

Computational Linguistics: Part 1: Finite-State Automata

Pierre Lison

Language Technology Lab DFKI GmbH, Saarbrücken http://talkingrobots.dfki.de

Deutsches Forschungszentrum für Künstliche Intelligenz German Research Center for Artificial Intelligence

Montag, 19. April 2010

- Welcome to the Computational Linguistics course, Summer Semester 2010 edition!
- Hope you will find it interesting & enjoyable :-)
- As you know, the course timetable is as follows:
 - Lecture every Monday, 14 16 hr
 - Exercise session every Thursday, 14 16 hr
- The course will be given by five lecturers: Bernd Kiefer, Hans-Ulrich Krieger, Dietrich Klakow, Andreas Eisele and myself (Pierre Lison)
- Successful completion of the course will grant you 6 credit points
- Also keep in mind that this course is one of the core courses for the "Computational Linguistics" specialization of the M.Sc. program

© 2010 Pierre Lison (based on slides from A. Frank)

http://www.dfki.de/~plison/lectures/compling2010/index.html

- You will find there a detailed schedule of the course, as well as the necessary resources (slides, assignments, solutions)
- A mailing list has also been created. Please subscribe to stay informed about the course details over the semester:

http://ml.coli.uni-saarland.de/cgi-bin/mailman/listinfo/compling2010

- As I'm officially responsible for the course, so if you have any general question or request about the course, don't hesitate to contact me: <u>plison@dfki.de</u>
- Or drop by at my office (preferably with a short email beforehand):

and and a

Building D 3.1 (DFKI Altbau), room C 1.11 (floor +1).

© 2010 Pierre Lison (based on slides from A. Frank)

Computational Linguistics, SS 2010 3 Lecture 1: Finite-State Automata

- Assignments:
 - Assignments will be given after every lecture, to do before the following exercise session
 - Each completed assignment is to be sent via email to the lecturer. The exact deadline for submitting your assignment will be provided in due time by the corresponding lecturers
 - In order to be able to register for the exam, you need to pass at least 80% of the required assignments
- The final evaluation will consist of a usual 90-minutes written exam
 - A Probeklausur will be offered one week before the exam to give you an idea of what you should expect
- The final grade will be a composite of the assignment grades, and of course the exam (exact percentage still unknown)

© 2010 Pierre Lison (based on slides from A. Frank)

- The course content will be mostly provided via PDF slides available on the course website
- Additional readings might also be provided during the lecture
- The two following textbooks are warmly recommended:
 - D. Jurafsky and J. H. Martin: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Prentice-Hall, 2009.
 - C. Manning and H. Schütze: Foundations of Statistical Natural Language Processing, MIT Press, 1999.
- They are both available at the CoLi library

© 2010 Pierre Lison (based on slides from A. Frank)

- The course focuses on the core algorithms used in computational linguistics
 - How they work, on which representations they operate
 - Formal properties, computational complexity
 - Pros and cons of each approach
 - Use in practical applications

Learning objectives:

- gain a reasonable understanding of how each of these algorithms work
 - Both in theory and in practice (hands-on exercises)
- And (perhaps more importantly): understand the relative merits and limitations of these algorithms
 - The goal is to understand which algorithm(s) should be used to solve a particular problem!

Main topics

- In particular, we will review the following topics this semester:
 - Finite-State Automata and their algorithms (Pierre)
 - Chart-based parsing & generation (Bernd)
 - Unification-based parsing & generation (Bernd)
 - Ontologies (Uli)
 - Maximum Entropy Models (Dietrich)
 - Conditional Random Fields (Dietrich)
 - Alignment algorithms (Andreas)
 - Shallow matching algorithms for strings & trees (Pierre)

© 2010 Pierre Lison (based on slides from A. Frank)

Course schedule

- Mon 19.4: Seminar: Lison Introduction to the course, Finite-State Automata
- Thu 22.4: Exercises: Lison Finite-State Automata
- Mon 26.4: Seminar: Kiefer Chart-based parsing and generation
- Thu 29.4: Exercises: Kiefer Chart-based parsing and generation
- Mon 03.5: Seminar: Krieger Ontologies
- • Thu 06.5: Exercises: Krieger Ontologies
- Mon 10.05: Seminar: Kiefer Unification-based parsing and generation
- Thu 13.05: PUBLIC HOLIDAYS (Himmelfahrt)
- Mon 17.05: Seminar: Klakow Maximum Entropy Models
- • Thu 20.05: Exercises: Kiefer Unification-based parsing and generation
- Mon 24.05: PUBLIC HOLIDAYS (Pfingstmontag)
- Thu 27.05: Exercises: Klakow Maximum Entropy Models
- Mon 31.05: Seminar: Klakow Conditional Random Fields
- Thu 03.06: PUBLIC HOLIDAYS (Fronleichnam)
- Mon 07.06: Seminar: Eisele Alignment algorithms
- Thu 10.06: Exercises: Klakow Conditional Random Fields
- Mon 14.06: Seminar: Lison: Shallow matching algorithms (strings)
- Thu 17.06: Exercises: Eisele Alignment algorithms
- Mon 21.06: Seminar: Lison: Shallow matching algorithms (trees)
- Thu 24.06: Exercises: Lison: Shallow matching algorithms
- Mon 28.06: Question hour
- Thu 01.07: Test exam
- Mon 05.07: NO SEMINAR
- Thu 08.07: Final exam (90 minutes writing time)

Lecture I: Finite-State Automata

(based on slides from Annette Frank)

© 2010 Pierre Lison (based on slides from A. Frank)

Montag, 19. April 2010

Overview of the lecture

Background

- Chomsky hierarchy of languages
- Basic definitions, generic operations on languages
- Generalities about Finite-State Automata (FSA)
 - Regular languages, regular expressions and FSAs
 - Constructing a FSA from a regular expression
 - Non-deterministic FSAs
- Optimization algorithms for FSAs
 - *Determinization* of a FSA via subset construction
 - Minimization of a FSA: equivalence classes, Brzozowski's algorithm
- Applications of FSAs & extensions to finite-state transducers
- Conclusions, exercises

Background

- Chomsky hierarchy of languages
- Basic definitions, generic operations on languages
- Generalities about Finite-State Automata (FSA)
 - Regular languages, regular expressions and FSAs
 - Constructing a FSA from a regular expression
 - Non-deterministic FSAs
- Optimization algorithms for FSAs
 - Determinization of a FSA via subset construction
 - Minimization of a FSA: equivalence classes, Brzozowski's algorithm
- Applications of FSAs & extensions to finite-state transducers
- Conclusions, exercises

Chomsky Hierarchy of Languages

Regular languages (type-3)

Context-free languages (type-2)

Context-sensitive languages (type-1)

Unconstrained languages (type-0)

Hierarchy of Grammars & Automata

Regular PS grammar Finite-state automata

Context-free PS grammar Push-down automata

Tree adjoining grammars Linear bounded automata

General PS grammars Turing machine

More expressivity Less computational efficiency

and and the

© 2010 Pierre Lison (based on slides from A. Frank)

Computational Linguistics, SS 2010 (12) Lecture 1: Finite-State Automata

· · · · · · · · · · ·

© 2010 Pierre Lison (based on slides from A. Frank)

Computational Linguistics, SS 2010 (13) Lecture 1: Finite-State Automata

Montag, 19. April 2010

Some basic definitions

- Alphabet Σ: finite set of symbols
- String: sequence x₁...x_n of symbols x_i taken from the alphabet Σ
- Language over Σ : set of strings that can be generated from Σ
 - Sigma star Σ^* : set of all possible strings over the alphabet Σ ,
 - For instance, if $\Sigma = \{a, b\}$, then $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, ... \}$
 - Sigma plus Σ + removes the empty element: Σ + = Σ * { ϵ }
 - Special language $\emptyset = \{\}$, called the empty language
 - Attention: note the difference with $\{\epsilon\}$: language with one element, the empty string

Formal language: a subset of Σ*

	©	2010	Pierre	Lison	(based	ons	slides	from	A.	Fran	k)
--	---	------	--------	-------	--------	-----	--------	------	----	------	----

• A formal grammar is a tuple $G = \langle \Sigma, \Phi, S, R \rangle$, where

- Σ is an alphabet of terminal symbols
- Φ is an alphabet of non-terminal symbols
- S is the start symbol
- R is a finite set of rules, with $R \subseteq \Gamma^+ \times \Gamma^*$.
 - Γ is the union of terminal and non-terminal symbols: $\Gamma = \Sigma \cup \Phi$
 - Each rule $\in R$ is of the form $\alpha \rightarrow \beta$

• Derivation:

- Assume a grammar G= < Σ , Φ , S, R > and two arbitrary strings u and v $\in \Gamma^* = (\Sigma \cup \Phi)^*$
- A direct derivation $u \Rightarrow_G v$ holds iff there exists $s_1, s_2 \in \Gamma^*$ such that $u = (s_1 \alpha s_2)$ and $v = (s_1 \beta s_2)$ and there is a rule $\alpha \rightarrow \beta$ in R
- A general derivation $u \Rightarrow_{G^*} v$ holds iff either u = v or there exists a string $z \in \Gamma^*$ such that $u \Rightarrow_{G^*} z$ and $z \Rightarrow_G v$
- The language L(G) generated by a grammar G is defined as the set of strings w ⊆ Σ* that can be derived from the start symbol S according to the grammar G

and and a

• In other words:
$$L(G) = \{w : S \Rightarrow_{G^*} w \land w \in \Sigma^*\}$$

- Basic operation on strings: concatenation
 - Assume two strings a and b, defined by $a = x_i \dots x_m$ and $b = x_{m+1} \dots x_n$
 - Then the concatenation $a \bullet b = x_i \dots x_m x_{m+1} \dots x_n$
 - Concatenation is associative, but not commutative
 - ϵ is the identity element: $a \cdot \epsilon = \epsilon \cdot a = a$

- Classification of languages generated by formal grammars
 - A language is of type *i* (i = 0,1,2,3) iff it is generated by a *type-i* grammar
 - Classification according to increasingly restricted types of production rules:

■ L-type-0 ⊃ L-type1 ⊃ L-type-2 ⊃ L-type-3

 Every grammar generates a unique language, but a language can be generated by several different grammars.

Two grammars are

- (Weakly) equivalent if they generate the same string language
- Strongly equivalentif they generate both the same string language and the same tree language

© 2010 Pierre Lison (based on slides from A. Frank)

Chomsky Hierarchy of grammars (2)

• Type - 0 languages: general phrase structure grammars

- No restrictions on the form of production rules: arbitrary strings on both the left-hand and right-hand side of rules
- A grammar $G = \langle \Sigma, \Phi, S, R \rangle$ generates a language L-type-0 iff:
 - All rules R are of the form $\alpha \rightarrow \beta$, where $\alpha \in \Gamma^+$ and $\beta \in \Gamma^*$
 - In other words, the LHS must be a nonempty sequence of non-terminal or terminal symbols
 - And RHS a (possibly empty) sequence of non-terminal or terminal symbols
- Example of type-0 grammar:
 - $G = \langle \{S, A, B, C, D, E\}, \{a\}, S, R \rangle$, with the following production rules:

S → ACaB	$CB \rightarrow E$	aE → Ea
Ca → aaC	aD → Da	AE → ε
CB →DB	$AD \rightarrow AC$	

• Question: what is the language generated by G? $L(G) = \{a^{2^n} | n \ge 1\}$

© 2010 Pierre Lison (based on slides from A. Frank)

Chomsky Hierarchy of grammars (3)

• Type-1 languages: context-sensitive grammars

- a grammar $G = \langle \Sigma, \Phi, S, R \rangle$ generates a language L-type-1 iff
 - all rules are of the form $\alpha A \Upsilon \rightarrow \alpha \beta \Upsilon$, where A is a non-terminal ($\in \Phi$) and $\alpha, \beta, \Upsilon \in \Gamma^*$
 - In other words, the LHS is a non-empty sequence of NT and T symbols, with at least one NT symbol
 - The RHS is a non-empty sequence of NT or T symbols

• Example:

• G = < {S,B,C}, {a,b,c}, S, R >, with the following production rules:

S → a S B C	a B → a b	
S → a B C	bB→bb	
C B→B C	$b C \rightarrow b c$	$c C \rightarrow c c$

• Question: what is the language generated by G? $L(G) = \{a^n b^n c^n | n \ge 1\}$

Chomsky Hierarchy of grammars (4)

Type-2 languages: context-free grammars

- a grammar G= $< \Sigma$, Φ , S, R > generates a language L-type-2 iff
 - all rules are of the form $A \rightarrow \alpha$, where A is a non-terminal ($\in \Phi$) and $\alpha \in \Gamma^*$
 - In other words, the LHS is a single NT symbol
 - The RHS is a non-empty sequence of NT or T symbols

Example:

• $G = \langle \{S, A\}, \{a, b\}, S, R \rangle$, with the following production rules:

 $S \rightarrow A S A$ $A \rightarrow a$ $S \rightarrow b$

• Question: what is the language generated by G? $L(G) = \{a^n b a^n | n \ge 1\}$

© 2010 Pierre Lison (based on slides from A. Frank)

· and and for

Chomsky Hierarchy of grammars (5)

Type-3 languages: regular or finite-state grammars

- a grammar $G = \langle \Sigma, \Phi, S, R \rangle$ generates a language L-type-2 iff
 - all rules are of the form $A \rightarrow wB$ or $A \rightarrow w$, where A, B are non-terminals ($\in \Phi$) and $w \in \Sigma^*$
 - In other words, the LHS is a single NT symbol, and the RHS is a possibly empty sequence of T symbols, optionally followed by a single NT symbol
 - The definition above is right linear. Left linear grammars have rules of the form A → Bw, and function similarly

• Example:

• $G = \langle \{S, A, B\}, \{a, b\}, S, R \rangle$, with the following production rules:

S → a A	$B \rightarrow b B$	a→bbB
A → a A	B → b	

• Question: what is the language generated by G? $L(G) = \{aa^*bbb^*b\}$

© 2010 Pierre Lison (based on slides from A. Frank)

Operations on languages

- Typical set-theoretic operations on languages
 - Union: $L_1 \cup L_2 = \{ w : w \in L_1 \text{ or } w \in L_2 \}$
 - Intersection: $L_1 \cap L_2 = \{ w : w \in L_1 \text{ and } w \in L_2 \}$
 - Difference: $L_1 L_2 = \{ w : w \in L_1 \text{ and } w \notin L_2 \}$
 - Complement of $L \subseteq \sum^* wrt$. $\sum^* L^- = \sum^* L$
- Language-theoretic operations on languages
 - Concatenation: $L_1L_2 = \{w_1w_2 : w_1 \in L_1 \text{ and } w_2 \in L_2\}$
 - Iteration: $L^0 = \{\varepsilon\}, L^1 = L, L^2 = LL, ... L^* = \bigcup_{i \ge 0} L^i, L^+ = \bigcup_{i > 0} L^i$
 - Mirror image: $L^{-1} = \{w^{-1} : w \in L\}$
- Union, concatenation and Kleene star are called regular operations
- Regular sets/languages: languages that are defined by the regular operations: concatenation (\cdot), union (\cup) and kleene star (*)
- Regular languages are closed under concatenation, union, kleene star, intersection and complementation

· · · · · · · ·

- Background
 - Chomsky hierarchy of languages
 - Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

- Regular languages, regular expressions and FSAs
- Constructing a FSA from a regular expression
- Non-deterministic FSAs
- Optimization algorithms for FSAs
 - *Determinization* of a FSA via subset construction
 - Minimization of a FSA: equivalence classes, Brzozowski's algorithm
- Applications of FSAs & extensions to finite-state transducers
- Conclusions, exercises

- Background
 - Chomsky hierarchy of languages
 - Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

- Regular languages, regular expressions and FSAs
- Constructing a FSA from a regular expression
- Non-deterministic FSAs
- Optimization algorithms for FSAs
 - Determinization of a FSA via subset construction
 - Minimization of a FSA: equivalence classes, Brzozowski's algorithm
- Applications of FSAs & extensions to finite-state transducers
- Conclusions, exercises

© 2010 Pierre Lison (based on slides from A. Frank)

Montag, 19. April 2010

- Regular sets/languages can be specified/defined by regular expressions Given a set of terminal symbols Σ , the following are regular expressions
 - $-\varepsilon$ is a regular expression
 - For every $a \in \Sigma$, a is a regular expression
 - If R is a regular expression, then R* is a regular expression
 - If Q,R are regular expressions, then QR (Q \cdot R) and Q \cup R are regular expressions
- Every regular expression denotes a regular language

$$- L(\varepsilon) = \{\varepsilon\}$$

- $L(a) = \{a\}$ for all $a \in \Sigma$
- $L(\alpha\beta) = L(\alpha)L(\beta)$
- $L(\alpha \cup \beta) = L(\alpha) \cup L(\beta)$
- $L(\alpha^*) = L(\alpha)^*$

© 2010 Pierre Lison (based on slides from A. Frank)

Finite-state automata (FSA)

- Grammars: generate (or recognize) languages Automata: recognize (or generate) languages
- Finite-state automata recognize regular languages
- A finite automaton (FA) is a tuple A = $\langle \Phi, \Sigma, \delta, q_0, F \rangle$
 - $-\Phi$ a finite non-empty set of states
 - $-\Sigma$ a finite alphabet of input letters
 - δ a transition function $\Phi \times \Sigma \rightarrow \Phi$
 - $q_0 \in \Phi$ the initial state
 - $F \subseteq \Phi$ the set of final (accepting) states
- Transition grap(cs (diagrams):
 - states: circles
 - transitions: directed arcs between circles
 - initial state
 - final state

FSA transition graphs

Transition graph

Traversal of an FSA
= Computation with an FSA

 $S = q_0 F = \{q_{5}, q_8\}$ Transition function $\delta: \Phi \times \Sigma \rightarrow \Phi$ $\delta(q_0,c)=q_1$ $\delta(q_0,e)=q_3$ $\delta(q_0,l)=q_6$ $\delta(q_1,l)=q_2$ $\delta(q_2,e)=q_3$ $\delta(q_3,a)=q_4$ $\delta(q_3,v)=q_9$ $\delta(q_4, r) = q_5$ $\delta(q_6,e)=q_7$ $\delta(q_7,t)=q_8$ $\delta(q_8,t)=q_9$ $\delta(q_9,e)=q_4$

© 2010 Pierre Lison (based on slides from A. Frank)

FSA transition graphs (2)

Transition graph

Traversal of an FSA
= Computation with an FSA

State diagram

FSAs can be used for

- acceptance (recognition)
- generation

- Traversal of a (deterministic) FSA
 - FSA *traversal* is defined by states and transitions of A, relative to an input string $w \in \Sigma^*$
 - A configuration of A is defined by the current state and the unread part of the input string: (q, w_i) , with $q \in \Phi$, w_i suffix of w
 - A *transition*: a binary relation between configurations $(q,w_i) \mid -_A (q',w_{i+1})$ iff $w_i = zw_{i+1}$ for $z \in \Sigma$ and $\delta(q,z) = q'$ (q,w_i) yields (q',w_{i+1}) in a single transition step
 - Reflexive, transitive closure of $|-_A: (q, w_i) | *_A(q', w_j)$ (q, w_i) yields (q', w_i) in zero or a finite number of steps
- Acceptance
 - Decide whether an input string w is in the language L(A) defined by FSA A
 - An FSA A accepts a string w iff $(q_0, w) \mid -*_A (q_f, \varepsilon)$, with q_0 initial state, $q_f \subseteq F$
 - The language L(A) accepted by FSA A is the set of all strings accepted by A I.e., $w \in L(A)$ iff there is some $q_f \subseteq F_A$ such that $(q_0, w) \mid -*_A (q_f, \varepsilon)$

- A grammad $G = \langle \Sigma, \Phi, S, R \rangle$ is called right linear (or regular) iff all rules R are of the form $A \rightarrow w$ or $A \rightarrow wB$, where $A,B \in \Phi$ and $w \in \Sigma^*$
 - $\sum = \{a, b\}, \Phi = \{S, A, B\}, R = \{S \rightarrow aA, A \rightarrow aA, A \rightarrow bbB, B \rightarrow bB, B \rightarrow b\}$ S ⇒ aA ⇒ aaA ⇒ aabbB ⇒ aabbbB ⇒ aabbbb
 - The NT symbol corresponds to a state in an FSA: the future of the derivation only depends on the identity of this state or symbol and the remaining production rules.
 - Correspondence of type-3 grammar rules with transitions in a (non-deterministic) FSA:

•
$$A \rightarrow w B \equiv \delta(A,w) = B$$

•
$$A \rightarrow w \equiv \delta(A,w)=q, q \in F$$

- Conversely, we can construct an FSA from the rules of a type-3 language
- Regular grammars and FSAs can be shown to be equivalent
- Regular grammars generate regular languages
- Regular languages are defined by concatenation, union, kleene star

- Deterministic finite-state automata (DFSA)
 - at each state, there is at most one transition that can be taken to read the next input symbol
 - the next state (transition) is fully determined by current configuration
 - $-\delta$ is functional (and there are no ε -transitions)
- Determinism is a useful property for an FSA to have!
 - Acceptance or rejection of an input can be computed in *linear time 0(n)* for inputs of length n
 - Especially important for processing of LARGE documents
- Appropriate problem classes for FSAs
 - Recognition and acceptance of *regular languages*, in particular *string manipulation*, regular phonological and morphological processes
 - Approximations of non-regular languages in morphology, shallow finitestate parsing, ...

Multiple equivalent FSAs

- FSA for the language L_{lehr} = { lehrbar, lehrbarkeit, belehrbar, belehrbarkeit, unbelehrbar, unbelehrbarkeit, unlehrbar, unlehrbarkeit }
- DFSA for L_{lehr} be lehr

un

• Regular expression and FSA for L_{lehr} (un | ϵ) (be lehr | lehr) bar (keit | ϵ) (non-deterministic) un be lehr lehr keit

be

lehr

lehr

bar

keit

 Equivalent FSA (non-deterministic)

© 2010 Pierre Lison (based on slides from A. Frank)

- Background
 - Chomsky hierarchy of languages
 - Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

- Regular languages, regular expressions and FSAs
- Constructing a FSA from a regular expression
- Non-deterministic FSAs
- Optimization algorithms for FSAs
 - Determinization of a FSA via subset construction
 - Minimization of a FSA: equivalence classes, Brzozowski's algorithm
- Applications of FSAs & extensions to finite-state transducers
- Conclusions, exercises

Defining FSAs through regexps

- FSAs for even mildly complex regular languages are best constructed from regular expressions!
- Every regular expression denotes a regular language
 - $L(\varepsilon) = \{\varepsilon\} \qquad L(\alpha\beta) = L(\alpha)L(\beta)$
 - $L(\alpha) = \{a\}$ for all $\alpha \in \Sigma$ $L(\alpha \cup \beta) = L(\alpha) \cup L(\beta)$

 $- L(\alpha^*) = L(\alpha)^*$

- Every regular expression translates to a FSA (Closure properties)
 - An FSA for *a* (with $L(a) = \{a\}$), $a \in \Sigma$:
 - An FSA for ε (with $L(\varepsilon) = \{\varepsilon\}$), $\varepsilon \in \Sigma$:
 - Concatenation of two FSAs F_A and F_B:
 - $S_{AB} = S_A$ (S initial state)
 - $F_{AB} = F_B$ (F set of final states)
 - $\delta_{AB} = \delta_A \cup \delta_B \cup \{\delta(\langle q_i, \varepsilon \rangle, q_j) \mid q_i \in F_A, q_j = S_B\}$

Defining FSAs through regexps

- union of two FSAs F_A and F_B :
 - $S_{AB} = s_0$ (new state)
 - $F_{AB} = \{ s_i \}$ (new state)
 - F_B • $\delta_{AB} = \delta_A \cup \delta_B$ $\bigcup \{\delta(\langle q_0, \varepsilon \rangle, q_z) \mid q_0 = S_{AB}, (q_z = S_A \text{ or } q_z = S_B)\}$ $\cup \{\delta(\langle q_z, \varepsilon \rangle, q_i) \mid (q_z \in F_A \text{ or } q_z \in F_B), q_i \in F_{AB}\}$
- Kleene Star over an FSA F_A :
 - $S_{A*} = s_0$ (new state)
 - $F_{A*} = \{q_i\}$ (new state)

• $\delta_{AB} = \delta_A \cup$ $\cup \{\delta(\langle q_i, \varepsilon \rangle, q_z) \mid q_i \in F_A, q_z = S_A)\}$ $\bigcup \{ \delta(\langle q_0, \epsilon \rangle, q_z) \mid q_0 = S_{A^*}, (q_z = S_A \text{ or } q_z = F_{A^*}) \}$ $\cup \{\delta(\langle q_z, \varepsilon \rangle, q_i) \mid q_z \in F_A, q_i \in F_{A^*}\}$

© 2010 Pierre Lison (based on slides from A. Frank)

· · · · · · · ·

F_{AUB}

Defining FSAs through regexps

- ε -transition: move to $\delta(q, \varepsilon)$ without reading an input symbol
- FSA construction from regular expressions yields a non-deterministic FSA (NFSA)
 - Choice of next state is *only partially determined* by the current configuration,
 i.e., we cannot always predict which state will be the next state in the traversal

- Background
 - Chomsky hierarchy of languages
 - Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

- Regular languages, regular expressions and FSAs
- Constructing a FSA from a regular expression
- Non-deterministic FSAs
- Optimization algorithms for FSAs
 - Determinization of a FSA via subset construction
 - Minimization of a FSA: equivalence classes, Brzozowski's algorithm
- Applications of FSAs & extensions to finite-state transducers
- Conclusions, exercises

- Non-determinism
 - Introduced by ε-transitions and/or
 - Transition being a *relation* Δ over $\Phi \times \Sigma^* \times \Phi$, i.e. a set of triples $\langle q_{source}, z, q_{target} \rangle$ Equivalently: Transition function δ maps to a *set of states*: $\delta: \Phi \times \Sigma \rightarrow \wp(\Phi)$
- A non-deterministic FSA (NFSA) is a tuple A = $\langle \Phi, \Sigma, \delta, q_0, F \rangle$
 - Φ a finite non-empty set of states
 - $-\Sigma$ a finite alphabet of input letters
 - δ a transition function $\Phi \times \Sigma^* \to \wp(\Phi)$ (or a finite relation over $\Phi \times \Sigma^* \times \Phi$)
 - $-q_0 \in \Phi$ the initial state
 - $F \subseteq \Phi$ the set of final (accepting) states
- Adapted definitions for transitions and acceptance of a string by a NFSA
 - $(q,w) \mid -_A (q',w_{i+1}) \text{ iff } w_i = zw_{i+1} \text{ for } z \in \Sigma^* \text{ and } q' \in \delta(q,z)$
 - An NDFA (w/o ε) accepts a string w iff there is some traversal such that $(q_0,w) \mid -*_A (q', \varepsilon)$ and $q' \subseteq F$.
 - A string w is *rejected* by NDFA A iff A does not accept w,
 i.e. *all configurations* of A for string w are rejecting configurations!

© 2010 Pierre Lison (based on slides from A. Frank)

© 2010 Pierre Lison (based on slides from A. Frank)

© 2010 Pierre Lison (based on slides from A. Frank)

© 2010 Pierre Lison (based on slides from A. Frank)

- Despite non-determinism, NFSAs are not more powerful than DFSAs: they accept the same class of languages: regular languages
- For every non-deterministic FSA there is deterministic FSA that accepts the same language (and vice versa)
 - The corresponding DFSA has in general more states, in which it models the sets of possible states the NFSA could be in in a given traversal

and and a

 There is an algorithm (via subset construction) that allows conversion of an NFSA to an equivalent DFSA

Efficiency considerations: an FSA is most efficient and compact iff

- It is a DFSA (efficiency)
- It is minimal (compact encoding)

- → Determinization of NFSA
- → Minimization of FSAs

© 2010 Pierre Lison (based on slides from A. Frank)

(46)

Overview of the lecture

- Background
 - Chomsky hierarchy of languages
 - Basic definitions, generic operations on languages
- Generalities about Finite-State Automata (FSA)
 - Regular languages, regular expressions and FSAs
 - Constructing a FSA from a regular expression
 - Non-deterministic FSAs

Optimization algorithms for FSAs

- *Determinization* of a FSA via subset construction
- Minimization of a FSA: equivalence classes, Brzozowski's algorithm
- Applications of FSAs & extensions to finite-state transducers
- Conclusions, exercises

Overview of the lecture

- Background
 - Chomsky hierarchy of languages
 - Basic definitions, generic operations on languages
- Generalities about Finite-State Automata (FSA)
 - Regular languages, regular expressions and FSAs
 - Constructing a FSA from a regular expression
 - Non-deterministic FSAs
- Optimization algorithms for FSAs
 - Determinization of a FSA via subset construction
 - Minimization of a FSA: equivalence classes, Brzozowski's algorithm
- Applications of FSAs & extensions to finite-state transducers
- Conclusions, exercises

NFSA A=<
$$\Phi,\Sigma, \delta,q_0,F$$
>

 $L(A) = a(ba)^* \cup a(bba)^*$

 $A' = <\Phi', \Sigma, \delta', q_0', F' >$

Subset construction:

Compute δ' from δ for all subsets $S \subseteq \Phi$ and $a \in \Sigma$ s.th. $\delta'(S,a) = \{ s' | \exists s \in S s.th. (s,a,s') \in \delta \}$

NFSA A=< $\Phi,\Sigma, \delta,q_0,F$ > A'=< $\Phi',\Sigma, \delta', q_0',F$ '>

a 2 a a a a a a a b a 3 5 a 6 b

 $L(A) = a(ba)^* \cup a(bba)^*$

$$\begin{split} \Phi' &= \{ B \mid B \subseteq \{1,2,3,4,5,6\} \\ q_0' &= \{1\}, \\ \delta'(\{1\},a) &= \{2,3\}, \\ \delta'(\{1\},a) &= \{2,3\}, \\ \delta'(\{1\},b) &= \emptyset, \\ \delta'(\{1\},b) &= \emptyset, \\ \delta'(\{2,3\},a) &= \emptyset, \\ \delta'(\{2,3\},a) &= \emptyset, \\ \delta'(\{2,3\},b) &= \{4,5\}, \\ \delta'(\{3\},a) &= \emptyset, \\ \delta'(\{2\},a) &= \{4,5\}, \\ \delta'(\{3\},b) &= \{5\}, \\ \delta'(\{3\},b) &= \{4,5\}, \\ \delta'(\{5\},a) &= \emptyset, \\ \delta'(\{5\},b) &= \{6\}, \\ \delta'(\{2\},a) &= \emptyset, \\ \delta'(\{2\},b) &= \{4\}, \\ \delta'(\{2\},b) &= \{4\}, \\ \delta'(\{6\},a) &= \{3\}, \\ \delta'(\{6\},b) &= \emptyset, \\ \end{split}$$

© 2010 Pierre Lison (based on slides from A. Frank)

Computational Linguistics, SS 2010 50 Lecture 1: Finite-State Automata

NFSA A= $\langle \Phi, \Sigma, \delta, q_0, F \rangle$ A'= $\langle \Phi', \Sigma, \delta', q_0', F' \rangle$

$$\Phi' = \{ B \mid B \subseteq \{1,2,3,4,5,6\} \\ q_0' = \{1\}, \\ \delta'(\{1\},a) = \{2,3\}, \\ \delta'(\{1\},b) = \emptyset, \\ \delta'(\{1\},b) = \emptyset, \\ \delta'(\{2,3\},a) = \emptyset, \\ \delta'(\{2,3\},a) = \emptyset, \\ \delta'(\{2,3\},b) = \{4,5\}, \\ \delta'(\{2,3\},b) = \{4,5\}, \\ \delta'(\{2,3\},b) = \{4,5\}, \\ \delta'(\{4,5\},b) = \{4,5\}, \\ \delta'(\{4,5\},b) = \{6\}, \\ \delta'(\{2\},a) = \emptyset, \\ \delta'(\{2\},a) = \emptyset, \\ \delta'(\{2\},b) = \{4\}, \\ B \\ \delta'(\{6\},a) = \{3\}, \\ \delta'(\{6\},b) = \emptyset, \\$$

 $\delta'(\{4\},a)=\{2\},\$ $\delta'(\{4\},b) = \emptyset,$ $\delta'(\{3\},a) = \emptyset,$ $\delta'(\{3\},b)=\{5\},\$ $\delta'(\{5\},a) = \emptyset$, $\delta'({5},b)={6}$

 $F' = \{\{2,3\},\{2\},\{3\}\}\}$

NFSA A=< $\Phi,\Sigma, \delta,q_0,F$ > A'=< $\Phi',\Sigma, \delta', q_0',F$ '>

$$\begin{split} \Phi' &= \{ B \mid B \subseteq \{1,2,3,4,5,6\} \\ q_0' &= \{1\}, \\ \delta'(\{1\},a) &= \{2,3\}, \\ \delta'(\{1\},a) &= \{2,3\}, \\ \delta'(\{1\},b) &= \emptyset, \\ \delta'(\{1\},b) &= \emptyset, \\ \delta'(\{2,3\},a) &= \emptyset, \\ \delta'(\{2,3\},a) &= \emptyset, \\ \delta'(\{2,3\},b) &= \{4,5\}, \\ \delta'(\{3\},a) &= \emptyset, \\ \delta'(\{2\},a) &= \{4,5\}, \\ \delta'(\{3\},b) &= \{5\}, \\ \delta'(\{5\},a) &= \emptyset, \\ \delta'(\{5\},b) &= \{6\}, \\ \delta'(\{5\},b) &= \{6\}, \\ \delta'(\{2\},a) &= \emptyset, \\ \delta'(\{2\},b) &= \{4\}, \\ \delta'(\{6\},b) &= \emptyset, \\ \end{split}$$

© 2010 Pierre Lison (based on slides from A. Frank)

Computational Linguistics, SS 2010 52 Lecture 1: Finite-State Automata

NFSA A= $\langle \Phi, \Sigma, \delta, q_0, F \rangle$ A'= $\langle \Phi', \Sigma, \delta', q_0', F' \rangle$

а b 6

$$\Phi' = \{ B \mid B \subseteq \{1,2,3,4,5,6\} \\ q_0' = \{1\}, \\ \delta'(\{1\},a) = \{2,3\}, \\ \delta'(\{1\},b) = \emptyset, \\ \delta'(\{1\},b) = \emptyset, \\ \delta'(\{2,3\},a) = \emptyset, \\ \delta'(\{2,3\},a) = \emptyset, \\ \delta'(\{2,3\},b) = \{4,5\}, \\ \delta'(\{2,3\},b) = \{4,5\}, \\ \delta'(\{2,3\},b) = \{4,5\}, \\ \delta'(\{4,5\},b) = \{4,5\}, \\ \delta'(\{4,5\},b) = \{6\}, \\ \delta'(\{2\},a) = \emptyset, \\ \delta'(\{2\},b) = \{4\}, \\ B \\ \delta'(\{6\},a) = \{3\}, \\ \delta'(\{6\},b) = \emptyset, \\$$

 $\delta'(\{4\},a) = \{2\}, \\\delta'(\{4\},b) = \emptyset, \\\delta'(\{3\},a) = \emptyset, \\\delta'(\{3\},b) = \{5\}, \\\delta'(\{5\},a) = \emptyset, \\\delta'(\{5\},b) = \{6\}$

 $F' = \{\{2,3\},\{2\},\{3\}\}\$

- Subset construction must account for ε-transitions
- ε-closure
 - The ϵ -closure of some state q consists of q as well as all states that can be reached from q through a sequence of ϵ -transitions
 - $q \in \varepsilon$ -closure(q)
 - If $r \in \epsilon$ -closure(q) and $(r, \epsilon, q') \in \delta$, then $q' \in \epsilon$ -closure(q),
 - ε-closure defined on sets of states
 - ε -closure(R) = $\bigcup_{q \in R} \varepsilon$ -closure(q) (with $R \subset \Phi$)
- Subset construction for ε-NFSAs
 - Compute δ ' from δ for all subsets $S \subseteq \Phi$ and $a \in \Sigma$ s.th. $\delta'(S,a) = \{ s'' | \exists s \in S \text{ s.th.} (s,a,s') \in \delta \text{ and } s'' \in \varepsilon \text{-closure}(s') \}$

```
© 2010 Pierre Lison (based on slides from A. Frank)
```

Example

- ϵ -NFSA for (alb)c* •
 - ε-closure for all s∈Φ: ε-closure(0)={0,1,2}, ε-closure(1)={1}, ε-closure(2)={2}, ε-closure(3)={3,5,6,7,9}, ε-closure(4)={4,5,6,7,9}, ε-closure(5)={5,6,7,9}, ε-closure(6)={6,7,9}, ε-closure(7)={7}, ε-closure(8)={8,7,9}, ε-closure(9)={9}

Transition function over subsets $\delta'(\{0\}, \varepsilon) = \{0, 1, 2\},\$ $\delta'(\{0, 1, 2\}, a) = \{3, 5, 6, 7, 9\},\$ $\delta'(\{0, 1, 2\}, b) = \{4, 5, 6, 7, 9\},\$ $\delta'(\{3, 5, 6, 7, 9\}, c) = \{8, 7, 9\},\$ $\delta'(\{4, 5, 6, 7, 9\}, c) = \{8, 7, 9\},\$ $\delta'(\{8, 7, 9\}, c) = \{8, 7, 9\},\$

· · · · · · · · · ·

- Construction of DFSA A'=< $\Phi', \Sigma, \delta', q_0', F'$ > from NFSA A=< $\Phi, \Sigma, \delta, q_0, F$ >
 - Φ'={B| B⊆Φ}, if unconstrained can be 2^{|Φ|}
 with |Φ| = 33 this could lead to an FSA with 2³³ states
 (exceeds the range of integers in most programming languages)
 - Many of these states may be useless

- Construction of DFSA A'=< $\Phi', \Sigma, \delta', q_0, F'$ > from NFSA A=< $\Phi, \Sigma, \delta, q_0, F$ >
 - Φ'={B| B⊆Φ}, if unconstrained can be 2^{|Φ|}
 with |Φ| = 33 this could lead to an FSA with 2³³ states
 (exceeds the range of integers in many programming languages)
 - Many of these states may be useless

- Construction of DFSA A'=< Φ ', Σ , δ ', q_0 ,F'> from NFSA A=< Φ , Σ , δ , q_0 ,F>
 - Φ'={B| B⊆Φ}, if unconstrained can be 2^{|Φ|}
 with |Φ| = 33 this could lead to an FSA with 2³³ states
 (exceeds the range of integers in many programming languages)
 - Many of these states may be useless

- Construction of DFSA A'=< Φ ', Σ , δ ', q_0 ,F'> from NFSA A=< Φ , Σ , δ , q_0 ,F>
 - Φ'={B| B⊆Φ}, if unconstrained can be 2^{|Φ|}
 with |Φ| = 33 this could lead to an FSA with 2³³ states
 (exceeds the range of integers in many programming languages)

- Basic idea: we only need to consider states B ⊆ Φ that can ever be traversed by a string w∈Σ*, starting from q₀⁶
- I.e., those $B \subseteq \Phi$ for which $B = \delta'(q_0, w)$, for some $w \in \Sigma^*$, with δ' the recursively constructed transition function for the target DFSA A'
- Consider all strings $w \in \Sigma^*$ in order of their length: ε , a,b, aa,ab,ba,bb, aaa,...

Overview of the lecture

- Background
 - Chomsky hierarchy of languages
 - Basic definitions, generic operations on languages
- Generalities about Finite-State Automata (FSA)
 - Regular languages, regular expressions and FSAs
 - Constructing a FSA from a regular expression
 - Non-deterministic FSAs

Optimization algorithms for FSAs

- Determinization of a FSA via subset construction
- Minimization of a FSA: equivalence classes, Brzozowski's algorithm
- Applications of FSAs & extensions to finite-state transducers
- Conclusions, exercises

Minimization of FSAs

- Can we transform a large automaton into a smaller one (provided a smaller one exists)?
- If A is a DFSA, is there an algorithm for constructing an equivalent minimal automaton A_{min} from A?

- A can be transformed to A':
 - States 2 and 3 in A "do the same job": once A is in state 2 or 3, it accepts the same suffix string. Such states are called equivalent.
 - Thus, we can eliminate state 3 without changing the language of A, by *redirecting* all arcs leading to 3 to 2, instead.

· · · · · · · · · ·

- A DFSA can be minimized if there are *pairs of states* q,q'∈Φ that are *equivalent*
- Two states q,q' are *equivalent* iff they accept the same right language.
- Right language of a state:
 - For A= $\langle \Phi, \Sigma, \delta, q_0, F \rangle$ a DFSA, the right language $L^{\rightarrow}(q)$ of a state $q \in \Phi$ is the set of all strings accepted by A starting in state q: $L^{\rightarrow}(q) = \{w \in \Sigma^* | \delta^*(q, w) \in F\}$
 - Note: $L \rightarrow (q_0) = L(A)$
- State equivalence:
 - For A= $\langle \Phi, \Sigma, \delta, q_0, F \rangle$ a DFSA, if q,q' $\in \Phi$, q and q' are equivalent (q = q') iff $L^{\rightarrow}(q) = L^{\rightarrow}(q')$
 - = is an equivalence relation (i.e., reflexive, transitive and symmetric)
 - − = partitions the set of states Φ into a number of disjoint sets $Q_1 ... Q_n$ of equivalence classes s.th. $\bigcup_{i=1..m} Q_i = Φ$ and q = q' for all $q,q' \in Q_i$

Equivalence classes on state set defined by = \square

Minimization: elimination of equivalent states

All classes C_i consist of equivalent states $q_{j=i..n}$ that accept identical right languages $L^{\rightarrow}(q_j)$

Whenever two states q,q'belong to different classes, $L^{\rightarrow}(q) \neq L^{\rightarrow}(q')$

© 2010 Pierre Lison (based on slides from A. Frank)

A DFSA A= $\langle \Phi, \Sigma, \delta, q_0, F \rangle$ that contains *equivalent states q, q'* can be transformed to a smaller, equivalent DFSA A'= $\langle \Phi', \Sigma, \delta', q_0, F' \rangle$ where

- $\Phi' = \Phi \{q'\}, F'=F \{q'\},$

- δ' is like δ with all transitions to q' redirected to q: $\delta'(s,a) = q$ if $\delta(s,a) = q'$; $\delta'(s,a) = \delta(s,a)$ otherwise

- Two-step algorithm
 - Determine all pairs of equivalent states q,q'
 - Apply DFSA reduction until no such pair q,q' is left in the automaton
- Minimality
 - The resulting FSA is the smallest DFSA (in size of Φ) that accepts L(A): we never merge different equivalence classes, so we obtain one state per class.
 - We cannot do any further reduction and still recognize L(A).
 - As long as we have >1 state per class, we can do further reduction steps.

· · · · · · · · · ·

A DFSA A=<Φ,Σ, δ, q₀,F> is *minimal* iff there is no pair of distinct but equivalent states ∈Φ, i.e. ∀ q, q'∈Φ : q ≡ q' ⇔ q = q'

```
© 2010 Pierre Lison (based on slides from A. Frank)
```

(66)

Example

© 2010 Pierre Lison (based on slides from A. Frank)

Example

© 2010 Pierre Lison (based on slides from A. Frank)

Overview of the lecture

- Background
 - Chomsky hierarchy of languages
 - Basic definitions, generic operations on languages
- Generalities about Finite-State Automata (FSA)
 - Regular languages, regular expressions and FSAs
 - Constructing a FSA from a regular expression
 - Non-deterministic FSAs

Optimization algorithms for FSAs

- Determinization of a FSA via subset construction
- Minimization of a FSA: equivalence classes, Brzozowski's algorithm
- Applications of FSAs & extensions to finite-state transducers
- Conclusions, exercises

Minimization by reversal and determinization

Reversal

- Final states of A^- : set of initial states of A
- Initial state of A^- : F of A
- $\delta(q,a) = \{p \in \Phi \mid \delta(p,a) = q\}$
- $L(A^{-1}) = L(A)^{-1}$

Consider the right languages of states q, q' in NFSA $(A^{-1})^{-1}$:

- If for all distinct states q, q' L→(q) ≠ L→(q'), i.e. L→(q) ∩ L→(q') = Ø, it holds that each pair of states q,q' recognize different right languages, and thus, that the NFSA (A⁻¹)⁻¹ satisfies the minimality condition for a DFSA.
- If there were states q,q' in NFSA (A⁻¹)⁻¹ s.th. L→(q) ∩ L→(q') ≠ Ø, there would be some string w that leads to two distinct states in DFSA A⁻¹. This contradicts the *determinicity* criterion of a DFSA.
- Determinization of NFSA $(A^{-1})^{-1}$ does not destroy the property of minimality

Overview of the lecture

- Background
 - Chomsky hierarchy of languages
 - Basic definitions, generic operations on languages
- Generalities about Finite-State Automata (FSA)
 - Regular languages, regular expressions and FSAs
 - Constructing a FSA from a regular expression
 - Non-deterministic FSAs
- Optimization algorithms for FSAs
 - Determinization of a FSA via subset construction
 - Minimization of a FSA: equivalence classes, Brzozowski's algorithm

• Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises
Applications: string matching

- Exact, full string matching
 - Lexicon lookup: search for given word/string in a lexicon
 - Compile lexicon entries to FSA by union
 - Test input words for acceptance in lexicon-FSA

recognition/application/lookup of input word w in/to FSA A_{lexicon}:

traversal and recognition (acceptance)

- Substring matching
 - Identify stop words in stream of text
 - Stem recognition: small, smaller, smallest
- Make use of full power of finite-state operations!
 - Regular expression with any-symbols for text search
 - ?* small(ε|er|est) ?*
 - ?* (a | the | ...) ?*
 - Compilation to NFSA, convert to DFSA
 - Application by composition of FST with full text
 - $FSA_{text stream}$.o. FST_{small} : if defined, search term is substring of text

© 2010 Pierre Lison (based on slides from A. Frank)

Applications: replacement

- (Sub)string replacement
 - Delete stop words in text
 - Stemming: reduce/replace inflected forms to stems: smallest → small
 - Morphology: map inflected forms to lemmas (and PoS-tags): good, better, best → good+Adj
 - Tokenization: insert token boundaries
 - ...
 - \Rightarrow Finite-state transducers (FST)

From automata to transducers

recognition of an input string w

$$(q_0)$$
 $\stackrel{l}{\rightarrow}$ (q_1) $\stackrel{e}{\rightarrow}$ (q_2) $\stackrel{a}{\rightarrow}$ (q_3) $\stackrel{v}{\rightarrow}$ (q_4) $\stackrel{e}{\rightarrow}$ (q_5)

- define a language
- accept *strings*, with transitions defined for *symbols* ∈Σ

Transducers

- recognition of an input string w
- generation of an output string w'

$$(q_0 \xrightarrow{l}_1 (q_1) \xrightarrow{e}_{e} (q_2) \xrightarrow{a}_{f} (q_3) \xrightarrow{v}_{t} (q_4) \xrightarrow{e}_{\epsilon} (q_5)$$

- define a *relation* between languages
- equivalent to FSAs that accept pairs of strings, with transitions defined for pairs of symbols <x,y>
- operations: replacement
 - deletion $\langle a, \varepsilon \rangle, a \in \Sigma {\epsilon}$
 - insertion < ϵ , a>, a $\in \Sigma$ -{ ϵ }
 - substitution $\langle a, b \rangle, a, b \in \Sigma, a \neq b$

Overview of the lecture

- Background
 - Chomsky hierarchy of languages
 - Basic definitions, generic operations on languages
- Generalities about Finite-State Automata (FSA)
 - Regular languages, regular expressions and FSAs
 - Constructing a FSA from a regular expression
 - Non-deterministic FSAs
- Optimization algorithms for FSAs
 - Determinization of a FSA via subset construction
 - Minimization of a FSA: equivalence classes, Brzozowski's algorithm
- Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises

© 2010 Pierre Lison (based on slides from A. Frank)

- In this lecture, we presented finite-state automata and their algorithms
 - FSAs and regular expressions have the same expressive power: they both define a regular language, type-3 in the Chomsky hierarchy
 - FSAs can be automatically constructed from a given regular expression
 - FSAs can be deterministic or non-deterministic
- We also saw two algorithms used to improve the (runtime) efficiency of a finite-state automata:
 - FSA determinization, via subset construction
 - FSA minimization, via either equivalence classes, or Brzozowski
- Finite-state automata can be extended to finite-state transducers, which define relations between languages
- Due to their simplicity and efficiency, FSAs are pervasive in computational linguistics (morphology, parsing, dialogue management, etc.)

© 2010 Pierre Lison (based on slides from A. Frank)

Exercises

- 1. Write a program for acceptance of a string by a DFSA. Then extend it to a finite-state transducer that can translate a surface form to lemma + POS, or between upper and lower case.
- 2. Determinize the following NFSA by subset construction. $A_1 = \langle p,q,r,s \rangle, \{a,b\}, \delta_1, p,\{s\} \rangle$ where δ_1 is as follows:
- 3. Construct an NFSA with ε -transitions from the regular expression (alb)ca*, according to the construction principled for union, concatenation and kleene star. Then transform the NFSA to a DFSA by subset construction.

· · · · · · · · · · ·

4. Find a minimal DFSA for the FSA A=<{A,..,E}, {0,1}, δ_3 , A, {C,E}> (using the table filling algorithm by propagation).

Montag, 19. April 2010

03	0	1
Ă	В	D
B	В	С
С	D	E
D	D	E
E	С	4

δ_1	a	b
р	p,q	p
1	r	r
r	S	-
5	S	S

