
Computational Linguistics:
Part 1: Finite-State Automata

(exercise session)

Pierre Lison

Language Technology Lab
DFKI GmbH, Saarbrücken

http://talkingrobots.dfki.de

http://talkingrobots.dfki.de
http://talkingrobots.dfki.de

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Practical announcements

The usual:

Website is still at the same place:

http://www.dfki.de/~plison/lectures/compling2010/index.html

If you haven‘t done it yet, please subscribe to the mailing list!

Regarding the timetable for the exercise session:

Seems to have an agreement among us to have it on Thursday, 16-18

No strong objections for the lecturers at the moment

But: the Computerlinguistik Kolloquium also takes place at that time!

Need to find a solution agreeable to everyone...

Please don‘t wait for months to register the course in the HISPOS
database (if you plan to take it, needless to say)

Note regarding the exam: due to the participation of several lecturers in
the course, It would be better if you could all take the written exam

But if you really need to have an oral exam for this course, let me know ASAP

2

http://www.dfki.de/~plison/lectures/compling2010/index.html
http://www.dfki.de/~plison/lectures/compling2010/index.html
http://www.dfki.de/~plison/lectures/compling2010/index.html
http://www.dfki.de/~plison/lectures/compling2010/index.html

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Outline of this exercise session

Short recap‘

Correction of the exercises

Advanced topics:

Finite-state transducers for morphological parsing

Weighted finite-state automata

Cascading finite-state transducers

3

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Outline of this exercise session

Short recap‘

Correction of the exercises

Advanced topics:

Finite-state transducers for morphological parsing

Weighted finite-state automata

Cascading finite-state transducers

4

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Recap from last lecture

In the last lecture, we presented finite-state automata and their algorithms

FSAs and regular expressions have the same expressive power: they both define a
regular language, type-3 in the Chomsky hierarchy

FSAs can be automatically constructed from a given regular expression

FSAs can be deterministic or non-deterministic

We also saw two algorithms used to improve the (runtime) efficiency of a
finite-state automata:

FSA determinization, via subset construction

FSA minimization, via either equivalence classes, or Brzozowski

Finite-state automata can be extended to finite-state transducers, which
define relations between languages

Due to their simplicity and efficiency, FSAs are pervasive in computational
linguistics (morphology, parsing, dialogue management, etc.)

5

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Finite-state automata: what for?

6

Chomsky Hierarchy of
Languages

Regular languages
(type-3)

Context-free languages
(type-2)

Context-sensitive languages
(type-1)

Unconstrained languages
(type-0)

Hierarchy of Grammars &
Automata

Regular PS grammar
Finite-state automata

Context-free PS grammar
Push-down automata

Tree adjoining grammars
Linear bounded automata

General PS grammars
Turing machine

More expressivity
Less computational efficiency

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 FSAs and regular expressions

7

Regular expressions

Finite-state
automata

Regular languages

de
sc

rib
e

/ s
pe

cif
y describe / specify

describe / specify
recognise

Executable!

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Finite-state automata (FSA)

8

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Multiple equivalent FSAs

9

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Defining FSAs through regexps

10

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Defining FSAs through regexps

11

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Non-deterministic FSA

12

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Equivalence of DFSAs and NFSAs

13

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Determin. by subset construction

14

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Determin. by subset construction

15

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Determin. by subset construction

16

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 ε-transitions and ε-closure

17

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Example

18

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Minimization of FSAs

19

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Partitioning in equivalence classes

20

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Minimization of a DFSA

21

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Brzozowski‘s algorithm

22

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 From automata to transducers

23

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Outline of this exercise session

Short recap‘

Correction of the exercises

Advanced topics:

Finite-state transducers for morphological parsing

Weighted finite-state automata

Cascading finite-state transducers

24

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Exercises

25

{C,D,E}>

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Exercises

26

{C,D,E}>

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Small Python class for DFSA

27

class DFSA:
states = [] # List of states
startState = None # Starting state
endStates = [] # Ending states
transFunction = {} # Transition function (defined as a dictionary)

.... # Initialisation functions

Returns the next state if one can be reached from the given state and symbol, or None otherwise
def getTransition(self, state, symbol):
 if self.transFunction.has_key((state,symbol)):
 return self.transFunction[(state,symbol)]
 else:
 return None

Returns true if the string can be recognized by the DFSA, false otherwise
def isRecognized(self,string):
 return self.isRecognizedFromState(self.startState,string):

Returns true if the current string can be recognized by the DFSA starting at curState, false otherwise
def isRecognizedFromState(self,curState,curString):
 firstSymbol = curString[0]
 stringTail = curString[1:len(curString)]
 nextState = self.getTransition(curState,firstSymbol)
 if nextState == None:

 return False
 elif nextState in self.endStates:
 return True
 else:

 return self.isRecognizedFromState(nextState,stringTail) # Recursive call

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Small Python class for DFST

28

class DFST(FSA):

.... # Initialisation functions

Returns the next state and output symbol if reachable from state+symbol, return None otherwise
def getTransition(self, state, symbol):
 if self.transFunction.has_key((state,symbol)):
 return self.transFunction[(state,symbol)]
 else:
 return None

 # Returns the output string if the input string can be transduced by the DFST, or None otherwise
 def transduce(self,string):
 return self.transduceFromState(self.startState,string)

 # Returns output string if the input can be transduced starting at curState, None otherwise
 def transduceFromState(self,curState,curString):
 firstSymbol = curString[0]
 stringTail = curString[1:len(curString)]
 transduction = self.getTransition(curState,firstSymbol)
 if transduction==None:

 return None
 else:

 nextState = transduction[0]
 output = transduction[1]
 if nextState in self.endStates:
 return output
 else:
 nextResult = self.transduceFromState(nextState,stringTail) # Recursive call
 if nextResult != None:
 return output+nextResult # Concatenate the output string
 else:
 return None

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Exercises

29

{C,D,E}>

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Determinization

30

P Q R S

a

a

b

a

b

a

a

b
δ1 a b

p p,q p

q r r

r s -

s s s

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Determinization

31

P

a
P, Q

b

a
P,Q,R

a

P, R

b

b
b

b

a

a

a

δ1 a b

p p,q p

q r r

r s -

s s s

P, Q,R,S

a

P, R,S

b

P, S

b

P, Q,S

a

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Exercises

32

{C,D,E}>

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Constructing a FSA from a regexp

33

 The regular expression:
(a|b)ca*

But this is a non-deterministic FSA...

a

b

ε

ε

ε

ε

union of two FSA

c ε a

ε
ε

ε

Kleene Star over FSA

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Constructing a FSA from a regexp

34

 The regular expression:
(a|b)ca*

a

b

ε

ε

ε

ε
c ε a

ε
ε

εQ1

Q2

Q3

Q4

Q5

Q6 Q7 Q8 Q9 Q10

Q1,Q2,Q3

Q4,Q6a

b Q5,Q6

a

Q7,Q8,Q10

c

c

a
Q8,Q9,Q10

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Constructing a FSA from a regexp

35

 The regular expression:
(a|b)ca*

a

b

ε

ε

ε

ε
c ε a

ε
ε

εQ1

Q2

Q3

Q4

Q5

Q6 Q7 Q8 Q9 Q10

Q1,Q2,Q3

Q4,Q6a

b Q5,Q6

c

c

Or even simpler, by minimisation:
a

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Exercises

36

{C,D,E}>

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 FSA minimization

37

δ3 0 1

A B D
B B C

C D E

D D E

E C

A

0
B

0

C

D E

1

1

0 1

0

1

0

C and D have the same
right language:
0*|(0*(10)*)*|(0*(10)*1)*

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 FSA minimization

38

δ3 0 1

A B D

B B D

D D E

E D

A

0
B

0

D E

1
1

0

1

0

We can thus remove C
and redirect all its
incoming edges to D

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 FSA minimization

39

A

0
B

0

D E

1
1

0

1

0

We can thus remove C
and redirect all its
incoming edges to D

δ3 0 1

A B D

B B D

D D E

E D

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 FSA minimization

40

A

0
B

0

D E

1
1

0

1

0

A and B also have the same
right language:
0*1+right language of D

δ3 0 1

A B D

B B D

D D E

E D

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 FSA minimization

41

A

0

D E

1

0

1

0
δ3 0 1

A A D

D D E

E D
And we‘re done!

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Outline of this exercise session

Short recap‘

Correction of the exercises

Advanced topics:

Finite-state transducers for morphological parsing

Weighted finite-state automata

Cascading finite-state transducers

42

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Probabilistic FSA

Probabilistic finite-state automata is a generalisation of
classical finite-state automata

Also called: Weighted FSA

Allow us to provide an explicit account the uncertainty of
our observations / of our model

Plus, probabilistic models can often be combined with
machine learning techniques to automatically train the model
from data

instead of specifying it manually

43

(Following slides adapted on existing slides by Fei Xia)

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Probabilistic FSA

In a probabilistic finite-state automata, each arc is
associated with a probability.	

The probability of a path is the multiplication of the arcs
on the path.	

The probability of a string x is the sum of the
probabilities of all the paths for x.

Possible tasks :

Given a string x, find the best path for x.

Given a string x, find the probability of x in a PFA.

Find the string with the highest probability in a PFA

etc.

44

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Formal definition of a PFSA

A PFA is

Q: a finite set of N states

Σ: a finite set of input symbols

I: Q R+ (initial-state probabilities)

F: Q R+ (final-state probabilities)

 : the transition relation between states.

P: δ R+ (transition probabilities)

45

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Normalised probabilities

46

Normalisation constraints on function:

Probability of a string:

∑

q∈Q

I(q) = 1

∀q ∈ Q : F (q) +
∑

a∈Σ∧q′∈Q

P (q, a, q′) = 1

P (w1,n, q1,n+1) = I(q1)× F (qn+1)×
n∏

i=1

P (qi, qi, qi+1)

P (w1, n) =
∑

q1,n+1

P (w1,n, q1,n+1)

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Consistency of a PFSA

47

Let A be a PFA.
• Def: P(x | A) = the sum of all the valid paths for x in A.

• Def: a valid path in A is a path for some string x with
probability greater than 0.

• Def: A is called consistent if

• Def: a state of a PFA is useful if it appears in at least
one valid path.

• Proposition: a PFA is consistent if all its states are
useful.

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

 Example of PFSA

48

P(abn)=0.2*0.8n

And if we add all possible paths:

Q0 Q1

a (P=1.0)

b (P=0.8) I(Q0) = 1.0
I(Q1) = 0.0

F(Q0) = 0.0
F(Q1) = 0.2

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

Relation with other models

A Markov chain is a special case of probabilistic FSA in
which the input sequence uniquely determines which
states the automaton will go through

only useful for assigning probabilities to unambiguous sequences

Ex: N-gram models

Probabilistic FSA can be shown to be equivalent to
Hidden Markov Models

Same expressivity, but different way of representing things

49

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

Cascaded finite-state transducers

“Partial Parsing via Finite-state cascades„ by Steven Abney
1996

Different levels Li

For each level exists a deterministic FSA Ti

Output of one level automaton is input to the next one:

Level recognizer Ti has Li-1 as input, and ouputs symbols
on level Li

Input elements that can’t be recognized by an automaton
are simply ignored and passed over to the next level

Advantages: efficient, robust (partial parsing)

Limitations: cannot model complex linguistic phenomena

50

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Exercise Session 1: Finite-State Automata

Cascaded finite-state transducers

51

