

Computational Linguistics: Part I: Finite-State Automata (exercise session)

Pierre Lison

Language Technology Lab DFKI GmbH, Saarbrücken http://talkingrobots.dfki.de

Deutsches Forschungszentrum für Künstliche Intelligenz German Research Center for Artificial Intelligence

Practical announcements

• The usual:

- Website is still at the same place:
 - http://www.dfki.de/~plison/lectures/compling2010/index.html
- If you haven't done it yet, please subscribe to the mailing list!
- Regarding the timetable for the exercise session:
 - Seems to have an agreement among us to have it on Thursday, 16-18
 - No strong objections for the lecturers at the moment
 - But: the Computerlinguistik Kolloquium also takes place at that time!
 - Need to find a solution agreeable to everyone...
- Please don't wait for months to register the course in the HISPOS database (if you plan to take it, needless to say)
- Note regarding the exam: due to the participation of several lecturers in the course, It would be better if you could all take the written exam
 - But if you really need to have an oral exam for this course, let me know ASAP

Short recap'

- Correction of the exercises
- Advanced topics:
 - Finite-state transducers for morphological parsing
 - Weighted finite-state automata
 - Cascading finite-state transducers

Short recap'

- Correction of the exercises
- Advanced topics:
 - Finite-state transducers for morphological parsing
 - Weighted finite-state automata
 - Cascading finite-state transducers

- In the last lecture, we presented finite-state automata and their algorithms
 - FSAs and regular expressions have the same expressive power: they both define a regular language, type-3 in the Chomsky hierarchy
 - FSAs can be automatically constructed from a given regular expression
 - FSAs can be deterministic or non-deterministic
- We also saw two algorithms used to improve the (runtime) efficiency of a finite-state automata:
 - FSA determinization, via subset construction
 - FSA minimization, via either equivalence classes, or Brzozowski
- Finite-state automata can be extended to finite-state transducers, which define *relations* between languages
- Due to their simplicity and efficiency, FSAs are pervasive in computational linguistics (morphology, parsing, dialogue management, etc.)

Chomsky Hierarchy of Languages

Regular languages (type-3)

Context-free languages (type-2)

Context-sensitive languages (type-1)

Unconstrained languages (type-0)

Hierarchy of Grammars & Automata

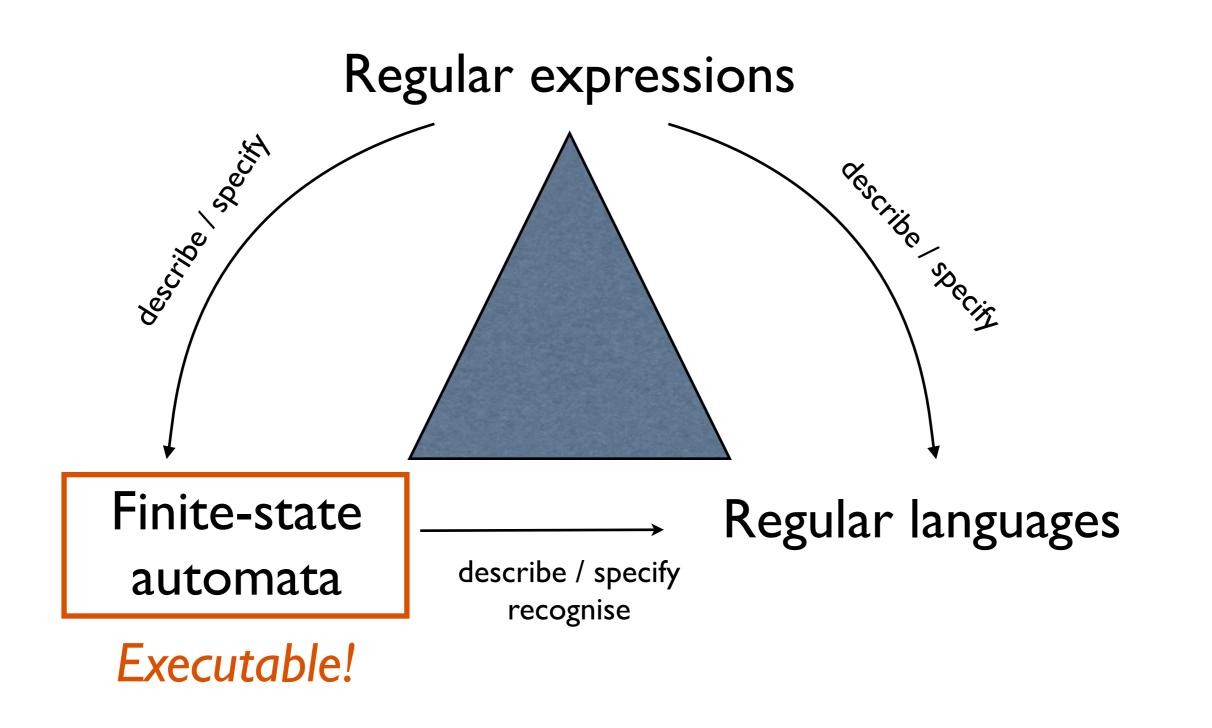
Regular PS grammar Finite-state automata

Context-free PS grammar Push-down automata

Tree adjoining grammars Linear bounded automata

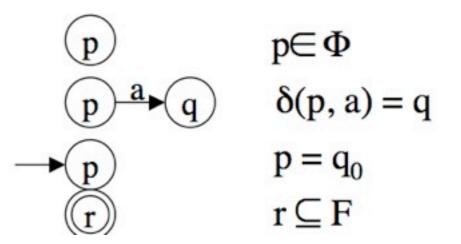
General PS grammars Turing machine

More expressivity Less computational efficiency



Finite-state automata (FSA)

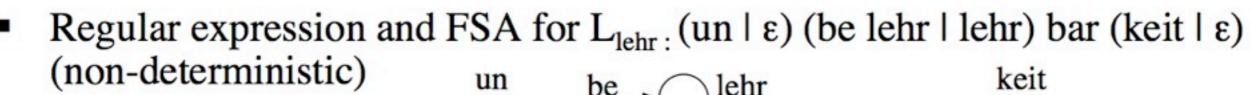
- Grammars: generate (or recognize) languages Automata: recognize (or generate) languages
- Finite-state automata recognize regular languages
- A finite automaton (FA) is a tuple A = $\langle \Phi, \Sigma, \delta, q_0, F \rangle$
 - Φ a finite non-empty set of states
 - $-\Sigma$ a finite alphabet of input letters
 - δ a transition function $\Phi \times \Sigma \rightarrow \Phi$
 - $q_0 \in \Phi$ the initial state
 - $F \subseteq \Phi$ the set of final (accepting) states
- Transition grap(cs (diagrams):
 - states: circles
 - transitions: directed arcs between circles
 - initial state
 - final state



Multiple equivalent FSAs

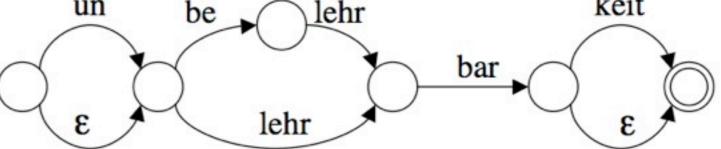
- FSA for the language L_{lehr} = { lehrbar, lehrbarkeit, belehrbar, belehrbarkeit, unbelehrbar, unbelehrbarkeit, unlehrbar, unlehrbarkeit }
- DFSA for L_{lehr} be lehr

un



be

lehr



lehr

bar

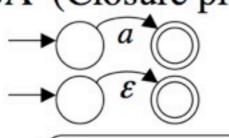
• Equivalent FSA (non-deterministic) un be ϵ ϵ e lehr bar

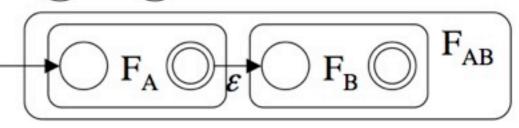
Defining FSAs through regexps

- FSAs for even mildly complex regular languages are best constructed from regular expressions!
- Every regular expression denotes a regular language
 - $L(\varepsilon) = \{\varepsilon\} \qquad L(\alpha\beta) = L(\alpha)L(\beta)$
 - $L(\alpha) = \{a\}$ for all $a \in \Sigma$ $L(\alpha \cup \beta) = L(\alpha) \cup L(\beta)$

 $- L(\alpha^*) = L(\alpha)^*$

- Every regular expression translates to a FSA (Closure properties)
 - An FSA for a (with $L(a) = \{a\}$), $a \in \Sigma$:
 - An FSA for ε (with $L(\varepsilon) = \{\varepsilon\}$), $\varepsilon \in \Sigma$:
 - Concatenation of two FSAs F_A and F_B:
 - $S_{AB} = S_A$ (S initial state)
 - $F_{AB} = F_B$ (F set of final states)
 - $\delta_{AB} = \delta_A \cup \delta_B \cup \{\delta(\langle q_i, \varepsilon \rangle, q_j) \mid q_i \in F_A, q_j = S_B\}$



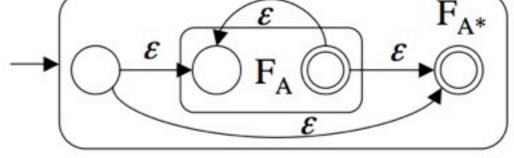


Defining FSAs through regexps

- union of two FSAs F_A and F_B :
 - $S_{AB} = s_0$ (new state)

$$\begin{aligned} f_{AB} &= \{ s_j \} \text{ (new state)} \\ \delta_{AB} &= \delta_A \cup \delta_B \\ & \cup \{ \delta(\langle q_0, \epsilon \rangle, q_z) \mid q_0 = S_{AB}, (q_z = S_A \text{ or } q_z = S_B) \} \\ & \cup \{ \delta(\langle q_z, \epsilon \rangle, q_i) \mid (q_z \in F_A \text{ or } q_z \in F_B), q_i \in F_{AB} \} \end{aligned}$$

- Kleene Star over an FSA F_A :
 - $S_{A*} = s_0$ (new state)
 - $F_{A^*} = \{q_i\}$ (new state)



• $\delta_{AB} = \delta_A \cup$ $\bigcup \{ \delta(\langle q_{j}, \epsilon \rangle, q_{z}) \mid q_{j} \in F_{A}, q_{z} = S_{A}) \} \\ \cup \{ \delta(\langle q_{0}, \epsilon \rangle, q_{z}) \mid q_{0} = S_{A^{*}}, (q_{z} = S_{A} \text{ or } q_{z} = F_{A^{*}}) \}$ $\cup \{\delta(\langle q_z, \varepsilon \rangle, q_i) \mid q_z \in F_A, q_i \in F_{A^*}\}$

F_{AUB}

E

- Non-determinism
 - Introduced by ε-transitions and/or
 - Transition being a *relation* Δ over $\Phi \times \Sigma^* \times \Phi$, i.e. a set of triples $\langle q_{source}, z, q_{target} \rangle$ Equivalently: Transition function δ maps to a *set of states*: $\delta: \Phi \times \Sigma \rightarrow \mathscr{D}(\Phi)$
- A non-deterministic FSA (NFSA) is a tuple A = $\langle \Phi, \Sigma, \delta, q_0, F \rangle$
 - $-\Phi$ a finite non-empty set of states
 - $-\Sigma$ a finite alphabet of input letters
 - $\delta a \text{ transition function } \Phi \times \Sigma^* \to \wp(\Phi) \quad (\text{or a finite relation over } \Phi \times \Sigma^* \times \Phi)$
 - $-q_0 \in \Phi$ the initial state
 - $F \subseteq \Phi$ the set of final (accepting) states
- Adapted definitions for transitions and acceptance of a string by a NFSA
 - $(q,w) \mid_{-A} (q',w_{i+1}) \text{ iff } w_i = zw_{i+1} \text{ for } z \in \Sigma^* \text{ and } q' \in \delta(q,z)$
 - An NDFA (w/o ε) accepts a string w iff there is some traversal such that $(q_0,w) \mid -*_A (q', \varepsilon)$ and $q' \subseteq F$.
 - A string w is *rejected* by NDFA A iff A does not accept w,
 i.e. *all configurations* of A for string w are rejecting configurations!

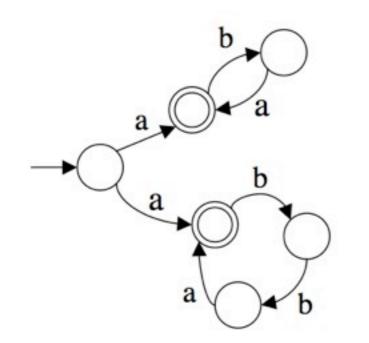
- Despite non-determinism, NFSAs are not more powerful than DFSAs: they accept the same class of languages: regular languages
- For every non-deterministic FSA there is deterministic FSA that accepts the same language (and vice versa)
 - The corresponding DFSA has in general more states, in which it models the sets of possible states the NFSA could be in in a given traversal
- There is an algorithm (via subset construction) that allows conversion of an NFSA to an equivalent DFSA

Efficiency considerations: an FSA is most efficient and compact iff

- It is a DFSA (efficiency)
- It is minimal (compact encoding)

- → Determinization of NFSA
- → Minimization of FSAs

NFSA A=< $\Phi,\Sigma, \delta,q_0,F$ >



 $L(A) = a(ba)^* \cup a(bba)^*$

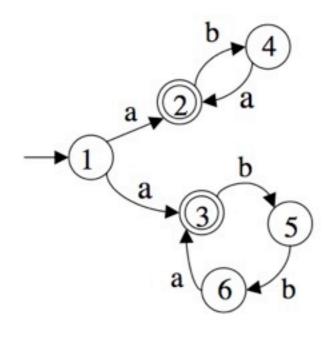
 $A' = <\Phi', \Sigma, \delta', q_0', F' >$

Subset construction:

Compute δ' from δ for all subsets $S \subseteq \Phi$ and $a \in \Sigma$ s.th. $\delta'(S,a) = \{ s' | \exists s \in S \text{ s.th. } (s,a,s') \in \delta \}$



NFSA A=< $\Phi,\Sigma, \delta,q_0,F$ > A'=< $\Phi',\Sigma, \delta', q_0',F$ '>

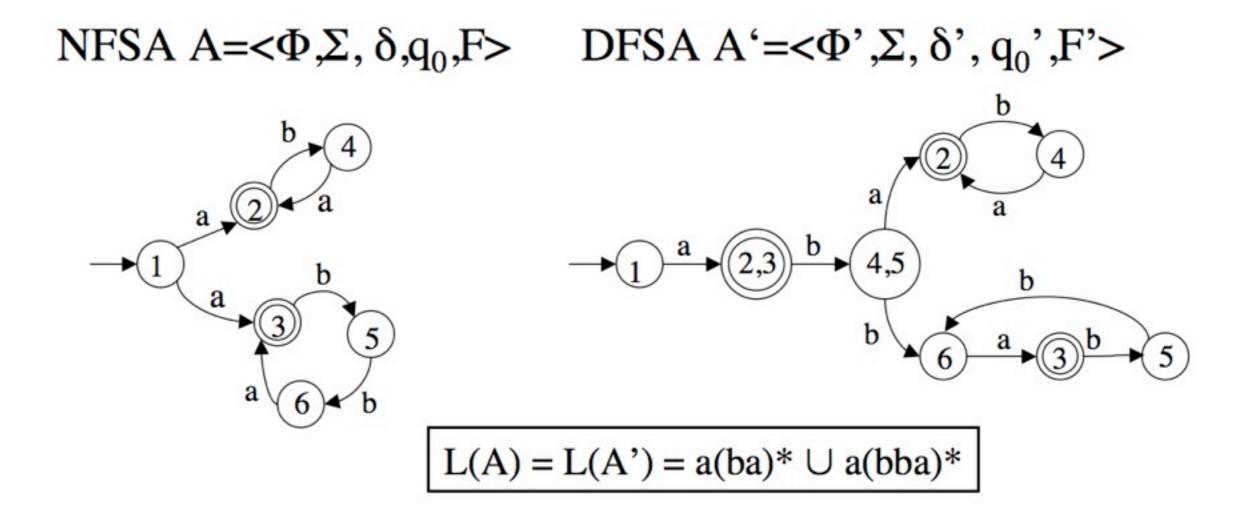


$$\rightarrow 1$$
 $\xrightarrow{a} 2,3$

$$\Phi' = \{ B \mid B \subseteq \{1,2,3,4,5,6\} \\ q_0' = \{1\}, \\ \delta'(\{1\},a) = \{2,3\}, \\ \delta'(\{1\},b) = \emptyset, \\ \delta'(\{1\},b) = \emptyset, \\ \delta'(\{2,3\},a) = \emptyset, \\ \delta'(\{2,3\},a) = \emptyset, \\ \delta'(\{2,3\},b) = \{4,5\}, \\ \delta'(\{2,3\},b) = \{4,5\}, \\ \delta'(\{4,5\},a) = \{2\}, \\ \delta'(\{4,5\},b) = \{4,5\}, \\ \delta'(\{4,5\},b) = \{6\}, \\ \delta'(\{2\},a) = \emptyset, \\ \delta'(\{2\},a) = \emptyset, \\ \delta'(\{6\},a) = \{3\}, \\ \delta'(\{6\},b) = \emptyset, \\ \end{cases}$$

 $\delta'(\{4\},a) = \{2\}, \\\delta'(\{4\},b) = \emptyset, \\\delta'(\{3\},a) = \emptyset, \\\delta'(\{3\},b) = \{5\}, \\\delta'(\{5\},a) = \emptyset, \\\delta'(\{5\},b) = \{6\}$

 $F' = \{\{2,3\},\{2\},\{3\}\}$

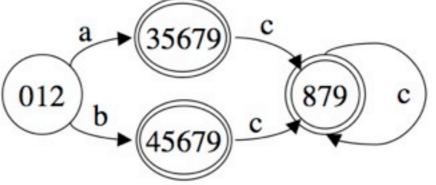


- Subset construction must account for ε-transitions
- ε-closure
 - The ϵ -closure of some state q consists of q as well as all states that can be reached from q through a sequence of ϵ -transitions
 - $q \in \varepsilon$ -closure(q)
 - If $r \in \epsilon$ -closure(q) and $(r, \epsilon, q') \in \delta$, then $q' \in \epsilon$ -closure(q),
 - ε-closure defined on sets of states
 - ε -closure(R) = $\bigcup_{q \in R} \varepsilon$ -closure(q) (with R $\subset \Phi$)
- Subset construction for ε-NFSAs
 - Compute δ ' from δ for all subsets $S \subseteq \Phi$ and $a \in \Sigma$ s.th. $\delta'(S,a) = \{ s'' | \exists s \in S \text{ s.th.} (s,a,s') \in \delta \text{ and } s'' \in \varepsilon \text{-closure}(s') \}$

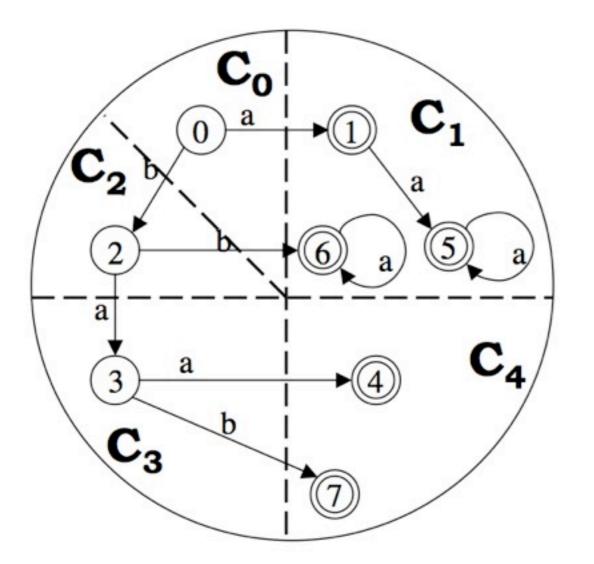
Example

- - ε-closure for all s∈Φ: ε-closure(0)={0,1,2}, ε-closure(1)={1}, ε-closure(2)={2}, ε-closure(3)={3,5,6,7,9}, ε-closure(4)={4,5,6,7,9}, ε-closure(5)={5,6,7,9}, ε-closure(6)={6,7,9}, ε-closure(7)={7}, ε-closure(8)={8,7,9}, ε-closure(9)={9}

Transition function over subsets $\delta'(\{0\}, \varepsilon) = \{0, 1, 2\},\$ $\delta'(\{0, 1, 2\}, a) = \{3, 5, 6, 7, 9\},\$ $\delta'(\{0, 1, 2\}, b) = \{4, 5, 6, 7, 9\},\$ $\delta'(\{3, 5, 6, 7, 9\}, c) = \{8, 7, 9\},\$ $\delta'(\{4, 5, 6, 7, 9\}, c) = \{8, 7, 9\},\$ $\delta'(\{8, 7, 9\}, c) = \{8, 7, 9\},\$



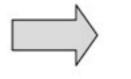
- A DFSA can be minimized if there are *pairs of states* q,q⁴∈Φ that are *equivalent*
- Two states q,q' are *equivalent* iff they accept the same right language.
- Right language of a state:
 - For A=<Φ,Σ, δ, q₀,F> a DFSA, the right language L→(q) of a state q∈Φ is the set of all strings accepted by A starting in state q:
 L→(q) = {w∈Σ* | δ*(q,w) ∈F}
 - Note: L→ $(q_0) = L(A)$
- State equivalence:
 - For A= $\langle \Phi, \Sigma, \delta, q_0, F \rangle$ a DFSA, if q,q' $\in \Phi$, q and q' are equivalent (q = q') iff $L^{\rightarrow}(q) = L^{\rightarrow}(q')$
 - = is an equivalence relation (i.e., reflexive, transitive and symmetric)
 - − = partitions the set of states Φ into a number of disjoint sets $Q_1 ... Q_n$ of equivalence classes s.th. $\bigcup_{i=1..m} Q_i = Φ$ and q = q' for all $q,q' \in Q_i$



All classes C_i consist of equivalent states $q_{j=i..n}$ that accept identical right languages $L^{\rightarrow}(q_i)$

Whenever two states q,q'belong to different classes, $L^{\rightarrow}(q) \neq L^{\rightarrow}(q')$

Equivalence classes on state set defined by =



Minimization: elimination of equivalent states A DFSA A= $\langle \Phi, \Sigma, \delta, q_0, F \rangle$ that contains *equivalent states q, q'* can be transformed to a smaller, equivalent DFSA A'= $\langle \Phi', \Sigma, \delta', q_0, F' \rangle$ where

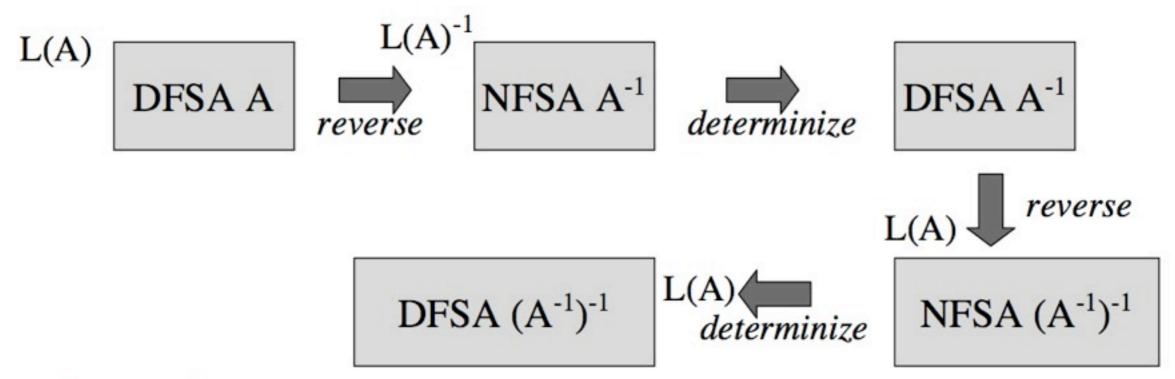
 $- \Phi' = \Phi \setminus \{q'\}, F' = F \setminus \{q'\},$

- δ' is like δ with all transitions to q' redirected to q: $\delta'(s,a) = q$ if $\delta(s,a) = q'$;

 $\delta'(s,a) = \delta(s,a)$ otherwise

- Two-step algorithm
 - Determine all pairs of equivalent states q,q'
 - Apply DFSA reduction until no such pair q,q' is left in the automaton
- Minimality
 - The resulting FSA is the smallest DFSA (in size of Φ) that accepts L(A): we never merge different equivalence classes, so we obtain one state per class.
 - We cannot do any further reduction and still recognize L(A).
 - As long as we have >1 state per class, we can do further reduction steps.
- A DFSA A=<Φ,Σ, δ, q₀,F> is *minimal* iff there is no pair of distinct but equivalent states ∈Φ, i.e. ∀ q, q'∈Φ : q = q' ⇔ q = q'

Minimization by reversal and determinization



Reversal

- Final states of A⁻ : set of initial states of A
- Initial state of A^- : F of A
- $\delta(q,a) = \{p \in \Phi \mid \delta(p,a) = q\}$
- $L(A^{-1}) = L(A)^{-1}$

From automata to transducers

Automata

recognition of an input string w

$$q_0 \xrightarrow{1} q_1 \xrightarrow{e} q_2 \xrightarrow{a} q_3 \xrightarrow{v} q_4 \xrightarrow{e} q_5$$

- define a language
- accept *strings*, with transitions defined for *symbols* ∈Σ

Transducers

- recognition of an input string w
- generation of an output string w'

$$(q_0 \stackrel{l}{\xrightarrow{}} (q_1) \stackrel{e}{\xrightarrow{}} (q_2) \stackrel{a}{\xrightarrow{}} (q_3) \stackrel{v}{\xrightarrow{}} (q_4) \stackrel{e}{\xrightarrow{}} (q_5)$$

- define a *relation* between languages
- equivalent to FSAs that accept pairs of strings, with transitions defined for pairs of symbols <x,y>
- operations: replacement
 - deletion $\langle a, \varepsilon \rangle, a \in \Sigma {\epsilon}$
 - insertion < ϵ , a>, a $\in \Sigma$ -{ ϵ }
 - substitution $\langle a, b \rangle, a, b \in \Sigma, a \neq b$

Short recap'

Correction of the exercises

- Advanced topics:
 - Finite-state transducers for morphological parsing
 - Weighted finite-state automata
 - Cascading finite-state transducers

Exercises

- Write a program for acceptance of a string by a DFSA.
 Then extend it to a finite-state transducer that can translate a surface form to lemma + POS, or between upper and lower case.
- 2. Determinize the following NFSA by subset construction. $A_1 = \langle p,q,r,s \rangle, \{a,b\}, \delta_1, p, \{s\} \rangle$ where δ_1 is as follows:

δ	a	b
р	p,q	р
q	r	r
r	S	-
S	S	S

- Construct an NFSA with ε-transitions from the regular expression (alb)ca*, according to the construction principled for union, concatenation and kleene star. Then transform the NFSA to a DFSA by subset construction.
- 4. Find a minimal DFSA for the FSA A=<{A,..,E},{0,1}, δ_3 ,A,{C,D,E}> (using the table filling algorithm by propagation). $\delta_3 = 0$

_			
Γ	δ3	0	1
	A	В	D
	В	В	С
Γ	С	D	Ε
Γ	D	D	E
E	E	С	- 4

Exercises

- Write a program for acceptance of a string by a DFSA.
 Then extend it to a finite-state transducer that can translate a surface form to lemma + POS, or between upper and lower case.
- 2. Determinize the following NFSA by subset construction. $A_1 = \langle p,q,r,s \rangle, \{a,b\}, \delta_1, p, \{s\} \rangle$ where δ_1 is as follows:

δ_1	a	b
р	p,q	р
q	r	r
r	S	-
S	S	S

- Construct an NFSA with ε-transitions from the regular expression (alb)ca*, according to the construction principled for union, concatenation and kleene star. Then transform the NFSA to a DFSA by subset construction.
- 4. Find a minimal DFSA for the FSA A=<{A,..,E},{0,1}, δ_3 ,A,{C,D,E}> (using the table filling algorithm by propagation). $\delta_3 = 0$

_			
Γ	δ3	0	1
L	Ă	В	D
	В	В	С
L	С	D	Ε
Γ	D	D	E
L	E	С	4

Small Python class for DFSA

class DFSA:

. . . .

states = []# List of statesstartState = None# Starting stateendStates = []# Ending statestransFunction = {}# Transition function (defined as a dictionary)

Initialisation functions

Returns the next state if one can be reached from the given state and symbol, or None otherwise def getTransition(self, state, symbol): if self.transFunction.has_key((state,symbol)): return self.transFunction[(state,symbol)] else: return None # Returns true if the string can be recognized by the DFSA, false otherwise def isRecognized(self,string): return self.isRecognizedFromState(self.startState,string): # Returns true if the current string can be recognized by the DFSA starting at curState, false otherwise def isRecognizedFromState(self,curState,curString): firstSymbol = curString[0] stringTail = curString[1:len(curString)] nextState = self.getTransition(curState,firstSymbol) if nextState == None: return False elif nextState in self.endStates: return True else: return self.isRecognizedFromState(nextState,stringTail) # Recursive call

Small Python class for DFST

class DFST(FSA):

. . . .

```
# Initialisation functions
. . . .
# Returns the next state and output symbol if reachable from state+symbol, return None otherwise
def getTransition(self, state, symbol):
     if self.transFunction.has key((state,symbol)):
       return self.transFunction[(state,symbol)]
     else:
       return None
# Returns the output string if the input string can be transduced by the DFST, or None otherwise
def transduce(self,string):
     return self.transduceFromState(self.startState,string)
# Returns output string if the input can be transduced starting at curState, None otherwise
def transduceFromState(self,curState,curString):
     firstSymbol = curString[0]
     stringTail = curString[1:len(curString)]
     transduction = self.getTransition(curState,firstSymbol)
     if transduction==None:
        return None
     else:
       nextState = transduction[0]
       output = transduction[1]
       if nextState in self.endStates:
          return output
       else:
          nextResult = self.transduceFromState(nextState,stringTail) # Recursive call
          if nextResult != None:
            return output+nextResult # Concatenate the output string
          else:
            return None
```


Exercises

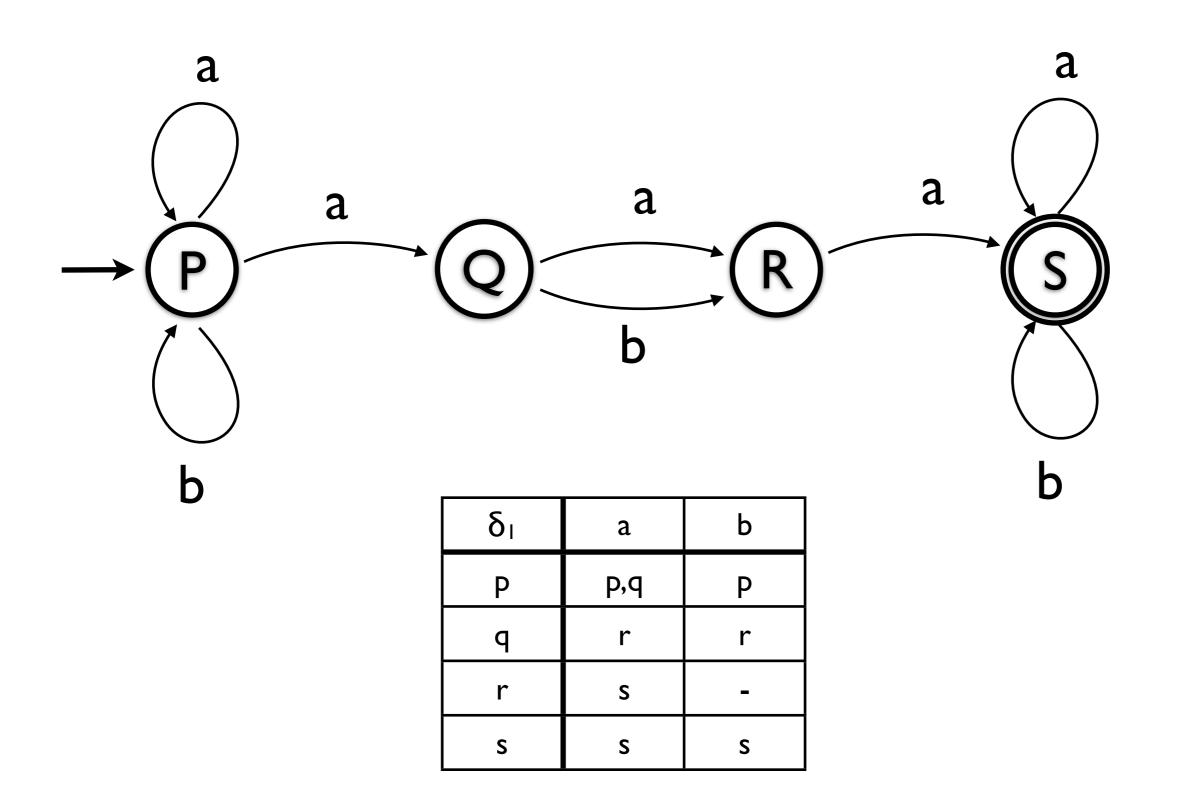
- Write a program for acceptance of a string by a DFSA. Then extend it to a finite-state transducer that can translate a surface form to lemma + POS, or between upper and lower case.
- 2. Determinize the following NFSA by subset construction. $A_1 = \langle p,q,r,s \rangle, \{a,b\}, \delta_1, p, \{s\} \rangle$ where δ_1 is as follows:

δ ₁	a	b
р	p,q	р
q	r	r
r	S	-
S	S	S

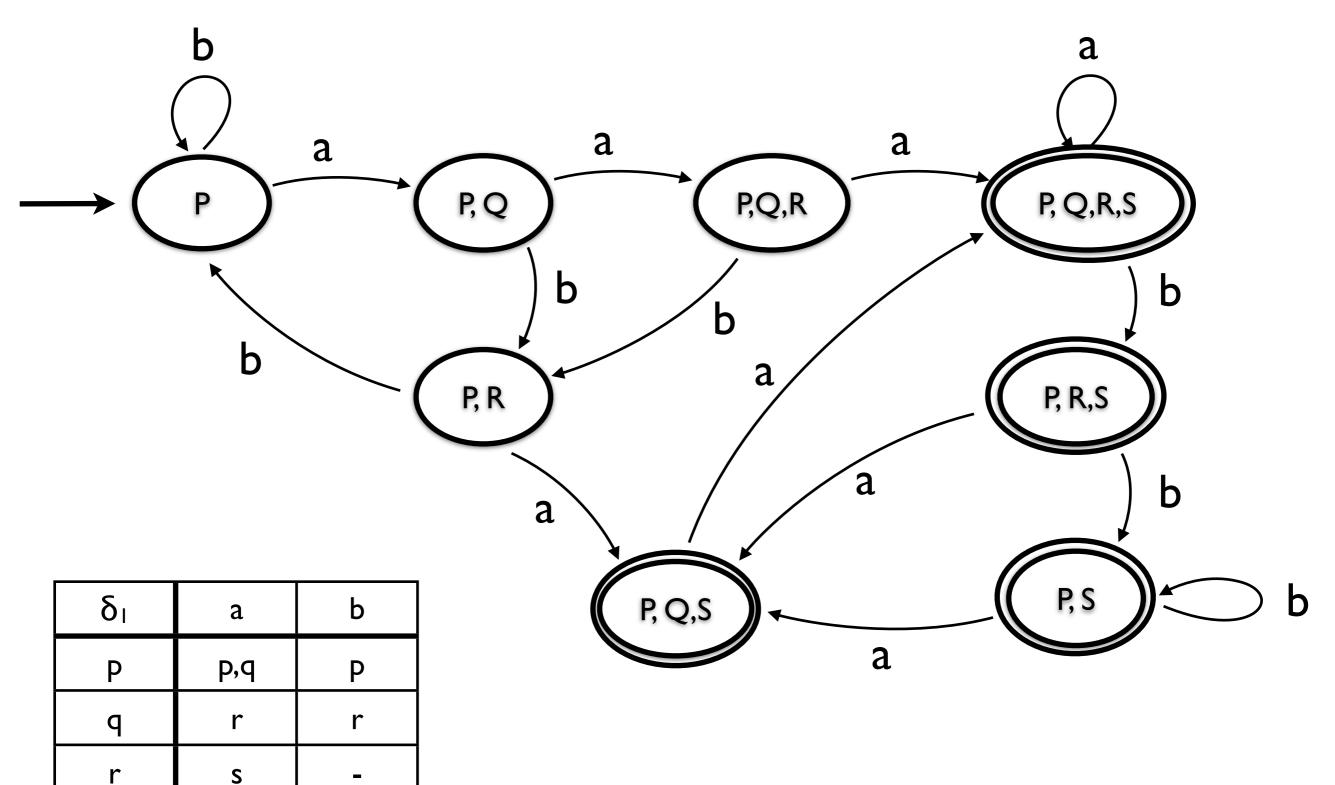
 Construct an NFSA with ε-transitions from the regular expression (alb)ca*, according to the construction principled for union, concatenation and kleene star. Then transform the NFSA to a DFSA by subset construction.

4. Find a minimal DFSA for the FSA A=<{A,..,E},{0,1}, δ_3 ,A,{C,D,E}> (using the table filling algorithm by propagation). $\delta_3 = 0$

_			
Γ	δ3	0	1
L	Ă	В	D
	В	В	С
L	С	D	Ε
Γ	D	D	E
L	E	С	4



Determinization



S

S

S

Exercises

- Write a program for acceptance of a string by a DFSA.
 Then extend it to a finite-state transducer that can translate a surface form to lemma + POS, or between upper and lower case.
- 2. Determinize the following NFSA by subset construction. $A_1 = \langle p,q,r,s \rangle, \{a,b\}, \delta_1, p, \{s\} \rangle$ where δ_1 is as follows:

δ ₁	a	b
р	p,q	р
q	r	r
r	S	-
S	S	S

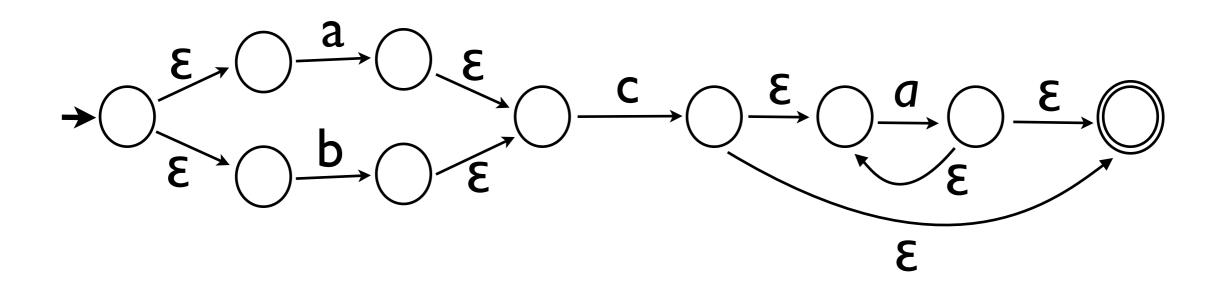
 Construct an NFSA with ε-transitions from the regular expression (alb)ca*, according to the construction principled for union, concatenation and kleene star. Then transform the NFSA to a DFSA by subset construction.

4. Find a minimal DFSA for the FSA A=<{A,..,E},{0,1}, δ_3 ,A,{C,D,E}> (using the table filling algorithm by propagation). $\delta_3 = 0$

δ3	0	1
Ă	В	D
В	B	С
С	D	E
D	D	E
E	C	- 4

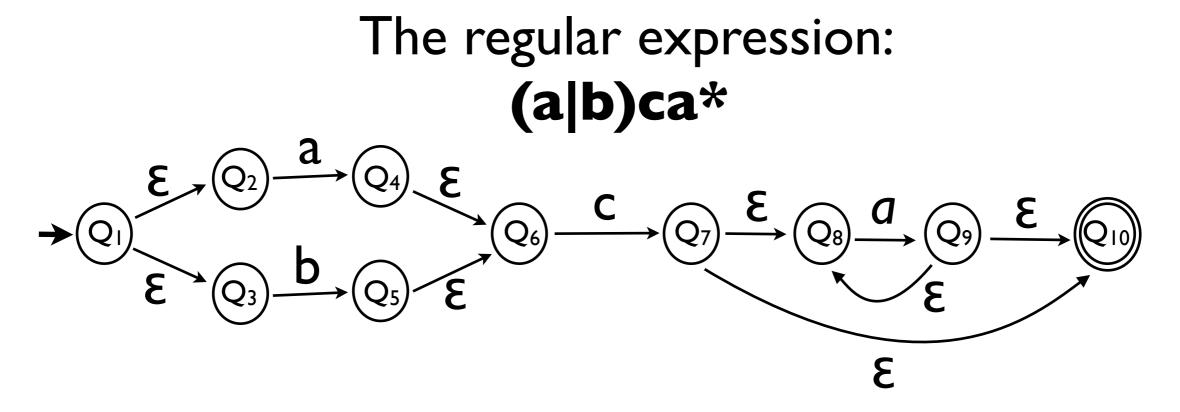
The regular expression: (a|b)ca*

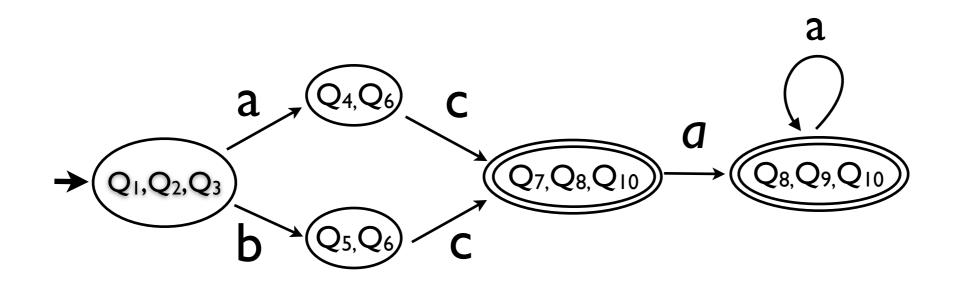
union of two FSA Kleene Star over FSA



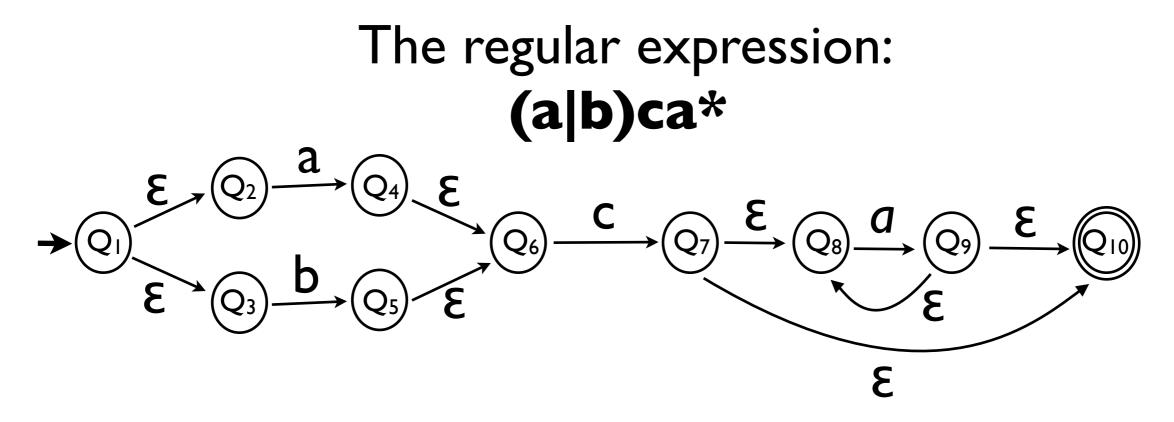
But this is a non-deterministic FSA...

Constructing a FSA from a regexp

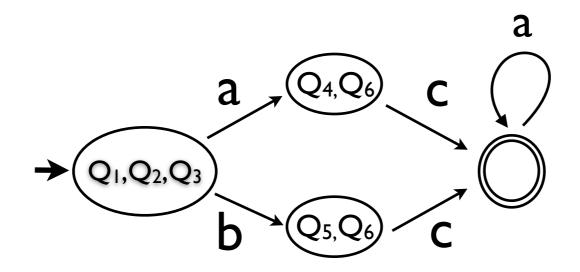




Constructing a FSA from a regexp



Or even simpler, by minimisation:



Exercises

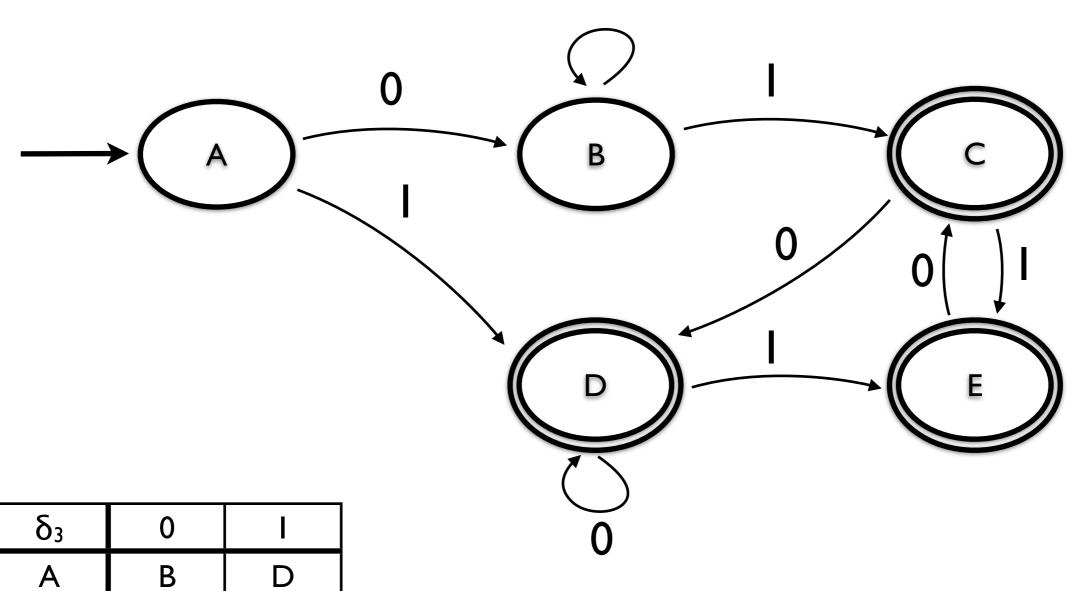
- Write a program for acceptance of a string by a DFSA.
 Then extend it to a finite-state transducer that can translate a surface form to lemma + POS, or between upper and lower case.
- 2. Determinize the following NFSA by subset construction. $A_1 = \langle p,q,r,s \rangle, \{a,b\}, \delta_1, p, \{s\} \rangle$ where δ_1 is as follows:

δ	a	b
р	p,q	р
q	r	r
r	S	-
S	S	S

 Construct an NFSA with ε-transitions from the regular expression (alb)ca*, according to the construction principled for union, concatenation and kleene star. Then transform the NFSA to a DFSA by subset construction.

4. Find a minimal DFSA for the FSA A=<{A,..,E},{0,1}, δ_3 ,A,{C,D,E}> (using the table filling algorithm by propagation). $\delta_3 = 0$

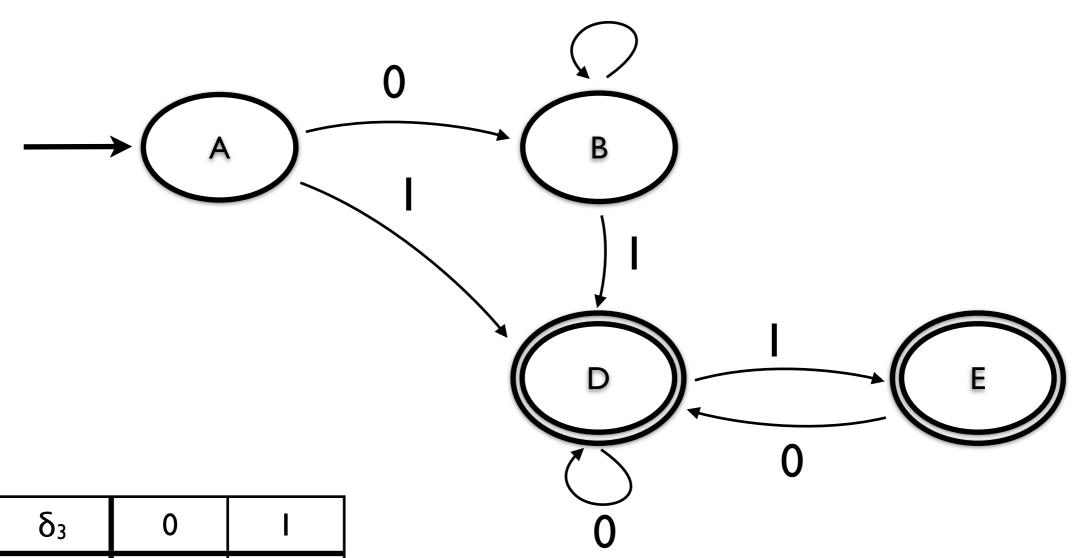
0	1
В	D
В	С
D	Ε
D	E
С	-
	B B D



δ3	0	I
A	В	D
В	В	С
С	D	E
D	D	E
E	С	

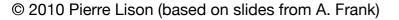
C and D have the same right language: 0*|(0*(10)*)*|(0*(10)*1)*

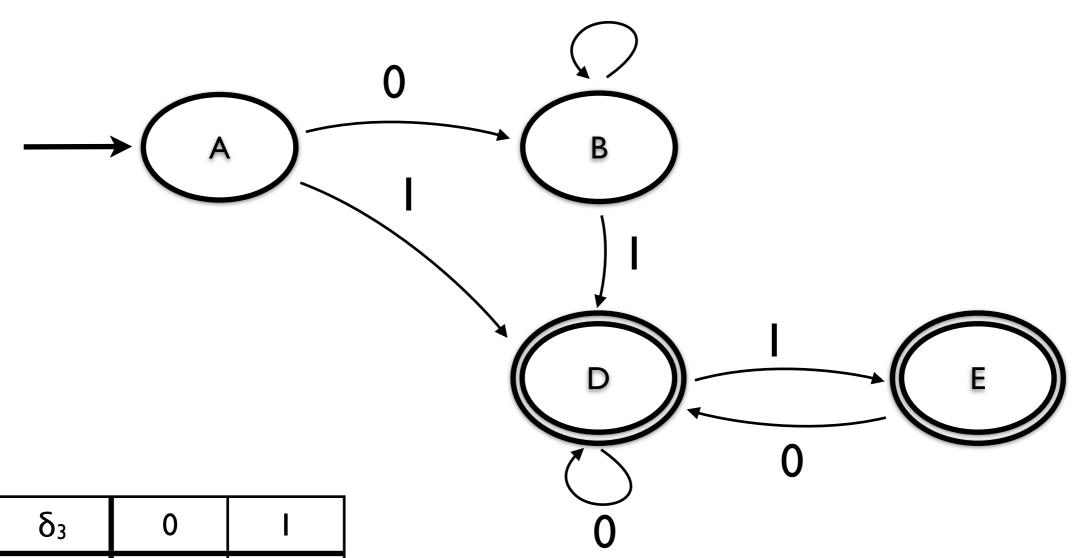
© 2010 Pierre Lison (based on slides from A. Frank)



δ3	0	I
Α	В	D
В	В	D
D	D	E
E	D	

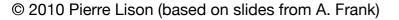
We can thus remove C and redirect all its incoming edges to D

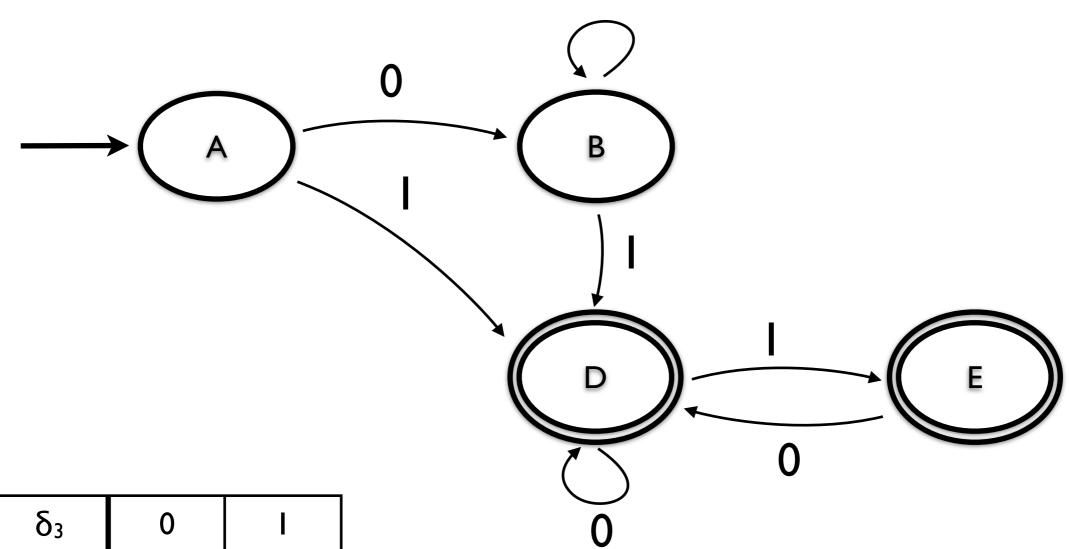




δ3	0	I
Α	В	D
В	В	D
D	D	E
E	D	

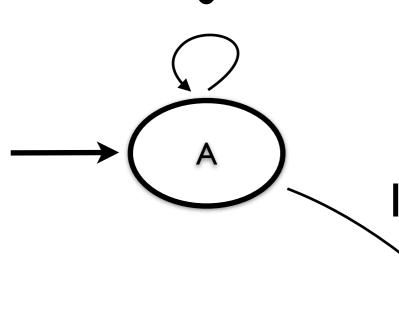
We can thus remove C and redirect all its incoming edges to D

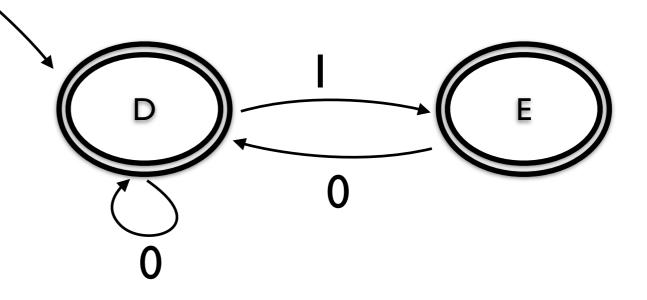




δ3	0	I
Α	В	D
В	В	D
D	D	E
E	D	

A and B also have the same right language: **0*I**+right language of D





δ3	0	I
A	А	D
D	D	E
E	D	

And we're done!

Short recap'

Correction of the exercises

• Advanced topics:

- Finite-state transducers for morphological parsing
- Weighted finite-state automata
- Cascading finite-state transducers

(Following slides adapted on existing slides by Fei Xia)

- Probabilistic finite-state automata is a generalisation of classical finite-state automata
- Also called: Weighted FSA
- Allow us to provide an explicit account the uncertainty of our observations / of our model
- Plus, probabilistic models can often be combined with machine learning techniques to automatically *train* the model from data

instead of specifying it manually

- In a probabilistic finite-state automata, each arc is associated with a probability.
- The probability of a path is the multiplication of the arcs on the path.
- The probability of a string x is the sum of the probabilities of all the paths for x.
- Possible tasks :
 - Given a string x, find the best path for x.
 - Given a string x, find the probability of x in a PFA.
 - Find the string with the highest probability in a PFA
 - etc.

• A PFA is

- Q: a finite set of N states
- Σ: a finite set of input symbols
- I: Q → R⁺ (initial-state probabilities)
- F: Q → R⁺ (final-state probabilities)
- $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$: the transition relation between states.
- P: $\delta \rightarrow R^+$ (transition probabilities)

Normalisation constraints on function:

$$\sum_{q \in Q} I(q) = 1$$

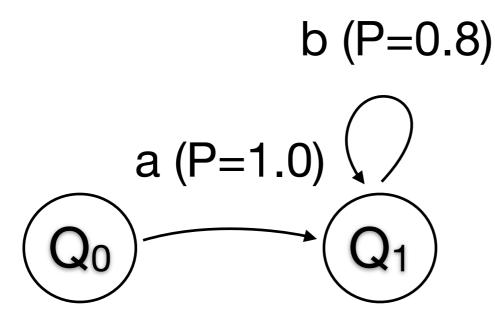
$$\forall q \in Q : F(q) + \sum_{a \in \Sigma \land q' \in Q} P(q, a, q') = 1$$

Probability of a string:

$$P(w_{1,n}, q_{1,n+1}) = I(q_1) \times F(q_{n+1}) \times \prod_{i=1}^n P(q_i, q_i, q_{i+1})$$
$$P(w_1, n) = \sum_{q_{1,n+1}} P(w_{1,n}, q_{1,n+1})$$

Let A be a PFA.

- Def: P(x | A) = the sum of all the valid paths for x in A.
- Def: a **valid** path in A is a path for some string x with probability greater than 0.
- Def: A is called **consistent** if $\sum_{x} P(x | A) = 1$
- Def: a state of a PFA is useful if it appears in at least one valid path.
- Proposition: a PFA is consistent if all its states are useful.



 $I(Q_0) = 1.0$ $I(Q_1) = 0.0$

 $F(Q_0) = 0.0$ $F(Q_1) = 0.2$

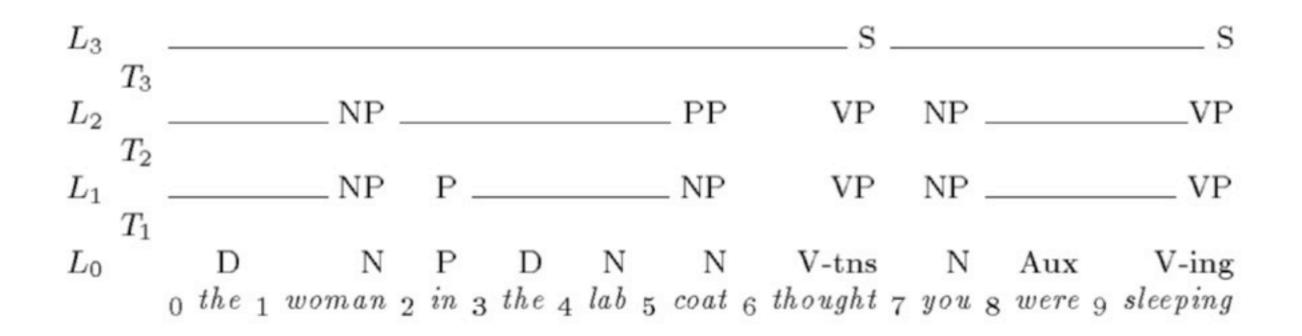
P(abⁿ)=0.2*0.8ⁿ

And if we add all possible paths:

$$\sum_{x} P(x) = \sum_{n=0}^{\infty} P(ab^{n}) = 0.2 * \sum_{n=0}^{\infty} 0.8^{n} = 0.2 * \frac{0.8^{0}}{1 - 0.8} = 1$$

- A Markov chain is a special case of probabilistic FSA in which the input sequence uniquely determines which states the automaton will go through
 - only useful for assigning probabilities to unambiguous sequences
 - Ex: N-gram models
- Probabilistic FSA can be shown to be equivalent to Hidden Markov Models
 - Same expressivity, but different way of representing things

- "Partial Parsing via Finite-state cascades," by Steven Abney 1996
- Different levels L_i
- For each level exists a deterministic FSA T_i
- Output of one level automaton is input to the next one:
- Level recognizer T_i has L_{i-1} as input, and ouputs symbols on level L_i
- Input elements that can't be recognized by an automaton are simply ignored and passed over to the next level
- Advantages: efficient, robust (partial parsing)
- Limitations: cannot model complex linguistic phenomena



$$T_{1}: \begin{cases} NP \to D? N+\\ VP \to V\text{-tns} \mid Aux \text{ V-ing} \end{cases}$$
$$T_{2}: \{PP \to P NP\}$$
$$T_{3}: \{S \to PP* NP PP* VP PP*\}$$