r, o may be removed from vdom(pos(o)). If vdom(v) is a singleton set
{x}, then v will be set to x.

To enable reasoning about knowledge gaps and their filling explicitly, we
introduce specific so-called Kval variables Kvalv with vdom(Kvalv) = >,⊥.
The correspondence between a variable v and its Kval variable Kvalv is
defined as follows: If s(v) is defined with some value x then s(Kvalv) = >.
This, of course, implies that if s(Kvalv) = ⊥ then s(v) must be undefined.

The converse, however, is not true: We may want to describe a future
state in which the value of variable v will be known, i. e., in which Kvalv =
>, without being able to name that value, yet. While it is the nature of
knowledge gaps that an agent cannot know in advance how exactly it will be
filled, it is nevertheless crucial that the agent can reason about how to bring
this about. To this end, MAPL uses Kval variables as epistemic effects of
sensing actions.

In MAPL, a sensor model is an action that has an epistemic effects on
the agent executing it.

For example, the action of running a room categorisation algorithm in a
room is modelled in MAPL as follows:

(:sensor categorise_room

:agent (?a - agent)

:parameters (?r - room ?loc - place)

:precondition (and

(= (pos ?a) ?loc)

(contains ?r ?loc))

:sense (areaclass ?r)

)

In words, this sensor model describes that an agent can sense the area
class of a room, i.e. its being a kitchen, office or hallway, once the agent
is at a place that belongs to the room in question. At planning time, the
outcome of observing areaclass(r) is yet unknown, therefore the effect of
categorise room(r,loc) is formally described as Kvalareaclass(r) = >.

We distinguish two possible kinds of epistemic effects of a sensor model:
(full) recognition and (binary) disambiguation. When, as in the above ex-
ample, an agent is able to determine the value of a state variable v as soon
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as the preconditions of the sensor model categorise room are satisfied and
regardless of the value of v, we say that categorise room fully recognises v.

Sometimes, however, sensing can only help to confirm or rule out a cer-
tain value x ∈ vdom(v). This, we call binary disambiguation. Consider,
e. g., a sensor model that models localisation of objects in rooms.

(:sensor localise_object

:agent (?a - agent)

:parameters (?o - object ?loc - place)

:precondition

(= (pos ?a) ?loc)

:sense (= (pos ?o) ?l)

)

Binary sensor models do not guarantee that a value will be known after
a sensing action. Yet, they guarantee that the domain of the corresponding
MVSV will be smaller after the perception. Thus, binary sensor models can
be used by the planner to generate exploratory behaviour in which the set of
candidate values for a knowledge gaps is reduced repeatedly, until the true
value is sensed or inferred.

Kval variables can appear in goal formulae as well, so that we can conve-
niently express epistemic goals, i.e. goals concerned with closing knowledge
gap. Goal formulae can contain expressions in first-order logic, in particular
conditionals and quantifiers. For example, the robot could have an epistemic
goal to find out the categories for all rooms. This would be expressed by
the following formula:
∀room.Kvalareaclass(room) = >
A more complex epistemic goal like “explore all places belonging to

rooms yet uncategorised” would be expressed as:
∀place(∃room.contains(place, room)∧Kvalareaclass(loc) = ⊥)→ explored(place).
MAPL is designed to be used by a continual planner, i. e., a planner

that interleaves planning and execution deliberately and adapts its plans to
a changing world state.

Interestingly, when planning for an epistemic goal that uses a quantified
formula, goal the planner will also re-evaluate this goal when new instanta-
tions become possible. For example, for the last goal shown the planner will
autonomously adapt its plan whenever new places and rooms are discovered.

A (slightly simplified) example of a plan using sensing actions that satisfy
epistemic goals is given in Figure 11 on the next page.

In the George scenario and in our next instantiation of Dora, information
will not only be obtained by sensing, but also through interaction with
humans. To plan for such multiagent interactions the robot must also reason
about the knowledge of the other agents. We can express nested beliefs using
MVSVs as well, e.g., “the robot R believes that human H believes that object
o is a pen” is modelled as K[/R :, H]type(o) = pen.

Knowledge gaps may arise in several variants when nested beliefs are
used, depending on which agent is ignorant of the other’s belief. Again, with
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Figure 11: A plan using sensory actions to satisfy epistemic goals

MVSVs we can represent the differences succinctly using agent-specific “un-
known” symbols. Consider, e.g., the difference between the statements “R
knows that H does not know the location of the cornflakes” (KvalR,Hpos(cornflakes) =

⊥H) and “R does not know if H knows the location of the cornflakes”
((KvalR,Hpos(cornflakes) = ⊥H).

Note that in contrast to classical epistemic logics, the MAPL repre-
sentation explicitly represents the facts that both statements are mutually
exclusive.

Just like sensing actions are modelled using standard Kval variables, we
can use nested Kval variables to describe speech acts. In particular, we can
describe wh-questions and answers to them (“where”, “what colour”, etc.)
by modelling the appropriate nested belief effects. (Note: the planner was
not used for dialogue planning in the George system as presented in this
paper, but will be in its next instantiation).

11 Representations of Cross-Modal Beliefs

Cross-modal beliefs rely on the particular representations used for learning
in a cross-modal setting. These representations along with the cross-modal

EU FP7 CogX 60



DR 1.2: Unifying representations of beliefs Wyatt et al.

learning enable the robot to, based on interaction with the environment and
people, extends its current knowledge by learning about the relationships
between symbols and features that arise from the interpretation of different
modalities. This involves processing of information from multiple modali-
ties, which have to be adequately represented. One modality may exploit
information from another to update its current representations, or several
modalities together may be used to form representations of a certain con-
cept. We focus here on the representations for encoding visual properties
and concepts that allow cross-modal learning through a dialogue with a
human.

11.1 Representations for visual concepts

To efficiently store and generalize the observed information, the visual con-
cepts are represented as generative models. These generative models take
the form of probability density functions (pdf) over the feature space, and
are constructed in online fashion from new observations. In particular, we
apply the online Kernel Density Estimator (oKDE) [?] to construct these
models. The oKDE estimates the probability density functions by a mixture
of Gaussians, is able to adapt using only a single data-point at a time, auto-
matically adjusts its complexity and does not assume specific requirements
on the target distribution. A particularly important feature of the oKDE is
that is allows adaptation from the positive as well as negative examples [?].
Specifically, the oKDE is defined by the so-called model of the observed
samples Smodel,

Smodel = {ps(x), {qi(x)}i=1:N}, (17)

which is composed of the sample distribution, a compressed model of the ob-
served samples, ps(x) and of a detailed model qi(x), a necessary information
for efficient adaptation of the compressed model11. The sample distribution
is modelled by a mixture of Gaussians

ps(x) =

N∑

i=1

αiφΣsi(x− xi), (18)

where
φΣ(x− µ) = (2π)−

d
2 |Σ|− 1

2 e(−
1
2
(x−µ)TΣ−1(x−µ)) (19)

is a Gaussian kernel centered at µ with covariance matrix Σ. The kernel
density estimate (KDE) is then defined as a convolution of ps(x) by a kernel
with a covariance matrix (bandwidth) H (see Figure 12):

pKDE(x) = φH(x) ∗ ps(x) =
N∑

i=1

αiφH+Σsi(x− xi). (20)

11we will not go into details about the detailed model here, since it exceeds the scope
of this document and we refer to [?] for more details.
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Figure 12: Calculation of the KDE pKDE(x) through a convolution of the
sample distribution ps(x) with a kernel. The upward arrows depict compo-
nents in the sample distribution with zero covariance – Dirac-delta functions.

Note that the online KDE from (20) is the representation by which we op-
erate when encoding and calculating beliefs of the observed data. Figure 13
demonstrates the power of the oKDE in estimating complex distributions
from sequences of data.

Figure 13: First row shows the sinusoidal distribution and the second row
shows the spiral distribution. Left column shows the reference distributions
and the right column shows the estimated distribution using oKDE after
observing a 1000 samples.

The continuous learning proceeds by extracting the visual data in a form
of a highdimensional features (e.g., multiple 1D features relating to shape,
texture, color and intensity of the observed object) and oKDE is used to
estimate the pdf in this high-dimensional feature space. In this respect,
the distributions model the knowledge incompleteness in terms of the state
value uncertainty as described in Section 2. However, concepts such as
color red reside only within lower dimensional subspace spanned only by
features that relate to color (and not texture or shape). Therefore, during
online learning, this unknown subspace constitutes a structural novelty
and has to be identified to provide best performance. This is achieved by
determining for a set of mutually exclusive concepts (e.g., colors green, blue,
orange, etc.). We assume that this corresponds to the subspace which min-
imizes the overlap of the corresponding distributions. The overlap between
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the distributions is measured using the multivariate Hellinger distance [?].
For the exact and detailed description of the algorithm for feature selection
algorithm, see [?], Algorithm 1.

Therefore, during online operation, a multivariate generative model is
continually maintained for each of the visual concepts and for mutually ex-
clusive sets of concepts the feature subspace is continually being determined.
The set of mutually exclusive concepts can then be used to construct a
Bayesian classifier in the recognition phase, when the robot is generating a
description of a particular object in terms of its color, shape, etc. An exam-
ple of the learnt models from a real-life experiment are shown in Figure 14a
and an example of classification of an observed object by the constructed
Bayes classifier is shown in Figure 14b.

(a)

(b)

Figure 14: (a) Example of the models estimated using the oKDE and the
feature selection algorithm. Note that some concepts are modelled by 3D
distributions (e.g., ”blue” which is denoted by ”Bl”), while others (e.g.,
compact which is denoted by ”Co”) is modelled by 1D distributions. (b)
From left to right: example of a segmented toy car, the extracted range
data, and the results from the Bayes classifier constructed from the models
in (a). The object is classified as ”compact” and ”orange”.

Note that, since the system is operating in an online manner, the closed-
world assumption can not be assumed. At every step of learning, the system
should also take into the account that there might exist a yet ”unknown
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model”, which might better explain the robot’s observation – the system
should thus be aware of the uncertainty about state model complex-
ity. In the following we describe how the the ”unknown model” is proba-
bilistically integrated into the system.

11.1.1 Accounting for unknown model

While maintaining good models of the visual concepts and being able to
adapt those models is crucial for the robots online operation, the ability to
detect gaps in the knowledge presented by these models is equally important.
Generally speaking the robot collects the visual information about its envi-
ronment as follows. First it determines a region in an image which contains
the interesting information, then it ”segments” that region and extracts the
feature values z from which it later builds models of objects, concepts, etc.
The visual information may be ambiguous by itself, and segmentation may
not always be successful. We will assume that some measure of how well
the segmentation was carried out exists and we will denote it by s ∈ [0, 1].
High values of s (around one) mean high confidence that a good observation
z was obtained, while low values relate to low confidence.

Let m ∈ {mk,mu} denote two possible events: (i) the observation came
from a existing internal model mk, and (ii) the observation came from an
unknown model mu. We define the knowledge model as a probability of
observation z, given the confidence score s:

p(z|s) = p(z|mk, s)p(mk|s) + p(z|mu, s)p(mu|s). (21)

The function p(z|mk, s) is the probability of explaining z given that z comes
from one of the learnt models, p(mk|s) is the a priori probability of any
learnt model given the observer’s score s. The function p(z|mu, s) is the
probability of z corresponding to the unknown model, and p(mu|s) is the
probability of the model ”unknown” given the score s.

Assume that the robot has learnt K separate alternative internal models
M = {Mi}i=1:K from previous observations. The probability p(z|mk, s) can
then be further decomposed in terms of these K models,

p(z|mk, s) =

K∑

i=1

p(z|Mi,mk, s)p(Mi|mk, s). (22)

If we define the ”unknown” model byM0 and set p(z|mu, s) = p(z|M0,mu, s)p(M0|mu, s),
then (21) becomes

p(z|s) = p(mk|s)
K∑

i=1

p(z|Mi,mk, s)p(Mi|mk, s)

+p(mu|s)p(z|M0,mu, s)p(M0|mu, s). (23)
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Note that the ”unknown model”, M0, accounts for a poor classification, by
which we mean that none of the learnt models supports the observation z
strongly enough. We assume that the probability of this event is uniformly
distributed over the feature space, which means that we can define the like-
lihood of model M0, given observation z by a uniform distribution, i.e.,
p(z|M0,mu, s) = U(z). Note also, that the only possible unknown model
comes from the class M0, therefore p(M0|mu, s) = 1.

The observation z can be classified into the class Mi which maximizes
the a posteriori probability (AP). The a posteriori probability of a class Mi

is calculated as

p(Mi|z, s) ∝ p(z|Mi,m, s)p(Mi|m, s)p(m|s), (24)

where m = mk for i ∈ [1,K] and m = mu for i = 0.
The gap in knowledge can be discovered through inspection of the AP

distribution, which effectively reflects the uncertainty about the state
model complexity. In particular, if the AP distribution exhibits an am-
biguous classification of the observation z, or classifies it as an ”unknown”
(or unaccounted), then this is a good indication that we are dealing with a
gap in knowledge.

In our implementations, the distribution of each i-th alternative of the
known model p(z|Mi,mk, s) is continually updated by the oKDE [?], while
the a priori probability p(Mi|mk, s) for each model is calculated from the
frequency at which each of the alternative classes Mi, i > 0, has been
observed. The a priori probability of an unknown model (and implicitly
of a known model), p(mu|s) is assumed non-stationary in that it changes
with time. The following function decreases the ”unknown” class probability
with increasing number of observations N and increases this probability if
the observer’s certainty score s is low12:

p(mu|s) = e
−0.5( N

σN
)2
. (25)

With above definitions, the knowledge model is completely defined and al-
lows discovery of knowledge gaps.

11.1.2 Example of a probabilistic knowledge model

For a better visualization of the knowledge update and gap discovery we will
restrict our example to a one-dimensional case. We will also use this example
to better relate the types of knowledge incompleteness to the definitions from
Section 2. Fig. 15 illustrates detection and filling of knowledge gaps for three
cases (feature values) denoted by the circle, the diamond, and the square.
The plots in the left column depict the models, the posteriori pdfs, and the

12For example, in visual learning, the observer’s certainty score s might reflect the
quality of the visual data from which the visual features are extracted.
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recognition at a particular step in the learning process. The right column
depicts the situation after the system has updated these models considering
the detected knowledge gaps and the answers from the tutor. Note that the
pdfs over the feature values account for the state value uncertainty in
the models, while the a posteriori pdfs account for the uncertainty about
the state model complexity.

The circle represents a yellow object. Since the yellow colour has not
been presented to the robot before, the corresponding model has not yet
been learned and the feature value fails in a not yet modelled area, therefore
this value is best explained by the ”unknown model”, which has the highest
a posteriori probability. The robot asks the tutor ”What colour is this
object?”, and after the tutor provides the correct information, the robot
initializes a model for yellow colour. We say that a state novelty has been
detected by the robot, and after the human’s explanation, the structural
novelty has also been registered. Note, however, that since only a single
sample does not suffice to build a reliable representation, the yellow colour
will only be able to be recognized after some additional yellow object is
observed.

The feature value denoted by a diamond is best explained by a green
model, however this recognition is not very reliable, therefore the robot
asks the tutor: ”Is this object green?” to verify its belief. This question is
triggered by a high state value uncertainty. After the tutor replies ”No.
It is blue.”, the robot first unlearns the representation of green and updates
the representation of blue. The corrected representations, depicted in the
pdfs in the right column , then enable the correct recognition as indicated
by the second bar plot in the right column of the Fig. 15.

The last case denoted by the square shows another example of non-
reliable recognition, which triggers the additional clarification question to
the tutor: ”Is this object blue?” After the robot gets a positive answer, it
updates the representation of blue, which increases the probability of the
recognition. In this case, the question is triggered by a high state value
uncertainty, which borders on possibility of a state novelty. However,
after the tutor’s answer, the state value uncertainty is decreased with-
out creating a novel state as in the case of the feature value denoted by a
diamond.

12 Conclusion
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U R G B U R G B U R G B U R G B U R G B U R G B

Figure 15: Example of detecting the knowledge gaps and updating the 1D
KDE representations. Top row: probability distributions for three colours
(red, green, blue lines) and unknown model (gray line) in 1D feature space.
Bottom row: a posteriori probabilities for the unknown model (U) and three
colours (R, G, B) for three feature values denoted by the circle, the diamond
and the square. Left column: before updates, right column: after updates.

13 Annexes

13.1 Wyatt et al. “Self-Understanding and Self-Extension:
A Systems and Representational Approach

Bibliography Jeremy L. Wyatt, Alper Aydemir, Michael Brenner, Marc
Hanheide, Nick Hawes, Patric Jensfelt, Matej Kristan, Geert-Jan M. Kruijff,
Pierre Lison, Andrzej Pronobis, Kristoffer Sjöö, Danijel Skočaj, Alen Vrečko,
Hendrik Zender, Michael Zillich: Self-Understanding and Self-Extension: A
Systems and Representational Approach, submitted to IEEE Transactions
on Autonomous Mental Development, Special Issue on Architectures and
Representations.

Abstract There are many different approaches to building a system that
can engage in autonomous mental development. In this paper we present an
approach based on what we term self- understanding, by which we mean the
use of explicit representa- tion of and reasoning about what a system does
and doesnt know, and how that understanding changes under action. We
present a coherent architecture and a set of representations used in two robot
systems that exhibit a limited degree of autonomous mental development,
what we term self-extension. The contributions include: representations of

EU FP7 CogX 67



DR 1.2: Unifying representations of beliefs Wyatt et al.

gaps and uncertainty for specic kinds of knowledge, and a motivational and
planning system for setting and achieving learning goals.

Relation to WP This paper describes the representations of beliefs about
uncertainty and gaps in spatial information, planning, cross-modal informa-
tion, and multi-modal information. It shows how these were used in the
George and Dora systems during year 1. In particular it shows how to build
a system that uses representations of beliefs several different modalities and
how those change under action in a unified way.
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13.2 Lison et al. “Belief Modelling for Situation Awareness
in Human-Robot Interaction

Bibliography Pierre Lison, Carsten Ehrler and Geert-Jan M. Kruijff: Be-
lief Modelling for Situation Awareness in Human-Robot Interaction. Ex-
tended report.

Abstract To interact naturally with humans, robots needs to be aware of
their own surroundings. This awareness is usually encoded in some implicit
or explicit representation of the situated context. In this research report, we
present a new framework for constructing rich belief models of the robot’s
environment.

Key to our approach is the use of Markov Logic as a unified represen-
tation formalism. Markov Logic is a combination of first-order logic and
probabilistic graphical models. Its expressive power allows us to capture
both the rich relational structure of the environment and the uncertainty
arising from the noise and incompleteness of low-level sensory data. Beliefs
evolve dynamically over time, and are constructed by a three-fold iterative
process of information fusion, refinement and abstraction. This process is re-
flected in distinct ontological categories. Links across these categories define
the construction history by relating a belief to its ancestors. Beliefs are thus
organised in a complex two-dimensional structure, with horizontal relations
between belief dependents and vertical relations between belief relatives.

Beliefs also incorporate various contextual information such as spatio-
temporal framing, multi-agent epistemic status, and saliency measures. Such
rich annotation scheme allows us to easily interface beliefs with high-level
cognitive functions such as action planning or communication. Beliefs can
therefore be easily referenced, controlled and extended “top-down” by ex-
ternal processes to reach beyond the current perceptual horizon and include
past, future or hypothetical knowledge.

Relation to WP This report describes the formal representations used
to model multi-modal beliefs (and how they can be build). The approach
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1 Introduction

The situated context plays a central role in human-robot interaction (HRI).
To be able to interact naturally with humans, robots needs to be aware of their
own environment. This situation awareness is generally expressed in some sort
of belief models in which various aspects of the external reality are encoded.
Such belief models provide an explicit or implicit representation for the cur-
rent state of the world, from the robot’s viewpoint. They therefore serve as a
representational backbone for a wide range of high-level cognitive capabilities
related to reasoning, planning and learning in complex and dynamic environ-
ments. In particular, they can be used as a knowledge base by the robot to
verbalise its own knowledge. Such ability is crucial to establish transparency in
situated dialogue between the robot and one or more human interlocutor(s),
for instance in socially guided learning tasks [32,30,26].

In speech-based HRI, critical tasks in dialogue understanding, management
and production are directly dependent on such belief models to prime or guide
their internal processing operations. Examples are context-sensitive speech
recognition [20], reference resolution and generation in small- [16] and large-
scale space [36], parsing of spoken dialogue [19], pragmatic interpretation [31],
action selection in dialogue management [35], user-tailored response generation
[34], and contextually appropriate intonation patterns in speech synthesis [18].
Contextual knowledge is also a prerequisite for the dynamic adaptation of the
robot’s behaviour to different environments and interlocutors [4].

Belief models are usually expressed as high level symbolic representations
merging and abstracting information over multiple modalities. For human-
robot interaction, the incorporated knowledge might include (inter alia):

• description of physical entities in the visual scene (what is around me);
• small- and large-scale organisation of space (what is where, where am I);
• user models (intentional and attentional state of other agents, attributed

knowledge, personal profile, preferences);
• structured history of the interaction (what was said before);
• and task models (what is to be done, which actions are available).

The construction of such belief models raises two important issues for the
system developer. The first question to address is how these high-level repre-
sentations can be reliably abstracted from low-level sensory data [1,27]. To be
meaningful, most symbolic representations must be grounded in (subsymbolic)
sensory inputs [28]. This is a difficult problem, partly because of the noise and
uncertainty contained in sensory data (partial observability), and partly be-
cause the connection between low-level perception and high-level symbols is
typically difficult to formalise in a general way [8].

2



The second issue relates to how information arising from different modalities
and time points can be efficiently merged into unified multi-modal structures
[17], and how these inputs can refine and constrain each other to yield im-
proved estimations, over time. This is the well-known engineering problem of
multi-target, multi-sensor data fusion [7].

Belief models are thus the final product of a three-fold iterative process of
information fusion, refinement and abstraction defined over multiple modal-
ities and time spans. Information fusion refers to the operation of merging
data from distinct knowledge sources into one single representation. Following
the fusion operation, beliefs are then gradually refined – new, improved esti-
mations are derived for each belief feature, given the collection of knowledge
sources which have been merged. And finally, in complement to information
refinement, beliefs are also abstracted by constructing high-level, amodal sym-
bolic representations from low-level perceptual (i.e. modal) data.

1.1 Requirements for belief models in HRI

Typical HRI environments are challenging to model explicitly, as they bear
the characteristics of being simultaneously complex, stimuli-rich, multi-agent,
dynamic and uncertain. These five characteristics impose particular require-
ments on the nature and expressivity of the belief representations we wish to
construct. Five central requirements can be formulated:

(1) HRI environments are characteristically complex, and their observation
reveals a large amount of internal structure (for instance, spatial relations
between physical entities, or possible groupings of objects according to
specific properties). As a consequence, the formal representations used
to specify belief models must possess the expressive power to reflect this
rich relational structure in a general way, and reason over it.

(2) Physical environments are not only complex, but are also overloaded with
perceptual stimuli. The robotic agent is constantly bombarbed by data
coming from its sensors. Left unfiltered, the quantity of sensory informa-
tion to process is sure to exhaust its computational resources. The robot
must therefore be capable of actively focusing on the important, rele-
vant areas while ignoring the rest. The cognitive process underlying this
ability is called the attention system. Its role is to sort the foregrounded
information from the background “clutter”, on the basis of (multi-modal)
saliency measures. The belief models must therefore incorporate mecha-
nisms for computing and adapting these saliency measures over time.

(3) By definition, interactive robots are made for multi-agent settings. Mak-
ing sense of communicative acts between agents requires the ability to
distinguish between one’s own knowledge (what I believe), knowledge at-
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tributed to others (what I think the others believe), and shared common
ground knowledge (what we believe as a group). Such epistemic distinc-
tions need to be explicitly encoded in the belief representations.

(4) Situated interactions are always dynamic and evolve over time. This in-
cludes both the evolution of the physical environment, and the evolution
of the interaction itself. The incorporation of spatio-temporal framing is
thus necessary to express when and where a particular belief is supposed
to hold. Spatio-temporal framing also allows us to go beyond the percep-
tual horizon of the “here-and-now”, and link the present situation with
(episodic) memories of the past, anticipation of future expected events,
and hypothetical knowledge – including knowledge about distant places
currently outside the reach of the robot’s sensors.

(5) And last but not least, due to the partial observability of the environment
(due to e.g. noise, biased measurements, occlusions), it is crucial that
belief models incorporate an explicit account of uncertainties in order to
incorporate various levels of confidence in the observed measures.

Orthogonal to these “representational” requirements, crucial performance re-
quirements must also be adressed. To keep up with a continuously changing
environment, all operations performed on the belief models (content updates,
queries, etc.) must be computable under soft real-time constraints. Given the
problem complexity we just outlined, this rules out the possibility of perform-
ing exact inference. An alternative, more appropriate solution is the use of
anytime algorithms combined with various approximation methods for prob-
abilistic inference. This constitutes our sixth and final requirement.

1.2 Gist of the approach

This report presents ongoing work on a new approach to multi-modal situation
awareness which attempts to address these requirements. Key to our approach
is the use of a first-order probabilistic language, Markov Logic [24], as a uni-
fied representation formalism to construct rich, multi-modal models of context.
Markov Logic is a combination of first-order logic and probabilistic modelling.
As such, it provides an elegant account of both the uncertainty and complex-
ity of situated human-robot interactions. Our approach departs from previous
work such as [13] or [27] by introducing a much richer modelling of multi-
modal beliefs. Multivariate probability distributions over possible values are
used to account for the partial observability of the data, while the first-order
expressivity of Markov Logic allows us to consisely describe and reason over
complex relational structures. As we shall see, these relational structures are
annotated with various contextual information such as spatio-temporal fram-
ing (where and when is the belief valid), epistemic status (for which agents
does this belief hold), and saliency (how prominent is the entity relative to
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others). Furthermore, performance requirements can be addressed with ap-
proximation algorithms for probabilistic inference optimised for Markov Logic
[24,23]. Such algorithms are crucial to provide an upper bound on the system
latency and thus preserve its efficiency and tractability.

The rest of this report is structured as follows. Section 2 provides a brief intro-
duction to Markov Logic, the framework used for belief modelling. Once the
theoretical foundations of our work is laid out, we describe the approach itself
in the sections 3 to 7. Section 3 starts by describing the software architecture
in which our approach is being integrated. Section 4 details the representa-
tions which have been used to formalise the concept of “belief”. Section 5
then explains step-by-step how such beliefs can be constructed bottom-up,
iteratively, from perceptual inputs. Section 6 provides additional details on
the attention and filtering systems. Section 7 connects beliefs to language, by
showing how beliefs can be linguistically referenced, and how interaction can
be used to extend beliefs with new information. Finally, Section 8 concludes
this report, and provides directions for future work.

2 Markov Logic Networks

Markov logic combines first-order logic and probabilistic graphical models in
a unified representation [24]. From a syntactic point of view, a Markov logic
network L is simply defined as a set of pairs (Fi, wi), where Fi is a first-order
formula and wi ∈ R is the associated weight of that formula.

A Markov logic network can be interpreted as a template for constructing
Markov networks. The structure and parameters of the constructed network
will vary depending on the set of constants provided to ground the predicates
of the Markov Logic formulae. Such Markov network represents a probability
distribution over possible words. As such, it can be used to perform proba-
bilistic inference over the relational structure defined by the formulas Fi.

In the following, we briefly review the definition of Markov networks, and then
show how they can be generated from a Markov logic network L.

2.1 Markov Network

A Markov network G, also known as a Markov random field, is an undirected
graphical model [15] for the joint probability distribution of a set of random
variables X = (X1, . . . , Xn) ∈ X . The network G contains a node for each
random variable Xi. The nodes in the network can be grouped in a set of
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cliques. In graph theory, a clique is a fully connected subgraph – that is,
a subset of nodes where each node is connected with each other. The joint
probability distribution of the Markov network can then be factorised over
the cliques of G:

P (X = x) =
1

Z

∏

k

φk(x{k}) (1)

where φk(x{k}) is a potential function mapping the state of a clique k to a
non-negative real value. Z is a normalization constant, known as partition
function, and is defined as Z =

∑
x∈X

∏
k φk(x{k}).

Alternatively, the potential function φk in (1) can be replaced by an exponen-
tiated weighted sum over real-valued feature functions fj:

P (X = x) =
1

Z
e

(∑
j
wjfj(x)

)
(2)

The representation in (2) is called a log-linear model.

2.2 Constructing a Markov Network from a Markov Logic Network

Recall that a Markov logic network L is a set of pairs (Fi, wi). If in addition
to L we also specify a set of constants C = {c1, c2, ..., c|C|}, one can generate
a ground Markov network ML,C as follows [24]:

(1) For each possible predicate grounding over the set C, there is a binary
node in ML,C . The value of the node is true iff the ground predicate is
true.

(2) For every formula Fi, there is a feature fj for each possible grounding
of Fi over C. The value of the feature fi(x) is 1 if Fi is true given x
and 0 otherwise. The weight of the feature corresponds to the weight wi

associated with Fi.

The graphical representation of ML,C contains a node for each ground pred-
icate. Furthermore, each formula Fi defines a set of cliques j with feature fj
over the set of distinct predicates occurring in Fi.

Following (1) and (2), the joint probability distribution of a ground Markov
network ML,C is then given by:

P (X = x) =
1

Z

∏

i

φi(x{k})
ni(x) =

1

Z
e(
∑

i
wini(x)) (3)

The function ni(x) in (3) counts the number of true groundings of the formula
Fi in ML,C given x.
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2.3 Example of Markov Logic Network

Consider a simple Markov Logic network L made of three unary predicates,
Professor(x), Teaches(x), and Undergrad(x), and two formulae:

w1 Professor(x)→ Teaches(x) (4)

w2 Undergrad(x)→ ¬Teaches(x) (5)

The formulae encode the fact that most professors teach, while most under-
graduate students don’t. Since these two rules admit a few exceptions (profes-
sors can be on sabbatical, and some undergraduates can teach as assistants),
they are specified as soft constraints with finite weights w1 and w2.

Assuming a particular person A, we can construct a ground Markov network
ML,{A} over this single constant following the procedure we just outlined. The
resulting network is illustrated in the Figure 1. The network ML,{A} defines a
probability distribution over a set of 23 possible worlds (since we have three
unary predicates which can be true or false, and one constant).

The probability of the world x = (Professor(A),¬Teaches(A),¬Undergrad(A))
can then be directly computed using (3). The ground Markov Network coun-
tains two features (one for each formula). In the case of world x, the first
formula is violated, while the second is not. This means that n1(x) = 0 and
n2(x) = 1. This gives us the probability P (X = x) = 1

Z
e(w1×0+w2×1) = 1

Z
ew2 ,

where the partition function Z = 4ew1+w2 +2ew1 +2ew2 . Notice that the parti-
tion function Z grows exponentially with the weights, and will tend to infinity
for large values of w1 or w2. If we increase the value of w1 while keeping the
value of w2 constant, the probability P (X = x) will thus approach 0.

Professor(A) Teaches(A)

Undergrad(A)

Fig. 1. Example of ground Markov Network ML,C given the Markov logic network
L = 〈(Professor(x)→ Teaches(x), w1), (Undergrad(x)→ ¬Teaches(x), w2)〉 and
the constants C = {A}. An edge between two nodes signifies that the corresponding
ground atoms appear together in at least one grounding of one formula in L.
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2.4 Inference

Once a Markov network ML,C is constructed, it can be exploited to perform
conditional or MPE inference over the relational structure defined by L. A
Markov Logic Network can be used to answer arbitrary queries such as “What
is the probability that formula F1 holds given that formula F2 does?” Such
query can be translated as:

P (F1|F2, L, C) =P (F1|F2,ML,C) (6)

=
P (F1 ∧ F2|ML,C)

P (F2|ML,C)
(7)

=

∑
x∈XP1

∩XP2
P (X = x|ML,C)

∑
x∈XP2

P (X = x|ML,C)
(8)

where XPi
represent the set of worlds where the formula Fi holds.

Exact inference in Markov Networks is a #P-complete problem [15] and is
thus untractable. However, several efficient algorithms for probabilistic in-
ference such as weighted MAX-SAT, Markov Chain Monte Carlo (MCMC)
or lifted belief propagation can then be used to yield approximate solutions
[23,25,29]. Given the requirements of our application domain (see Section 1),
and particularly the need to operate under soft real-time constraints, such
approximation methods are an absolute necessity.

2.5 Learning

The weight wi in a Markov logic network encode the “strength” of its asso-
ciated formula Fi. In the limiting case, where limwi→∞, the probability of a
world violating Fi has zero probability. For smaller values of the weight, worlds
violating the formula will have a low, but non-zero probability.

But how are these weights specified? In most cases, weights are learned based
on training samples extracted from a relational database. Several machine
learning algorithms for parameter learning can be applied to this end, from
classical gradient-based techniques to more sophisticated algorithms specifi-
cally designed for statistical relational learning [21,12].

In addition to weights learning, it is also possible to learn the structure of
a Markov Logic problem, either partially (by adding additional clauses to
the network or refining the existing ones), or completely (by learning a full
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network from scratch). Structure learning is usually performed with algorithms
borrowed from Inductive Logic Programming [14,22].

3 Architecture

3.1 Global schema

Our approach is being developed as part of a distributed cognitive architecture
for autonomous robots in open-ended environments [9].

The architectural schema is based on a distributed set of subarchitectures.
Each subarchitecture encapsulates a number of processing components run-
ning in parallel. The components can access sensors, effectors, as well as a
blackboard (working memory) available for the whole subarchitecture. Via
this central working memory, each component is able to asynchronously read
and update shared information within the subarchitecture. The information
flow between components is thus based on the idea of parallel refinement of
shared representations, eschewing the standard point-to-point connectivity of
traditional message-based frameworks.

The components can be either unmanaged (data-driven) or managed (goal-
driven). Goal-driven components can be controlled explicitly at runtime by a
task manager specifying which component is allowed to run at a given time.
This explicit control of information and processing is crucial to dynamically
balance and constrain the computational load among components.

Finally, subarchitectures can also communicate with each other by accessing
(reading, inserting, updating) their respective working memories.

3.2 Implementation of the schema

This architectural schema has been fully implemented in a software toolkit
called CAST [9], which has been developed to support the construction and
exploration of information-processing architectures for intelligent systems such
as robots. Components can be implemented in Java, C++, or Python, while
the shared data structures in the working memory are specified in a language-
neutral specification using ICE 2 [11].

2 Internet Communications Engine, an object-oriented middleware developed by
ZeroC: http://www.zeroc.com/ice.html
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The architecture and its associated toolkit have been applied to various sce-
narios such as visual learning and object manipulation in a tabletop scene [33]
and exploration of indoor environments for human-augmented mapping [10].

3.3 Binder subarchitecture

Our approach to multi-modal belief modelling is implemented in a specific
subarchitecture developed under the CAST framework. This subarchitecture
is called the “binder”. The binder is directly connected to the other subarchi-
tectures (i.e. vision, navigation, manipulation, etc.), and serves as a central
hub for the information gathered about the environment. The core of the
binder is its working memory, where beliefs are formed from incoming per-
ceptual inputs, and are then iteratively fused, refined and abstracted to yield
stable, high-level beliefs.

The resulting beliefs can also be easily accessed and retrieved by the other
subarchitectures. Such retrieval operation allows each subarchitecture to use
the binder as a system-wide information repository about the world state. The
beliefs can then be directly exploited by high-level cognitive functions such as
planning, cross-modal learning or communication. They can also be used by
perceptual components to adapt their internal processing operations to the
current situated context (contextual priming, anticipation, etc.)

Fig. 2 schematically illustrates the interface between the binder system and
the rest of the software architecture.

Binder

Working 
Memory

Processing components

... ...

Subsystem 1 Subsystem 2 Subsystem 3

Local 
WM

... ...

Local 
WM

... ...

Local 
WM

... ...

refine

update

Fig. 2. Schema of the cognitive architecture in relation with the binder
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The data structures included in the binder are inherently probabilistic – each
feature or information bit pertaining to an entity can be associated to a prob-
ability value, reflecting the confidence level of the subsystem. This enables
the system to deal with varying levels of noice and uncertainty, which are
pervasive and unavoidable for most sensory-motric processes.

Now that the software architecture of our approach has been described, the
next section proceeds by detailing how beliefs are represented in the binder,
and how this representation is precisely formalised.

4 Representation of beliefs

Each unit of information manipulated by the binder is expressed as a proba-
bility distribution over a space of possible values. Such unit of information is
called a belief.

Beliefs are constrained both spatio-temporally and epistemically. They include
a frame stating where and when the information is assumed to be valid, and
an epistemic status stating for which agent(s) the information holds.

Formally, a belief is a tuple 〈i, e, σ, c, δ, h〉, where i is the belief identifier, e
is an epistemic status, σ a spatio-temporal frame, c an ontological category,
δ is the belief content (specified as a probability distribution), and h is the
history of the belief.

We describe below each of these components one by one.

4.1 Epistemic status e

Interactive robots must be able to distinguish between their own knowledge,
knowledge of others, and shared knowledge (common ground). We specify
such information in the epistemic status of the belief. For a given agent a, the
epistemic status e can be either:

• private, denoted K{a}: private beliefs come from within the agent a. In
other words, they are a direct or indirect result of agent a’s perception of
the environment;
• attributed, denoted K{a[b1, ..., bn]}: Attributed beliefs are beliefs which are

ascribed to other agents. They are a’s conjecture about the mental states of
other agents b1, ..., bn, usually as a result of a’s interpretations of previous
communicative acts performed by b1, ..., bn.
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• shared, denoted K{a1, ..., am}: Shared beliefs contain information which is
part of the common ground for the group [3].

Shared epistemic status subsumes both private and attribute epistemic status.
A shared belief K{a, b} therefore also implies the two private beliefs K{a} and
K{b} and the two attributed beliefs K{a[b]} and K{b[a]}.

4.2 Spatio-temporal frame σ

The spatio-temporal frame σ defines a contiguous spatio-temporal inter-
val, the nature of which depends on the application domain. In the simplest
case, the spatial dimension can be modelled by a discrete set of regions and
the temporal dimension via intervals defined on real-valued time points. Of
course, more complex spatio-temporal modelling can be designed. The regions
in the spatial dimension can be hierarchically organised (e.g. based on a spatial
ontology) instead of being defined as flat list of possible regions. The temporal
dimension can be adapted in a similar way.

Moreover, the spatio-temporal frame can be extended with the notion of per-
spective, where spatial and temporal constraints are defined as being relative
to a particular agent a. Using the notion of perspective, we can capture the
fact that each agent view the environment in its own specific way (i.e. the
object which is on my left might be to the right of the robot).

It is important to note that beliefs can express past or future knowledge (i.e.
memories and anticipations). That is, beliefs need not be directly grounded in
the “here-and-now” observations.

4.3 Ontological category c

The ontological category is used to sort the various belief types which can
be created. Various levels of beliefs are defined, from the lowest to the highest
abstraction level. Figure 5 illustrates the role of these categories in the belief
formation process.

(1) The lowest-level type of beliefs is the percept (or perceptual belief ), which
is a uni-modal representation of a given entity 3 or relation between en-
tities in the environment. Perceptual beliefs are inserted onto the binder
by the various subsystems included in the architecture. The epistemic

3 The term “entity” should be understood here in a very general sense. An entity
can be an object, a place, a landmark, a person, etc.
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status of a percept is private per default, and the spatio-temporal frame
is the robot’s present place and time-point.

(2) If several percepts (from distinct modalities) are assumed to originate
from the same entity, they can be grouped into a percept union. A percept
union is just another belief, whose content is the combination of all the
features from the included percepts.

(3) The features of a percept union can be abstracted using multi-modal
fusion and yield a multi-modal belief.

(4) If the current multi-modal belief (which is constrained to the present
spatio-temporal frame) is combined with beliefs encoded in past or future
spatio-temporal frames, it forms a temporal union.

(5) Finally, the temporal unions can be refined over time to improve the
estimations, leading to a stable belief, which is both multi-modal and
spans an extended spatio-temporal frame.

4.4 Belief content δ

The distribution δ defines the possible content values for the belief. In gen-
eral, each alternative value can be expressed as a (propositional) logical for-
mula. In most practical cases, such formula can be represented as a flat list of
features. The feature values can be either discrete (as for categorical knowl-
edge) or continuous (as for real-valued measures).

A feature value can also specify a pointer to another belief, allowing us to
capture the relational structure of the environment we want to model. The
resulting relational structure can be of arbitrary complexity.

Discrete probability distributions can be expressed as a set of pairs 〈ϕ, p〉
with ϕ a formula, and p a probability value, where the values of p must satisfy
the usual constraints for probability values. For continuous distribution, we
generally assume a known distribution (for instance, a normal distribution)
combined with the required parameters (e.g. its mean and variance).

In practice, maintaining a single big distribution over all possible values of
the belief is both computationally expensive and unecessary. The distribution
can usually be decomposed into a list of smaller distributions over parts of
the belief content. This can be done by breaking down the formulae into ele-
mentary predications, and assuming conditional independence between these
elementary predicates. The probability distribution δ can then be factored
into smaller distributions δ1...δn.
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4.5 Belief history h

Finally, via the belief history h, each belief contains bookkeeping information
detailing the history of its formation. This is expressed as two set of pointers:
one set of pointers to the belief ancestors (i.e. the beliefs which contributed
to the emergence of this particular belief) and one set of pointers to the belief
offspring (the ones which themselves emerged out of this particular belief).

Beliefs are thus organised in a complex two-dimensional structure, with hori-
zontal relations between beliefs of same category (representing the relational
structure of the world), and vertical relations between a belief and its par-
ents/offpsring (representing the historical evolution of a given belief as they
are processed by the system).

Perceptual beliefs have by construction no belief parent. Instead, they include
in their belief history a pointer to the local data structure in the subarchitec-
ture which was at the origin of the belief.

4.6 Example of belief representation

Fig. 3. A blue mug

Consider an environment with a blue mug such as the
one pictured in Figure 3. The mug is perceived by the
robot sensors (for instance, by one binocular camera,
or by a haptic sensor mounted on a robotic arm). Sen-
sory data is extracted and processed by the sensory
subarchitecture(s). A the end of the process, a percep-
tual belief is created, with four features: object label,
colour, location, and height.

Due to the noise and uncertainty of sensory data, the perceived characteristics
of the object are uncertain. Let us assume for our example two uncertainties:

• The colour value of the object is uncertain (the vision system hesitates
between blue with probability 0.77 and purple with probability 0.22),
• and the recognition of the object itself is also uncertain (the recognised

object might be a false positive with no corresponding entity in the real
world. The probability of a false positive is 0.1).

Such perceptual belief i would be formally defined as:

〈i, {robot}, σ[here-and-now], percept, δ, h〉 (9)

with a probability distribution δ containing three alternative formulae ϕ1, ϕ2

and ϕ3. A graphical illustration of the belief i is provided in Figure 4.
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Belief i

Epistemic status:
σ[here-and-now]

{robot}
percept

Spatio-temporal frame:

Ontological category:

k

...ϕ2Formula

Probability:

ϕ1Formula

Probability:

Exists ∧
〈Label〉 mug ∧
〈Colour〉 blue ∧
〈Location〉 k ∧
〈Height〉 11.2

Exists ∧
〈Label〉 mug ∧
〈Colour〉 purple ∧
〈Location〉 k ∧
〈Height〉 11.2

Probability distribution δ

¬Exists

Formula ϕ3

0.70.2

0.1Probability:

Belief 

Belief history:

Origin o

[
ancestors : [o]
offspring : [b1, b2]

]

Belief b1 Belief b2

Fig. 4. Schematic view of a belief representation.

We can see in Figure 4 that the formula ϕ2 specifies the existence (with prob-
ability 0.7) of a blue mug entity of size 11.2 cm, at location k, perceived by
the robot in the current spatio-temporal frame (“here-and-now”). Notice that
the location is described as a pointer to another belief k. Such pointers are
crucial to capture relational structures between entities.

The belief i also specifies a belief history h. The belief i being a percept, its
history is defined as a pointer to a local data structure o in the subarchitec-
ture responsible for the belief’s creation. The belief history also contains two
pointers b1 and b2 to the belief’s offspring.

4.7 Alternative formalisation

The logically inclined reader might notice that the belief representation we out-
lined can also be equivalently formalised with a hybrid logic [2] complemented
by a probability language [5]. The belief 〈i, e, σ, c, δ, h〉 is then expressed as:

Ke/σ :
∧

〈ϕ,p〉∈δ
(P (@{i:c}ϕ) = p) ∧ ∃! 〈ϕ, p〉 ∈ δ : (@{i:c}ϕ) (10)
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where @ is the satisfiability operator from hybrid logic. The advantage of using
such representation is the possibility of using logical inference mechanisms to
reason over such structure and automatically derive new beliefs. We leave this
question as an interesting area of future research.

4.8 Conversion into Markov Logic

The conversion of the probability distribution δ into Markov Logic formulae
is relatively straightforward. Modal operators are translated into first-order
predicates and nominals into contants. A (sub-)formula such as:

〈Colour〉 blue (11)

which is declared true with probability p1 within a belief i is therefore ex-
pressed as the following Markov Logic formula:

w1 Colour(I, Blue) (12)

where the weight w1 = log
p1

1− p1
.

5 Bottom-up belief construction

We now turn our attention to the way a belief model can be constructed
bottom-up from the initial input provided by the perceptual beliefs. The for-
mation of belief models proceeds in four consecutive steps: (1) perceptual
grouping, (2) multi-modal fusion, (3) tracking and (4) temporal smoothing.
Figure 5 provides a graphical illustration of this process.

5.1 Perceptual grouping

The first step is to decide which percepts from different modalities belong
to the same real-world entity, and should therefore be grouped into a belief.
For a pair of two percepts p1 and p2, we infer the likelihood of these two
percepts being generated from the same underlying entity in the real-world.
This is realised by checking whether their respective features correlate with
each other.

The probability of these correlations are encoded in a Markov Logic Network.
The formulae might for instance express a high compatibility between the
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haptic feature “shape: cylindrical” and the visual feature “object: mug” (since
most mugs are cylindrical), but a very low compatibility between the features
“shape: cylindrical” and “object: ball”. Eq. (13) illustrates the correlation between
the cylindrical shape (Cyl) and the object label “mug” (Mug).

wi Shape(x, Cyl) ∧ Label(y, Mug)→ Unify(x, y) (13)

Markov Logic formulae can also express incompatibility between features, for
instance between a spherical shape and a object labelled as a mug:

wj Shape(x, Spherical) ∧ Label(y, Mug)→ ¬Unify(x, y) (14)

Additional formulae are used to specify generic requirements on the percep-
tual grouping process, for instance that x and y must be distinct beliefs and
originate from distinct subarchitectures. The prior probability of a grouping
is also specified as a Markov Logic formula.

A grouping of two percepts will be given a high probability if (1) one or more
feature pairs correlate with each other, and (2) there are no incompatible
feature pairs. This perceptual grouping process is triggered at each insertion
or update of percepts on the binder (provided the number of modalities in the

...

...Time

Tracking

...

t - 1 t t + 1

Multi-modal fusion

Temporal smoothing

Perceptual 
grouping

Multi-modal belief

Percept

Percept union

Temporal union

Stable belief

Levels of beliefs

Fig. 5. Bottom-up belief model formation.
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system > 1). The outcome is a set of possible unions, each of which has an
existence probability describing the likelihood of the grouping.

5.2 Multi-modal fusion

We want multi-modal beliefs to go beyond the simple superposition of isolated
modal contents. Multi-modal information should be fused. In other words, the
modalities should co-constrain and refine each other, yielding new multi-modal
estimations which are globally more accurate than the uni-modal ones.

Multi-modal fusion is also specified in a Markov Logic Network. As an il-
lustration, assume a multi-modal belief B with a predicate Position(B, loc)
expressing the positional coordinates of an entity, and assume the value loc

can be estimated via distinct modalities a and b by way of two predicates
Position(a)(U, loc) and Position(b)(U, loc) included in a percept union U.

wi Position(a)(U, loc)→ Position(B, loc) (15)

wj Position(b)(U, loc)→ Position(B, loc) (16)

The weights wi and wj specify the relative confidence of the measurements for
the modality a and b, respectively.

5.3 Tracking

Environments are dynamic and evolve over time – and so should beliefs. Anal-
ogous to perceptual grouping which seeks to bind observations over modalities,
tracking seeks to bind beliefs over time. Both past beliefs (memorisation) and
future beliefs (anticipation) are considered. The outcome of the tracking step
is a distribution over temporal unions, which are combinations of beliefs from
different spatio-temporal frames.

The Markov Logic Network for tracking works as follows. First, the newly
created belief is compared to the already existing beliefs for similarity. The
similarity of a pair of beliefs is based on the correlation of their content (and
spatial frame), plus other parameters such as the time distance between beliefs.

Eq. (17) illustrates a simple example where two beliefs are compared on their
shape feature to determine their potential similarity:

wi Shape(x, Cyl) ∧ Shape(y, Cyl)→ Unify(x, y) (17)
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If two beliefs B1 and B2 turn out to be similar, they can be grouped in a
temporal union U whose temporal interval is defined as [start(B1), end(B2)].

5.4 Temporal smoothing

Finally, temporal smoothing is used to refine the estimates of the belief content
over time. Parameters such as recency have to be taken into account, in order
to discard outdated observations.

The Markov Logic Network for temporal smoothing is similar to the one used
for multi-modal fusion:

wi Position(t-1)(U, loc)→ Position(B, loc) (18)

wj Position(t)(U, loc)→ Position(B, loc) (19)

6 Attention and filtering

As we mentioned in the introduction, an active perception of the environment
relies on the ability to focus the robot’s sensing activities to the relevant
entities in its surroundings, while ignoring the rest. Moreover, it is crucial for
performance reasons to perform aggressive filtering on the beliefs manipulated
by the binder, in order to retain only the most likely ones, and pruning the
others. This section explores these two issues.

6.1 Salience modelling

The attention system is driven in our approach by saliency measures. These
measures are represented in the binder as a specific feature included in the
belief content. The salience value gives an estimate of the “prominence” or
quality of standing out of a particular entity relative to neighboring ones.
It allows us to guide the attentional behaviour of the agent by specifying
which entities are currently in focus. The resolution of referring expressions
containing deictic demonstratives such as “this” and “that” is for instance
directly dependent on the salience levels of related entities.

In our model, the salience is defined as a real-valued measure which combines
several perceptual measures such as the object size and its linear and angular
distances relative to the robot. During linguistic interaction, these perceptual
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measures can be completed by measures of linguistic saliency, such as the
recency of the last reference to the object.

The salience being defined as a real-valued scalar, its probability is defined as
a density function < → [0, 1].

6.2 Belief filtering

Techniques for belief filtering are essential to keep the system tractable. Given
the probabilistic nature of the framework, the number of beliefs is likely to
grow exponentially over time. Most of these beliefs will have a near-zero prob-
ability. A filtering system can effectively prune such unecessary beliefs, either
by applying a minimal probability threshold on them, or by maintaining a
fixed maximal number of beliefs in the system at a given time. Naturally, a
combination of both mechanisms is also possible.

In addition to filtering techniques, forgetting techniques could also improve
the system efficiency [6].

7 Referencing and top-down extension

7.1 Referencing beliefs

Beliefs are high-level symbolic representations available for the whole cogni-
tive architecture. As such, they provide an unified model of the environment
which can be used during interaction. An important aspect of this is reference
resolution, which connects linguistic expressions such as “this box” or “the ball

on the floor” to the corresponding beliefs about entities in the environment.

Reference resolution is performed via a Markov Logic Network specifying the
correlations between the linguistic constraints of the referring expression and
the belief features – in particular, the entity saliency and its associated cate-
gorical knowledge.

Eq. (20) illustrates the resolution of a referring expression R with the linguistic
label “mug” to a belief B which includes a label feature with value Mug:

wi (Label(B, Mug) ∧ RefLabel(R, Mug)) → Resolve(R, B) (20)

The resolution process yields a distribution over alternative referents, which
is then retrieved by the communication subsystem for further interpretation.
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Percept p2 Percept p3Percept p1

Belief b2 Belief b3Belief b1

Reference r1

P=0.01

P=0.92

P=0.02

Asserted 
formula a1

link

“ this is yellow ” 
this yellow

Fig. 6. An utterance such as “this is yellow” illustrates the two mechanisms of ref-
erencing and belief extension. First, the expression “this” is resolved to a particular
entity. Since “this” is a deictic, the resolution is performed on basis of saliency mea-
sures. The belief B2 is selected as most likely referent. Second, the utterance also
provides new information – namely that the object is yellow. This asserted content
must be incorporated into the robot’s beliefs. This is done by constructing a new
belief which is linked (via a pointer) to the one of the referred-to entity.

7.2 Asserting new information

In Section 5, we described how beliefs can be formed from percepts, bottom-
up. When dealing with cognitive robots able to reflect on their own expe-
rience, anticipate possible events, and communicate with humans to improve
their understanding, beliefs can also be manipulated “top-down” via high-level
cognitive functions such as reasoning, planning, learning and interacting.

We concentrate here on the question of belief extension via interaction. In
addition to simple reference, interacting with a human user can also provide
new content to the beliefs. Using communication, the human user can directly
extend the robot’s current beliefs, in a top-down manner, without altering the
incoming percepts. The epistemic status of this information is attributed. If
this new information conflicts with existing knowledge, the agent can decide
to trigger a clarification request to resolve the conflict.

Fig. 6 provides an example of reference resolution coupled with a belief exten-
sion, based on the utterance “this is yellow”.
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8 Conclusion

In this report, we presented a new approach to the construction of rich belief
models for situation awareness. These beliefs models are spatio-temporally
framed and include epistemic information for multi-agent settings. Markov
Logic is used as a unified representation formalism, allowing us to capture both
the complexity (relational structure) and uncertainty (partial observability) of
typical HRI application domains.

The implementation of the approach outlined in this report is ongoing. We
are using the Alchemy software 4 for efficient probabilistic inference. The binder
system revolves around a central working memory where percepts can be in-
serted, modified or deleted. The beliefs are automatically updated to reflect
the incoming information. A GUI can be used to monitor and control at run-
time the binder behaviour.

Besides the implementation, future work will focus on three aspects. The first
aspect pertains to the use of machine learning techniques to learn the model
parameters. Using statistical relational learning techniques and a set of train-
ing examples, it is possible to learn the weights of a given Markov Logic
Network [24]. The second aspect concerns the extension of our approach to
non-indexical epistemic knowledge – i.e. the representation of events, inten-
tions, and plans. Finally, we want to evaluate the empirical performance and
scalability of our approach under a set of controlled experiments.
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Producing contextually appropriate intonation in an information-state based
dialogue system. In EACL ’03: Proceedings of the tenth conference on European
chapter of the Association for Computational Linguistics, pages 227–234,
Morristown, NJ, USA, 2003. Association for Computational Linguistics.

[19] P. Lison. Robust processing of situated spoken dialogue. In Von der Form zur
Bedeutung: Texte automatisch verarbeiten / From Form to Meaning: Processing
Texts Automatically. Narr Verlag, 2009. Proceedings of the GSCL Conference
2009 , Potsdam, Germany.

[20] P. Lison and G.-J. M. Kruijff. Salience-driven contextual priming of speech
recognition for human-robot interaction. In Proceedings of ECAI 2008, Athens,
Greece, 2008.

[21] Daniel Lowd and Pedro Domingos. Efficient weight learning for markov logic
networks. In PKDD 2007: Proceedings of the 11th European conference on
Principles and Practice of Knowledge Discovery in Databases, pages 200–211,
Berlin, Heidelberg, 2007. Springer-Verlag.

[22] Lilyana Mihalkova and Raymond J. Mooney. Bottom-up learning of markov
logic network structure. In ICML ’07: Proceedings of the 24th international
conference on Machine learning, pages 625–632, New York, NY, USA, 2007.
ACM.

[23] H. Poon and P. Domingos. Sound and efficient inference with probabilistic
and deterministic dependencies. In AAAI’06: Proceedings of the 21st national
conference on Artificial intelligence, pages 458–463. AAAI Press, 2006.

[24] M. Richardson and P. Domingos. Markov logic networks. Machine Learning,
62(1-2):107–136, 2006.

[25] Sebastian Riedel. Improving the accuracy and efficiency of MAP inference for
markov logic. pages 468–475, 2008.

[26] D. Roy. Learning words and syntax for a scene description task. Computer
Speech and Language, 16(3), 2002.

[27] D. Roy. Semiotic schemas: A framework for grounding language in action and
perception. Artificial Intelligence, 167(1-2):170–205, 2005.

[28] D. Roy and E. Reiter. Connecting language to the world. Artificial Intelligence,
167(1-2):1–12, 2005.

[29] Parag Singla and Pedro Domingos. Lifted first-order belief propagation. In
AAAI’08: Proceedings of the 23rd national conference on Artificial intelligence,
pages 1094–1099. AAAI Press, 2008.

[30] D. Skočaj, G. Berginc, B. Ridge, A. Štimec, M. Jogan, O. Vanek, A. Leonardis,
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DR 1.2: Unifying representations of beliefs Wyatt et al.

A Grammar for CogX Decision-Theoretic Plan-
ning Domain Definition Language (DTPDDL0.9β)

The 3rd Planning Domain Definition Language (PDDL3.0 – pronounced
“pea-diddle”) is the language of choice of the symbolic planning community.
This language and its predecessors have been developed for and adopted at
the International Planning Competitions since 1998. Moreover, a PDDL-
based language formed the basis of domain and problem description in the
planning subarchitecture of CoSy.

This section gives the Extended Backus Normal Form (EBNF) grammar
for defining decision-theoretic domains and problems called DTPDDL0.9β
– pronounced “deeteepee-diddle”. In particular, we extend PPDDL1.0 pro-
nounced “pea-two-diddle” – a language for describing probabilistic planning
problems that has been used since 2004 in International Planning Com-
petitions [?] – to contain syntactic elements for describing domains and
corresponding problems that feature partial observability. Our work draws
heavily on the work of [?] that sought extensions of PDDL for modelling
stochastic decision processes.

A.1 Domain Definition

<domain> ::= (define (domain <name>)

[<require-def>]

[<types-def>]:typing

[<constants-def>]

[<s-functions-def>]:fluents

[<o-functions-def>]:fluents

[<predicates-def>]

[<observations-def>]

<structure-def>∗)
<require-def> ::= (:requirements <require-key>+)

<require-key> ::= :strips

<require-key> ::= :fluents

<require-key> ::= :typing

<require-key> ::= :equality

<require-key> ::= :existential-preconditions

<require-key> ::= :universal-preconditions

<require-key> ::= :quantified-preconditions

Sugar for including :existential-preconditions and :universal-preconditions

<require-key> ::= :universal-effects

<require-key> ::= :conditional-effects

<require-key> ::= :probabilistic-effects

<require-key> ::= :partial-observability

<require-key> ::= :universal-unwinding

<s-functions-def> ::=:fluents

(:s-functions <function typed list (atomic s-function skeleton)>)

<o-functions-def> ::=:fluents

(:o-functions <function typed list (atomic o-function skeleton)>)

<atomic s-function skeleton>

::= (<s-function-symbol> <typed list (variable)>)

<atomic o-function skeleton>

::= (<o-function-symbol> <typed list (variable)>)

<function typed list (x)>

::= x∗
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<function typed list (x)>

::= :typing x+- <function-type> <function typed list (x)>

<typed list (x)> ::= x∗

<typed list (x)> ::= :typing x+- <type> <typed list (x)>

<function-type> ::= int|float|double

<emptyOr (x)> ::= ()

<emptyOr (x)> ::= x

<type> ::= (either <primitive-type>+)

<type> ::= <primitive-type>

<types-def> ::= (:types <typed list (name)>)

<constants-def> ::= (:constants <typed list (name)>)

<predicates-def> ::= (:predicates <atomic s-formula skeleton>+)

<observations-def> ::= (:percepts <atomic o-formula skeleton>+)

<atomic s-formula skeleton>

::= (<predicate> <typed list (variable)>)

<atomic o-formula skeleton>

::= (<observation> <typed list (variable)>)

<predicate> ::= <name>

<observation> ::= <name>

<o-function-symbol> ::= <name>

<s-function-symbol> ::= <name>

<variable> ::= ?<name>

<structure-def> ::= <action-def>

<structure-def> ::= :partial−observability <observation-def>

A.1.1 Actions

<action-def> ::= (:action <action-symbol>

:parameters (<typed list (variable)>)

<action-def body>)

<action-def body> ::= [:precondition <emptyOr (pre-GD)>]

[:effect <emptyOr (s-effect)>]

<action-symbol> ::= <name>

<pre-GD> ::= (and <pre-GD>∗)
<pre-GD> ::= :universal−preconditions

(forall (<typed list (var)>) <pre-GD>)

<pre-GD> ::= :existential−preconditions

(exists (<typed list (var)>) <pre-GD>)

<pre-GD> ::= <GD>

<GD> ::= <atomic s-formula (term)>

<GD> ::= (and <GD>∗)
<GD> ::= :fluents <s-f-comp>

<atomic s-formula(t)> ::= (<predicate> t∗)
<term> ::= <name>

<term> ::= <variable>

<s-f-comp> ::= (<binary-comp> <s-f-exp> <s-f-exp>)

<s-f-exp> ::= <number>

<s-f-exp> ::= (<binary-op> <s-f-exp> <s-f-exp>)

<s-f-exp> ::= (<multi-op> <s-f-exp> <s-f-exp>+)

<s-f-exp> ::= (- <s-f-exp>)

<s-f-exp> ::= <s-f-head>

<s-f-head> ::= (<s-function-symbol> <term>∗)
<s-f-head> ::= <s-function-symbol>

<binary-op> ::= <multi-op>

<binary-op> ::= -

<binary-op> ::= /

<multi-op> ::= *

<multi-op> ::= +

<binary-comp> ::= >

<binary-comp> ::= <
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<binary-comp> ::= =

<binary-comp> ::= >=

<binary-comp> ::= <=

<number> ::= int|float|double

<prob> ::= float|double (≥ 0,≤ 1)
<s-effect> ::= (and <c-s-effect>∗)
<s-effect> ::= <c-s-effect>

<s-effect> ::= <q-s-effect>

<c-s-effect> ::= :conditional−effects (when <GD> <s-effect>)

<c-s-effect> ::= :universal−effects (forall (<typed list (var)>) <s-effect>)

<c-s-effect> ::= :probabilistic−effects (probabilistic <prob> <s-effect>)

<c-s-effect> ::= :probabilistic−effects:universal−unwinding

(probabilistic (for-each (<typed list (x)>) <s-f-head> <s-effect> ))

<c-s-effect> ::= <p-s-effect>

<p-s-effect> ::= <atomic s-formula(term)>

<p-s-effect> ::= (not <atomic s-formula(term)>)

<p-s-effect> ::= :fluents(<assign-op> <s-f-head> <s-f-exp>)

<assign-op> ::= assign

<assign-op> ::= scale-up

<assign-op> ::= scale-down

<assign-op> ::= increase

<assign-op> ::= decrease

A.1.2 Observations

In classical and probabilistic planning all predicates are fully observable. In
CogX we are concerned with decision-theoretic planning domains where the
truth value of perceptual propositions are all the agent has in order to deter-
mine its beliefs about the world. Here we give the grammar for observation
schema that determine the truth values of perceptual propositions.

<observation-def> ::= (:observe <o-symbol>

:parameters (<typed list (variable)>)

<o-def body>)

<o-def body> ::= [:state <emptyOr (pre-GD)>]

[:action <atomic action(term)> ]

[:effect <emptyOr (o-effect)>]

<o-symbol> ::= <name>

<atomic action(t)> ::= (<action-symbol> t∗)
<o-effect> ::= (and <c-o-effect>∗)
<o-effect> ::= <c-o-effect>

<c-o-effect> ::= :conditional−effects (when <GD> <o-effect>)

<c-o-effect> ::= :universal−effects (forall (<typed list (var)>) <o-effect>)

<c-o-effect> ::= :probabilistic−effects (probabilistic <prob> <o-effect>)

<c-o-effect> ::= :probabilistic−effects:universal−unwinding

(probabilistic (for-each (<typed list (x)>) <s-f-head> <o-effect> ))

<c-o-effect> ::= <p-o-effect>

<atomic o-formula(t)> ::= (<observation> t∗)
<p-o-effect> ::= <atomic o-formula(term)>

<p-o-effect> ::= (not <atomic o-formula(term)>)

<p-o-effect> ::= :fluents(<assign-op> <o-f-head> <o-f-exp>)

<o-f-comp> ::= (<binary-comp> <o-f-exp> <o-f-exp>)

<o-f-exp> ::= <number>

<o-f-exp> ::= (<binary-op> <o-f-exp> <o-f-exp>)

<o-f-exp> ::= (<multi-op> <o-f-exp> <o-f-exp>+)

<o-f-exp> ::= (- <o-f-exp>)

<o-f-exp> ::= <o-f-head>

<o-f-head> ::= (<o-function-symbol> <term>∗)
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<o-f-head> ::= <o-function-symbol>

A.2 Problem Definition

<problem> ::= (define (problem <name>)

(:domain <name>)

[ <object declaration> ]

<init>

<goal>

[ <metric-spec> ] )

<object declaration> ::= (:objects <typed list (name)>)

<init> ::= (:init <init-el>∗)
<init-el> ::= <literal (name)>

<init-el> ::= :probabilistic−effects (probabilistic <prob> <init-el>∗)
<init-el> ::= (= <s-f-head> <number>)

<goal> ::= (:goal <pre-GD>)

<literal (t)> ::= <atomic s-formula (t)>

<literal (t)> ::= (not <atomic s-formula (t)>)

<metric-spec> ::= (:metric <optimization> <metric-f-exp>)

<optimization> ::= minimize

<optimization> ::= maximize

<metric-f-exp> ::= (<binary-op> <metric-f-exp> <metric-f-exp>)

<metric-f-exp> ::= (<multi-op> <metric-f-exp> <metric-f-exp>+)

<metric-f-exp> ::= (- <metric-f-exp>)

<metric-f-exp> ::= <number>

<metric-f-exp> ::= (<s-function-symbol> <name>∗)
<metric-f-exp> ::= <s-function-symbol>

A.2.1 Example from IPC-5 Tireworld

Here we demonstrate our POMDP domain definition language by giving an
example of a tireworld problem from IPC-5 that has some partial observ-
ability.

; ; ; O r i g i na l Authors : Michael Littman and David Weissman ; ; ;
; ; ; Modi f ied : B la i Bonet f o r IPC 2006 ; ; ;
; ; ; Modi f ied : Char les Gretton f o r CogX 2009 ; ; ;

( d e f i n e ( domain t i r e )
( : requ i rements

: p a r t i a l−ob s e r v ab i l i t y ; ; Not in IPC−5 t i r ewo r l d
: f l u e n t s ; ; Not in IPC−5 t i r ewo r l d
: un ive r sa l−e f f e c t s ; ; Not in IPC−5 t i r ewo r l d
: cond i t i ona l−e f f e c t s ; ; Not in IPC−5 t i r ewo r l d

: typing
: s t r i p s
: e qua l i t y
: p r o b a b i l i s t i c−e f f e c t s )

( : types l o c a t i o n )

( : p r ed i c a t e s
( v eh i c l e−at ? l o c − l o c a t i o n )

( spare−in ? l o c − l o c a t i o n )

( road ? from − l o c a t i o n ? to − l o c a t i o n )
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( goal−l o c a t i o n ? l o c ) ; ; Not in IPC−5 t i r ewo r l d

( not− f l a t t i r e )

( hasspare )
)

; ; Note , here a l l the s tate−p r ed i c a t e s are repeated except f o r
; ; ”( not− f l a t t i r e ) ” . A repeated s t a t e p r ed i c a t e in ” : pe r cept s ” i s
; ; f u l l y obse rvab l e .
( : pe r c ept s

; ; Do we know i f we have a f l a t t i r e ?
( observe−not− f l a t t i r e ) ; ; Not in IPC−5 t i r ewo r l d

; ; Ful ly obse rvab l e −− i . e . f o l l ow s s t a t e va r i a b l e .
( v eh i c l e−at ? l o c − l o c a t i o n )

; ; Ful ly obse rvab l e −− i . e . f o l l ow s s t a t e va r i a b l e .
( spare−in ? l o c − l o c a t i o n )

; ; Ful ly obse rvab l e −− i . e . f o l l ow s s t a t e va r i a b l e .
( road ? from − l o c a t i o n ? to − l o c a t i o n )

; ; Ful ly obse rvab l e −− i . e . f o l l ow s s t a t e va r i a b l e .
( goal−l o c a t i o n ? l o c )

; ; Ful ly obse rvab l e −− i . e . f o l l ow s s t a t e va r i a b l e .
( hasspare )
)

( : a c t i on move−car
: parameters
(? from − l o c a t i o n ? to − l o c a t i o n )

: p r e cond i t i on
( and
( veh i c l e−at ? from )
( road ? from ? to )
( not− f l a t t i r e ) )

: e f f e c t
( and
( veh i c l e−at ? to )
( not ( veh i c l e−at ? from ) )
( p r o b a b i l i s t i c 2/5 ( not ( not− f l a t t i r e ) ) )

; ; Fol lowing was not in IPC−5 t i r ewo r l d
( f o r a l l
(? l o c − l o c a t i o n )
(when ( and ( goal−l o c a t i o n ? l o c )

(= ? to ? l o c ) )
( i n c r e a s e ( reward ) 1000) ) )

)
)
( : a c t i on l o a d t i r e

: parameters (? l o c − l o c a t i o n )
: p r e cond i t i on ( and ( veh i c l e−at ? l o c )

( spare−in ? l o c ) )
: e f f e c t ( and ( hasspare ) ( not ( spare−in ? l o c ) ) )

)
( : a c t i on change t i r e
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: p r e cond i t i on ( hasspare )
: e f f e c t ( p r o b a b i l i s t i c 1/2 ( and ( not ( hasspare ) )

( not− f l a t t i r e ) ) )
)

; ; Fol lowing pe rcept i on was not in IPC−5 t i r ewo r l d
( : observe t i r e−s tatus−a f t e r−move
: parameters
(? from − l o c a t i o n ? to − l o c a t i o n )

: execut ion
(move−car ? from ? to )

: p r e cond i t i on
( )

: e f f e c t
( and (when ( not− f l a t t i r e )

( p r o b a b i l i s t i c 7/8 ( observe−not− f l a t t i r e )
1/8 ( not ( observe−not− f l a t t i r e ) ) ) )

(when ( not ( not− f l a t t i r e ) )
( p r o b a b i l i s t i c 7/8 ( not ( observe−not− f l a t t i r e ) )

1/8 ( observe−not− f l a t t i r e ) ) ) )

)
)

( d e f i n e ( problem t i r e 1 7 0 2 8 4 6 0 )
( : domain t i r e )
( : ob j e c t s n0 n1 n2 n3 n4 n5 n6 n7 n8

n9 n10 n11 n12 n13 n14 n15 n16 − l o c a t i o n )
( : i n i t ( v eh i c l e−at n2 )

( road n0 n12 ) ( road n12 n0 )
( road n0 n16 ) ( road n16 n0 )
( road n1 n2 ) ( road n2 n1 )
( road n1 n3 ) ( road n3 n1 )
( road n3 n4 ) ( road n4 n3 )
( road n3 n13 ) ( road n13 n3 )
( road n3 n14 ) ( road n14 n3 )
( road n5 n8 ) ( road n8 n5 )
( road n5 n10 ) ( road n10 n5 )
( road n5 n16 ) ( road n16 n5 )
( road n6 n14 ) ( road n14 n6 )
( road n7 n9 ) ( road n9 n7 )
( road n7 n13 ) ( road n13 n7 )
( road n8 n9 ) ( road n9 n8 )
( road n9 n12 ) ( road n12 n9 )
( road n9 n16 ) ( road n16 n9 )
( road n10 n12 ) ( road n12 n10 )
( road n10 n13 ) ( road n13 n10 )
( road n11 n16 ) ( road n16 n11 )
( road n12 n16 ) ( road n16 n12 )
( road n13 n15 ) ( road n15 n13 )
( road n14 n16 ) ( road n16 n14 )
( spare−in n4 )
( spare−in n5 )
( spare−in n7 )
( spare−in n8 )
( spare−in n10 )
( spare−in n12 )
( spare−in n16 )
( p r o b a b i l i s t i c 8/9 ( not− f l a t t i r e ) )
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( goal−l o c a t i o n n0 )
)

( : metr ic maximize ( reward ) )
)
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ning, T. Hofmann, M. Krell, and T. Schmidt. Map learning and high-
speed navigation in RHINO. In D. Kortenkamp, R.P. Bonasso, and
R Murphy, editors, AI-based Mobile Robots: Case Studies of Successful
Robot Systems. MIT Press, 1998.

[30] Hendrik Zender, Geert-Jan M. Kruijff, and Ivana Kruijff-Korbayová.
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