

Conditional Random Fields

Dietrich Klakow

 I might have to leave during the lecture for a meeting

- Sequence Labeling
- Bayesian Networks
- Markov Random Fields
- Conditional Random Fields
- Software example

Background Reading

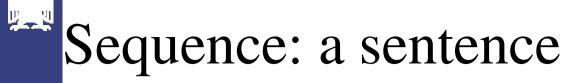
Hanna M. Wallach

Conditional Random Fields: An Introduction.

Technical Report MS-CIS-04-21. Department of Computer and Information Science, University of Pennsylvania, 2004.

http://www.inference.phy.cam.ac.uk/hmw26/papers/crf_intro.pdf

Sequence Labeling Tasks



Pierre
Vinken
,
61
years
old
,
will
join
the
board
as
a
nonexecutive
director
Nov.
29

Pierre	 NNP
Vinken	 NNP
,	 ,
61	 CD
years	 NNS
old	 JJ
,	 ,
will	 MD
join	 VB
the	 DT
board	 NN
as	 IN
a	 DT
nonexecutive	 JJ
director	 NN
Nov.	 NNP
29	 CD

.

Task: find phrase boundaries:

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only \pounds 1.8 billion] [PP in] [NP September].

Pierre	 B-NP
Vinken	 I-NP
,	 0
61	 B-NP
years	 I-NP
old	 B-ADJP
,	 0
will	 B-VP
join	 I-VP
the	 B-NP
board	 I-NP
as	 B-PP
a	 B-NP
nonexecutive	 I-NP
director	 I-NP
Nov.	 B-NP
29	 I-NP
	 0

Named Entity Tagging

<u>10</u>

B-PERSON
I-PERSON
0
B-DATE:AGE
I-DATE:AGE
I-DATE:AGE
0
0
0
0
B-ORG_DESC:OTHER
0
0
0
B-PER_DESC
B-DATE:DATE
I-DATE:DATE
0

Supertagging

D'	
Pierre –	 N/N
Vinken –	 Ν
. –	 ,
, – 61 –	, N/N
years	 Ν
old	 (S[adj]\NP)\NP
,	 ,
will –	$(S[dc1]\NP)/(S[b]\NP)$
join –	 ((S[b]\NP)/PP)/NP
the –	 NP[nb]/N
board –	 Ν
as —	 PP/NP
a –	 NP[nb]/N
nonexecutive –	 N/N
director –	 Ν
Nov. –	 $((S\NP)\(S\NP))/N[num]$
29 -	 N[num]
_	

.

Hidden Markov Model

HMM: just an Application of a Bayes Classifier

$$(\hat{\pi}_1, \hat{\pi}_2...\hat{\pi}_N) = \underset{\pi_1, \pi_2..\pi_N}{\arg \max} \left[P(x_1, x_2...x_N, \pi_1, \pi_2...\pi_N) \right]$$

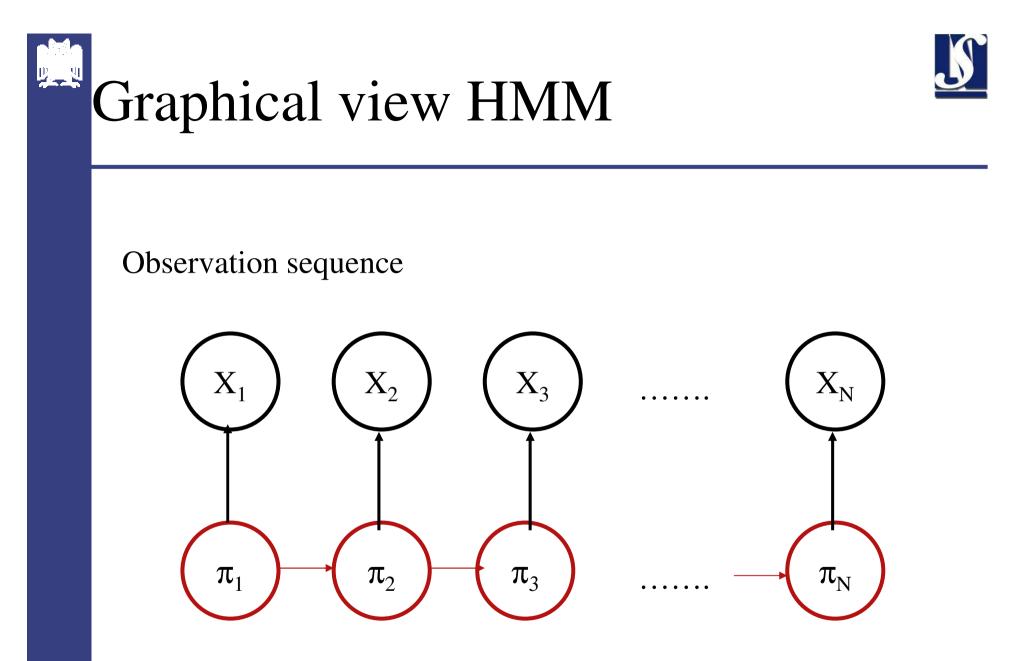
 $x_1, x_2...x_N$: observation/input sequence $\pi_1, \pi_2...\pi_N$: label sequence

$$P(x_1, x_2...x_N, \pi_1, \pi_2...\pi_N)$$

19.<u>___</u>11

$$= \prod_{i=1}^{N} P(x_i \mid \pi_i) P(\pi_i \mid \pi_{i-1})$$

 $P(\pi_i | \pi_{i-1})$: transition probability $P(x_i | \pi_i)$: emission probability



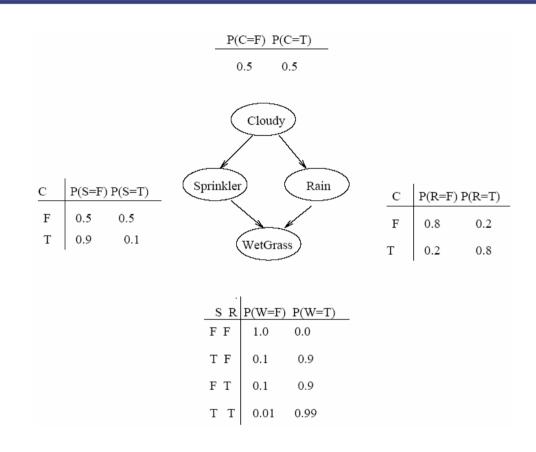
Label sequence

• HMMs model only limited dependencies

 \mapsto come up with more flexible models \mapsto come up with graphical description

Bayesian Networks

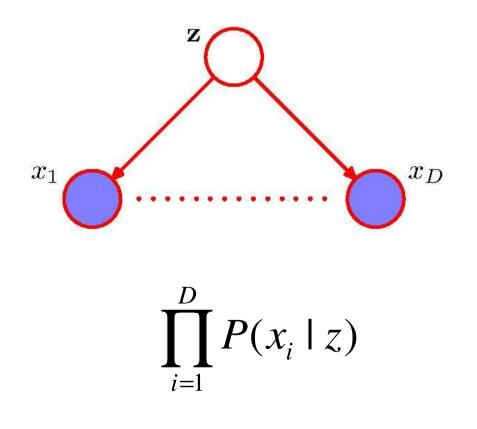
Example for Bayesian Network



From Russel and Norvig 95 AI: A Modern Approach

Corresponding jointP(C, S, R, W) =distributionP(W | S, R)P(S | C)P(R | C)P(C)

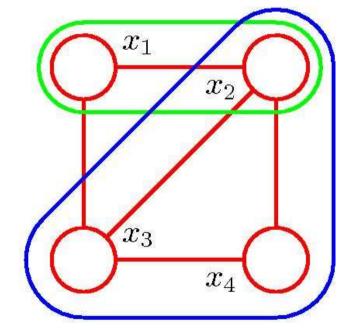
Observations x_1, \dots, x_D are assumed to be independent



Markov Random Fields

- Undirected graphical model
- New term:
- *clique* in an undirected graph:
 - Set of nodes such that every node is connected to every other node
- maximal clique: there is no node that can be added without add without destroying the clique property





cliques: green and blue

maximal clique: blue



Factorization

<u>n</u> 1

x : all nodes $x_1...x_N$ x_C : nodes in clique C C_M : set of all maximal cliques $\Psi_C(x_C)$: potential function ($\Psi_C(x_C) \ge 0$)

Joint distribution described by graph

$$p(x) = \frac{1}{Z} \prod_{C \in C_M} \Psi_C(x_C)$$

Normalization

$$Z = \sum_{x} \prod_{C \in C_M} \Psi_C(x_C)$$

Z is sometimes call the *partition function*

 $\begin{array}{c} x_2 \\ x_1 \\ x_3 \end{array}$

What are the maximum cliques? Write down joint probability described by this graph

 \mapsto white board

Energy Function

Define

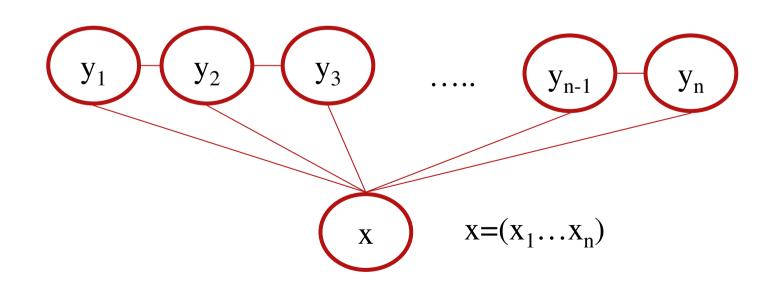
$$\Psi_C(x_C) = e^{-E(x_C)}$$

Insert into joint distribution

$$p(x) = \frac{1}{Z} e^{-\sum_{C \in C_M} E(x_C)}$$

Conditional Random Fields

Maximum random field were each random variable y_i is conditioned on the complete input sequence $x_1, \dots x_n$ $y=(y_1\dots y_n)$



Distribution

$$p(y | x) = \frac{1}{Z(x)} e^{-\sum_{i=1}^{n} \sum_{j=1}^{N} \lambda_{j} f_{j}(y_{i-1}, y_{i}, x, i)}$$

 λ_i : parameters to be trained

 $f_{j}(y_{i-1}, y_{i}, x, i)$: feature function

Example feature functions

Modeling transitions

$$f_1(y_{i-1}, y_i, x, i) = \begin{cases} 1 \text{ if } \mathbf{y}_{i-1} = IN \text{ and } \mathbf{y}_i = NNP \\ 0 \text{ else} \end{cases}$$

Modeling emissions

$$f_2(y_{i-1}, y_i, x, i) = \begin{cases} 1 \text{ if } y_i = NNP \text{ and } x_i = September \\ 0 \text{ else} \end{cases}$$

• Like in maximum entropy models Generalized iterative scaling

Convergence:
p(y|x) is a convex function
→ unique maximum

Convergence is slow Improved algorithms exist

Decoding: Auxiliary Matrix

Define additional start symbol y_0 =START and stop symbol y_{n+1} =STOP

Define matrix $M^{i}(x)$

such that

$$\left[M^{i}(x)\right]_{y_{i-1}y_{i}} = M^{i}_{y_{i-1}y_{i}}(x) = e^{-\sum_{j=1}^{N} \lambda_{j} f_{j}(y_{i-1}, y_{i}, x, i)}$$

With that definition we have

$$p(y \mid x) = \frac{1}{Z(x)} \prod_{i=1}^{n+1} M^{i}_{y_{i-1}y_{i}}(x)$$

with

$$Z(x) = \sum_{y_1} \sum_{y_2} \sum_{y_3} \dots \sum_{y_n} M^1_{y_0 y_1}(x) M^2_{y_1 y_2}(x) \dots M^{n+1}_{y_n y_{n+1}}(x)$$

Use matrix product

$$\left[M^{1}(x)M^{2}(x)\right]_{y_{0}y_{2}} = \sum_{y_{1}}M^{1}_{y_{0}y_{1}}(x)M^{2}_{y_{1}y_{2}}(x)$$

with

 $Z(x) = \left[M^{1}(x) M^{2}(x) \dots M^{n+1}(x) \right]_{y_{0} = START, y_{n+1} = STOP}$

- Matrix M replaces the product of transition and emission probability
- Decoding can be done in Viterbi style
- Effort:
 - linear in length of sequence
 - quadratic in the number of labels

Software

See http://crfpp.sourceforge.net/

- Sequence labeling problems
- CRFs are
 - flexible
 - Expensive to train
 - Fast to decode