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  Practical announcements

The usual:

Website is still at the same place: 

http://www.dfki.de/~plison/lectures/compling2010/index.html

If you haven‘t done it yet, please subscribe to the mailing list!

Regarding the timetable for the exercise session:

Seems to have an agreement among us to have it on Thursday, 16-18

No strong objections for the lecturers at the moment

But: the Computerlinguistik Kolloquium also takes place at that time!

Need to find a solution agreeable to everyone...

Please don‘t wait for months to register the course in the HISPOS 
database (if you plan to take it, needless to say)

Note regarding the exam: due to the participation of several lecturers in 
the course, It would be better if you could all take the written exam 

But if you really need to have an oral exam for this course, let me know ASAP 
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  Outline of this exercise session

Short recap‘

Correction of the exercises

Advanced topics:

Finite-state transducers for morphological parsing

Weighted finite-state automata 

Cascading finite-state transducers
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  Recap from last lecture

In the last lecture, we presented finite-state automata and their algorithms

FSAs and regular expressions have the same expressive power: they both define a 
regular language, type-3 in the Chomsky hierarchy

FSAs can be automatically constructed from a given regular expression

FSAs can be deterministic or non-deterministic

We also saw two algorithms used to improve the (runtime) efficiency of a 
finite-state automata:

FSA determinization, via subset construction

FSA minimization, via either equivalence classes, or Brzozowski

Finite-state automata can be extended to finite-state transducers, which 
define relations between languages

Due to their simplicity and efficiency, FSAs are pervasive in computational 
linguistics (morphology, parsing, dialogue management, etc.)
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  Finite-state automata: what for?
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Chomsky Hierarchy of 
Languages

Regular languages 
(type-3)

Context-free languages 
(type-2)

Context-sensitive languages 
(type-1)

Unconstrained languages
(type-0)

Hierarchy of Grammars & 
Automata

Regular PS grammar
Finite-state automata

Context-free PS grammar
Push-down automata

 
Tree adjoining grammars
Linear bounded automata

General PS grammars
Turing machine

More expressivity
Less computational efficiency
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  FSAs and regular expressions

7

Regular expressions

Finite-state
automata

Regular languages
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  Finite-state automata (FSA)
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  Multiple equivalent FSAs
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  Defining FSAs through regexps
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  Non-deterministic FSA
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  Equivalence of DFSAs and NFSAs
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  Determin. by subset construction
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  ε-transitions and ε-closure
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  Example
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  Minimization of FSAs
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  Partitioning in equivalence classes
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  Minimization of a DFSA

21



© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

  Brzozowski‘s algorithm
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  From automata to transducers
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  Small Python class for DFSA
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class DFSA:
states = []                        # List of states
startState = None            # Starting state
endStates = []                  # Ending states
transFunction = {}            # Transition function (defined as a dictionary)

....          # Initialisation functions

# Returns the next state if one can be reached from the given state and symbol, or None otherwise
def getTransition(self, state, symbol):
        if self.transFunction.has_key((state,symbol)):
            return self.transFunction[(state,symbol)]
        else:
            return None

# Returns true if the string can be recognized by the DFSA, false otherwise
def isRecognized(self,string):
        return self.isRecognizedFromState(self.startState,string):

# Returns true if the current string can be recognized by the DFSA starting at curState, false otherwise
def isRecognizedFromState(self,curState,curString):
        firstSymbol = curString[0]
        stringTail = curString[1:len(curString)]
        nextState = self.getTransition(curState,firstSymbol)
        if nextState == None:

      return False
  elif nextState in self.endStates:
      return True
  else:

            return self.isRecognizedFromState(nextState,stringTail)      # Recursive call
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  Small Python class for DFST
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class DFST(FSA):
      ....

....          # Initialisation functions

# Returns the next state and output symbol if reachable from state+symbol, return None otherwise
def getTransition(self, state, symbol):
        if self.transFunction.has_key((state,symbol)):
            return self.transFunction[(state,symbol)]
        else:
            return None

 # Returns the output string if the input string can be transduced by the DFST, or None otherwise
 def transduce(self,string):
        return self.transduceFromState(self.startState,string)

 # Returns output string if the input can be transduced starting at curState, None otherwise
 def transduceFromState(self,curState,curString):
        firstSymbol = curString[0]
        stringTail = curString[1:len(curString)]
        transduction = self.getTransition(curState,firstSymbol)
        if transduction==None:

       return None
  else:

            nextState = transduction[0]
            output = transduction[1]
            if nextState in self.endStates:
                return output
            else:
                nextResult = self.transduceFromState(nextState,stringTail)   # Recursive call
                if nextResult != None:
                    return output+nextResult  # Concatenate the output string
                else:
                    return None
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  Determinization
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  Determinization
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  Constructing a FSA from a regexp
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 The regular expression: 
(a|b)ca*

But this is a non-deterministic FSA...

a

b

ε
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ε

union of two FSA

c ε a

ε
ε

ε

Kleene Star over FSA
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  Constructing a FSA from a regexp
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 The regular expression: 
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  Constructing a FSA from a regexp
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 The regular expression: 
(a|b)ca*
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  FSA minimization
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  FSA minimization

38

δ3 0 1

A B D

B B D

D D E

E D

A

0
B

0

D E

1
1

0

1

0

We can thus remove C 
and redirect all its 
incoming edges to D



© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

  FSA minimization
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  FSA minimization
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  FSA minimization
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  Probabilistic FSA

Probabilistic finite-state automata is a generalisation of 
classical finite-state automata

Also called: Weighted FSA

Allow us to provide an explicit account the uncertainty of 
our observations / of our model

Plus, probabilistic models can often be combined with 
machine learning techniques to automatically train the model 
from data

instead of specifying it manually 
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  Probabilistic FSA

In a probabilistic finite-state automata, each arc is 
associated with a probability.	

The probability of a path is the multiplication of the arcs 
on the path.	

The probability of a string x is the sum of the 
probabilities of all the paths for x. 

Possible tasks :

Given a string x,  find the best path for x.

Given a string x,  find the probability of x in a PFA.

Find the string with the highest probability in a PFA

etc.
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  Formal definition of a PFSA

A PFA is 

Q: a finite set of N states

Σ: a finite set of input symbols

I:  Q R+     (initial-state probabilities)

F: Q R+     (final-state probabilities)

                                      : the transition relation between states.

P:  δ  R+  (transition probabilities)
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  Normalised probabilities

46

Normalisation constraints on function:

Probability of a string:

∑

q∈Q

I(q) = 1

∀q ∈ Q : F (q) +
∑

a∈Σ∧q′∈Q

P (q, a, q′) = 1

P (w1,n, q1,n+1) = I(q1)× F (qn+1)×
n∏

i=1

P (qi, qi, qi+1)

P (w1, n) =
∑

q1,n+1

P (w1,n, q1,n+1)
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   Consistency of a PFSA
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Let A be a PFA.
• Def: P(x | A) = the sum of all the valid paths for x in A.

• Def: a valid path in A is a path for some string x with 
probability greater than 0.

• Def: A is called consistent if 

• Def: a state of a PFA is useful if it appears in at least 
one valid path.

• Proposition: a PFA is consistent if all its states are 
useful.
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  Example of PFSA
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P(abn)=0.2*0.8n

And if we add all possible paths:

Q0 Q1

a (P=1.0)

b (P=0.8) I(Q0) = 1.0
I(Q1) = 0.0

F(Q0) = 0.0
F(Q1) = 0.2
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Relation with other models

A Markov chain is a special case of probabilistic FSA in 
which the input sequence uniquely determines which 
states the automaton will go through

only useful for assigning probabilities to unambiguous sequences

Ex: N-gram models

Probabilistic FSA can be shown to be equivalent to 
Hidden Markov Models

Same expressivity, but different way of representing things
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Cascaded finite-state transducers

“Partial Parsing via Finite-state cascades„ by Steven Abney 
1996 

Different levels Li 

For each level exists a deterministic FSA Ti 

Output of one level automaton is input to the next one: 

Level recognizer Ti has Li-1 as input, and ouputs symbols 
on level Li

Input elements that can’t be recognized by an automaton 
are simply ignored and passed over to the next level

Advantages: efficient, robust (partial parsing)

Limitations: cannot model complex linguistic phenomena
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Cascaded finite-state transducers
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