Computational Linguistics:
Part |: Finite-State Automata

Pierre Lison

Language Technology Lab
DFKI GmbH, Saarbrucken

http://talkingrobots.dfki.de

| &
/1/ /—_\ ..‘": N
Deutsches Forschungszentrum fur Kunstliche Intelligenz — — o '.hﬁ a -ﬁ
German Research Center for Artificial Intelligence —_ _ :H" i ,--—-.| ‘ - e srare

Montag, 19. April 2010

http://talkingrobots.dfki.de
http://talkingrobots.dfki.de

Welcome to the Computational Linguistics course, Summer Semester
2010 edition!

Hope you will find it interesting & enjoyable :-)
As you know, the course timetable is as follows:

Lecture every Monday, 14 - 16 hr

Exercise session every Thursday, 14 - 16 hr

The course will be given by five lecturers: Bernd Kiefer, Hans-Ulrich Krieger,
Dietrich Klakow, Andreas Eisele and myself (Pierre Lison)

Successful completion of the course will grant you 6 credit points

Also keep in mind that this course is one of the core courses for the
“Computational Linguistics” specialization of the M.Sc. program

© 2010 Pierre Lison (based on slides from A. Frank) b Computational Linguistics, SS 2010

Lecture 1: Finite-State Automata

Montag, 19. April 2010

The website for the course is up and running:

http://www.dfki.de/~plison/lectures/compling2010/index.html

You will find there a detailed schedule of the course, as well as
the necessary resources (slides, assignments, solutions)

A mailing list has also been created. Please subscribe to stay
iInformed about the course details over the semester:

http://ml.coli.uni-saarland.de/cgi-bin/mailman/listinfo/compling2010

As |I‘'m officially responsible for the course, so if you have any
general question or request about the course, don‘t hesitate to
contact me: plison@dfki.de

Or drop by at my office (preferably with a short email beforehand):

Building D 3.1 (DFKI Altbau), room C 1.11 (floor +1).

© 2010 Pierre Lison (based on slides from A. Frank) sl el Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

mailto:plison@dfki.de
mailto:plison@dfki.de
http://www.dfki.de/~plison/lectures/compling2010/index.html
http://www.dfki.de/~plison/lectures/compling2010/index.html
http://ml.coli.uni-saarland.de/cgi-bin/mailman/listinfo/compling2010
http://ml.coli.uni-saarland.de/cgi-bin/mailman/listinfo/compling2010

Assignments:

Assignments will be given after every lecture, to do before the following
exercise session

Each completed assignment is to be sent via email to the lecturer. The exact
deadline for submitting your assignment will be provided in due time by the
corresponding lecturers

In order to be able to register for the exam, you need to pass at least 80% of
the required assignments

The final evaluation will consist of a usual 90-minutes written
exam

A Probeklausur will be offered one week before the exam to give you an idea
of what you should expect

The final grade will be a composite of the assignment grades,
and of course the exam (exact percentage still unknown)

© 2010 Pierre Lison (based on slides from A. Frank) b Computational Linguistics, SS 2010

Lecture 1: Finite-State Automata

Montag, 19. April 2010

The course content will be mostly provided via PDF
slides available on the course website

Additional readings might also be provided during the
lecture

The two following textbooks are warmly recommended:

D. Jurafsky and J. H. Martin: Speech and Language Processing: An
Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition, Prentice-Hall, 2009.

C. Manning and H. Schutze: Foundations of Statistical Natural
Language Processing, MIT Press, 1999.

They are both available at the Coli library

© 2010 Pierre Lison (based on slides from A. Frank) sl el Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

The course focuses on the core algorithms used in
computational linguistics

How they work, on which representations they operate
Formal properties, computational complexity
Pros and cons of each approach

Use in practical applications

Learning objectives:

gain a reasonable understanding of how each of these algorithms work

Both in theory and in practice (hands-on exercises)

And (perhaps more importantly): understand the relative merits and
limitations of these algorithms

The goal is to understand which algorithm(s) should be used to solve a particular problem!

© 2010 Pierre Lison (based on slides from A. Frank) b Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

In particular, we will review the following topics this semester:
Finite-State Automata and their algorithms (Pierre)
Chart-based parsing & generation (Bernd)
Unification-based parsing & generation (Bernd)
Ontologies (Uli)
Maximum Entropy Models (Dietrich)
Conditional Random Fields (Dietrich)
Alignment algorithms (Andreas)

Shallow matching algorithms for strings & trees (Pierre)

© 2010 Pierre Lison (based on slides from A. Frank) SR v Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

Mon 19.4: Seminar: Lison - Introduction to the course, Finite-State Automata

N\

Thu 22.4: Exercises: Lison - Finite-State Automata

Mon 26.4: Seminar: Kiefer - Chart-based parsing and generation

N\

Thu 29.4: Exercises: Kiefer - Chart-based parsing and generation

Mon 03.5: Seminar: Krieger - Ontologies

Thu 06.5: Exercises: Krieger - Ontologies

Mon 10.05: Seminar: Kiefer - Unification-based parsing and generation
Thu 13.05: PUBLIC HOLIDAYS (Himmelfahrt)

Mon 17.05: Seminar: Klakow - Maximum Entropy Models

Thu 20.05: Exercises: Kiefer - Unification-based parsing and generation
Mon 24.05: PUBLIC HOLIDAYS (Pfingstmontag)

Thu 27.05: Exercises: Klakow - Maximum Entropy Models

Mon 31.05: Seminar: Klakow - Conditional Random Fields

Thu 03.06: PUBLIC HOLIDAYS (Fronleichnam)

Mon 07.06: Seminar: Eisele - Alignment algorithms

Thu 10.06: Exercises: Klakow - Conditional Random Fields

Mon 14.06: Seminar: Lison: Shallow matching algorithms (strings)

Thu 17.06: Exercises: Eisele - Alignment algorithms

Mon 21.06: Seminar: Lison: Shallow matching algorithms (trees)

AX KN/ X\

Thu 24.06: Exercises: Lison: Shallow matching algorithms
Mon 28.06: Question hour

Thu 01.07: Test exam

Mon 05.07: NO SEMINAR

Thu 08.07: Final exam (90 minutes writing time)

© 2010 Pierre Lison (based on slides from A. Frank) —— , _dedE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

Lecture |:
Finite-State Automata

(based on slides from Annette Frank)

© 2010 Pierre Lison (based on slides from A. Frank) —— o Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

Background
Chomsky hierarchy of languages
Basic definitions, generic operations on languages
Generalities about Finite-State Automata (FSA)
Regular languages, regular expressions and FSAs
Constructing a FSA from a regular expression
Non-deterministic FSAs
Optimization algorithms for FSAs
Determinization of a FSA via subset construction
Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises

© 2010 Pierre Lison (based on slides from A. Frank) b Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

e Background
® Chomsky hierarchy of languages
e Basic definitions, generic operations on languages
® Generalities about Finite-State Automata (FSA)
® Regular languages, regular expressions and FSAs
® Constructing a FSA from a regular expression
® Non-deterministic FSAs
® Optimization algorithms for FSAs
® Determinization of a FSA via subset construction
® Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

® Applications of FSAs & extensions to finite-state transducers

® Conclusions, exercises

© 2010 Pierre Lison (based on slides from A. Frank) —_—_—, deds Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

utomata: what for?

Chomsky Hierarchy of Hierarchy of Grammars &
Languages Automata
Regular languages Regular PS grammar
(type-3) Finite-state automata
Context-free languages Context-free PS grammar
(type-2) Push-down automata
Context-sensitive languages Tree adjoining grammars
(type-1) Linear bounded automata

Unconstrained languages
(type-0)

General PS grammars
Turing machine

More expressivity
Less computational efficiency

© 2010 Pierre Lison (based on slides from A. Frank) SR v Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

1 reqular expressions

Finite-state . Regular languages
automata describe / specify

recognise

© 2010 Pierre Lison (based on slides from A. Frank) —_— , _doSE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

Alphabet 2.: finite set of symbols

String: sequence Xxi...xn of symbols xi taken from the
alphabet 2

Language over 2.: set of strings that can be generated from 2

Sigma star 2*: set of all possible strings over the alphabet 2,

For instance, if Z = {a,b}, then Z* = {g, a, b, aa, ab, ba, bb, aaa, aab, ...}
Sigma plus 2+ removes the empty element: 2+ = 2* - {€}
Special language @ = {}, called the empty language

Attention: note the difference with {€}: language with one element, the empty string

Formal language: a subset of 2*

© 2010 Pierre Lison (based on slides from A. Frank) b Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

A formal grammar is a tuple G=< 2, 9, S, R >, where
2 is an alphabet of terminal symbols
® is an alphabet of non-terminal symbols
S is the start symbol

R is a finite set of rules, with R c [+ x ™.
[is the union of terminal and non-terminal symbols: I =2 u ®

Each rule € R is of the form o — B

© 2010 Pierre Lison (based on slides from A. Frank) —— , _dedE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

Derivation:

Assume a grammar G=< 2, ®, S, R > and two arbitrary strings u
andvel”=(2u®)

A direct derivation u =g v holds iff there exists s1, s2 € [* such that u

=(s1 x sy and v =(s1 P sz and thereisarule x — B in R

A general derivation u =g+ v holds iff either u = v or there exists a

stringz e ["suchthatu =g-zand z =gV

The language L(G) generated by a grammar G is defined
as the set of strings w € 2* that can be derived from the

start symbol S according to the grammar G

In other words: L(G) ={w:S =¢wWwAWwWe 2"}

© 2010 Pierre Lison (based on slides from A. Frank) b Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

definitions (b

Basic operation on strings: concatenation

Assume two strings a and b, defined by a = Xi... Xxm and b=Xm+1 ..

Then the concatenationae® b =X ... Xm Xm+1 ... Xn

Concatenation is associative, but not commutative

g€ Is the identity element. ae e =c0a=a

- Xn

© 2010 Pierre Lison (based on slides from A. Frank) . —— , _dedE

Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

irchy of grammars

Classification of languages generated by formal grammars
A language is of type i (i = 0,1,2,3) iff it is generated by a type-i grammar

Classification according to increasingly restricted types of production
rules:

L-type-0 > L-typel1 > L-type-2 > L-type-3

Every grammar generates a unique language, but a language can be
generated by several different grammars.

Two grammars are

(Weakly) equivalent if they generate the same string language

Strongly equivalentif they generate both the same string language and
the same tree language

© 2010 Pierre Lison (based on slides from A. Frank) sl el Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

Type - 0 languages: general phrase structure grammars

No restrictions on the form of production rules: arbitrary strings on both
the left-hand and right-hand side of rules

A grammar G=< 2, ®, S, R > generates a language L-type-0 iff:

All rules R are of the form ac—f, wherex e *and f e '

In other words, the LHS must be a nonempty sequence of non-terminal or terminal symbols

And RHS a (possibly empty) sequence of non-terminal or terminal symbols

Example of type-0 grammar:

G=<{S,A B,C,D,E} {a}, S, R >, with the following production rules:

S - ACaB
Ca — aaC
CB —DB

CB—-E
aD — Da
AD — AC

akE — Ea
AE — ¢

Question: what is the language generated by G? [((G) = {azn n > 1}

© 2010 Pierre Lison (

based on slides from A. Frank)

s “'. 45

Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

Type-1 languages: context-sensitive grammars

a grammar G= < 2, d, S, R > generates a language L-type-1 iff
all rules are of the form cdAY — «BY, where A is a non-terminal (¢) and «,B,Y € I'*

In other words, the LHS is a non-empty sequence of NT and T symbols, with at least
one NT symbol

The RHS is a non-empty sequence of NT or T symbols

Example:

G =< {S,B,C}, {a,b,c}, S, R >, with the following production rules:

S—-aSBC aB—ab
S—-aBC bB—bb
CB—-BC bC—->bc cC —cc

Question: what is the language generated by G? L(G) — {a”b”c”|n > 1}

© 2010 Pierre Lison (based on slides from A. Frank) Y > _ Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

rarchy of grammars (4

Type-2 languages: context-free grammars

a grammar G= < 2, ®, S, R > generates a language L-type-2 iff
all rules are of the form A = «, where A is a non-terminal (e ®) and « € I'*
In other words, the LHS is a single NT symbol
The RHS is a non-empty sequence of NT or T symbols

Example:

G =< {S, A}, {a, b}, S, R >, with the following production rules:

S—-ASA A—a
S—b

Question: what is the language generated by G? L(G) — {anban\n > 1}

© 2010 Pierre Lison (based on slides from A. Frank) — , delE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

Type-3 languages: regular or finite-state grammars

a grammar G= < 2, ®, S, R > generates a language L-type-2 iff
all rules are of the form A = wB or A =w , where A, B are non-terminals (¢ ®) and w € 2*

In other words, the LHS is a single NT symbol, and the RHS is a possibly empty sequence of T
symbols, optionally followed by a single NT symbol

The definition above is right linear. Left linear grammars have rules of the form A = Bw, and
function similarly

Example:

G=<{S, A, B}, {a, b}, S, R >, with the following production rules:

S—>aA B-DbB a—-bbB
A—-aA B—-b

Question: what is the language generated by G? L(G) = {aa™bbb*b}

© 2010 Pierre Lison (based on slides from A. Frank) b Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

on lanquages

= Typical set-theoretic operations on languages
— Union: L, UL, ={w:w&L, or wEL, }
— Intersection: L, N L, = {w: w&L, and wEL, }
— Difference: L, -L, = { w: wEL, and wé L, }
— Complement of LC Y* wrt. Y*: L'=Y*-L
* Language-theoretic operations on languages
— Concatenation: L,L, = {w,w, : w,EL, and w,EL,}
— Iteration: L9={¢}, L1=L, L2=LL, ... L*=U,,L}, L*=U,,Lt!
— Mirror image: L-1= {w-! : w&L}
* Union, concatenation and Kleene star are called regular operations

= Regular sets/languages: languages that are defined by the regular
operations: concatenation (+) , union (U) and kleene star (*)

» Regular languages are closed under concatenation, union, kleene star,
intersection and complementation

© 2010 Pierre Lison (based on slides from A. Frank) —_——— , dodE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

ew of the lecture

e Background

® Chomsky hierarchy of languages

® Basic definitions, generic operations on languages

e Generalities about Finite-State Automata (FSA)
© Regular languages, regular expressions and FSAs
© Constructing a FSA from a regular expression
© Non-deterministic FSAs
® Optimization algorithms for FSAs
® Determinization of a FSA via subset construction
® Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

® Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises

© 2010 Pierre Lison (based on slides from A. Frank) S Y e Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

e Background

® Chomsky hierarchy of languages

® Basic definitions, generic operations on languages

® Generalities about Finite-State Automata (FSA)
e Regular languages, regular expressions and FSAs
® Constructing a FSA from a regular expression
® Non-deterministic FSAs
® Optimization algorithms for FSAs
® Determinization of a FSA via subset construction
® Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

® Applications of FSAs & extensions to finite-state transducers

® Conclusions, exercises

© 2010 Pierre Lison (based on slides from A. Frank) —_—_—, deds Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

d regular expressions

Finite-state . Regular languages
automata describe / specify

recognise
Executable!

© 2010 Pierre Lison (based on slides from A. Frank) e _ Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

juages & expressions

= Regular sets/languages can be specified/defined by regular expressions
Given a set of terminal symbols 2, the following are regular expressions

— €& 1s aregular expression
— For every a €)., a is a regular expression
— If R 1s a regular expression, then R* is a regular expression

— If Q,R are regular expressions, then QR (Q - R) and Q U R are regular
expressions

* Every regular expression denotes a regular language
— L(¢) ={¢}
— L(a)={a} forall a €),
- L(ap) = L(@)L(p)
~ L(aUp) =L(a) UL
- L(a*) = L(a)*

© 2010 Pierre Lison (based on slides from A. Frank) —— o ea Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

* Grammars: generate (or recognize) languages
Automata: recognize (or generate) languages

= Finite-state automata recognize regular languages
= A finite automaton (FA) is a tuple A = <® .2, 9, q,,F>

— @ a finite non-empty set of states
— 2 a finite alphabet of input letters
— O atransition function ® x £ — P
— (p € P the initial state

— F C & the set of final (accepting) states

= Transition grap(cs (diagrams):
— states: circles

— transitions: directed arcs between circles

— 1nitial state

— final state

(@)

&

pE D
o(p,a)=q

P=q
rCF

© 2010 Pierre Lison (based on slides from A. Frank) e

Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

= Traversal of an FSA
= Computation with an FSA

S=qy F={q5 g3}
Transition function : ® x 2 — &

0(qy,¢)=q,
0(qy,)=9;
0(qq.1)=qs
6(ql 1)=q,
0(q,.,€)=qs,
0(q;,a)=q,
0(q3,v)=q,
0(q,.r)=q;
0(qs,€)=q;
0(q;.)=q,
0(dg.)=q,
6(‘]9 £)=q,

© 2010 Pierre Lison (based on slides from A. Frank)

Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

= Traversal of an FSA
= Computation with an FSA

C oo |o|<

=) (=] (=] [=] (=] =] S} =] =] [=] -4
olo|o|Io|Io|c|o|Io|o |o
=) (=] (=] (=] [=] (=] =] (=) SN Sl L
olo|o|Ioor |Io|lo|o|o]|=
=) 2N N =][=)[=][=] =] (=] =] L}

CICIC|ICO|IC|IO

FSAs can be used for
* acceptance (recognition)
e generation

© 2010 Pierre Lison (based on slides from A. Frank)

Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

& acceptance

= Traversal of a (deterministic) FSA

— FSA traversal is defined by states and transitions of A,
relative to an input string we™

— A configuration of A 1s defined by the current state and the unread part of the
input string: (q, w;), with q€®, w;suffix of w

— A transition: a binary relation between configurations
q,W,) |-A (q@",w,,) iff w.=2zw,,, for zEX and 8(q,z)=q’
(q,w,) yields (qQ’,w,,,) in a single transition step

— Reflexive, transitive closure of |-,: (q, wy) |-*, (q", W)
(q, w,) yields(q’, w,) in zero or a finite number of steps

= Acceptance
— Decide whether an input string w 1s in the language L(A) defined by FSA A
— An FSA A accepts a string w iff (q,,w) |-*, (q;, €), with g initial state,q,C F

— The language L(A) accepted by FSA A 1s the set of all strings accepted by A
Le.,w&L(A) iff there is some q;C F, such that (q,,w) |—* A (Gs, €)

© 2010 Pierre Lison (based on slides from A. Frank) —— o ea Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

* A grammap G =<2, ®, S, R> is called right linear (or regular) iff
all rules R are of the form A = w or A = wB, where ABE ® and w €) *

— >={a,b}, ®={S,AB}, R={S —aA,A — aA,A —-bbB,B —bB,B — b}
S = aA = aaA = aabbB = aabbbB = aabbbb

— The NT symbol corresponds to a state in an FSA: the future of the derivation only
depends on the identity of this state or symbol and the remaining production rules.

— Correspondence of type-3 grammar rules S
with transitions in a (non-deterministic) FSA: T
e A-wB = 5(Aw)=B a /A\
e A—w = 0(A,w)=q, q€EF b &
— Conversely, we can construct an FSA T oa. RS
from the rules of a type-3 language b b B
* Regular grammars and FSAs can be shown to be equivalent b/\B

= Regular grammars generate regular languages |
= Regular languages are defined by concatenation, union, kleene star b

© 2010 Pierre Lison (based on slides from A. Frank) —_——— , dodE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

stic finite-state automata

= Deterministic finite-state automata (DFSA)

— at each state, there 18 at most one transition that can be taken to read the
next input symbol

— the next state (transition) 1s fully determined by current configuration
— 0 1s functional (and there are no e-transitions)

= Determinism is a useful property for an FSA to have!

— Acceptance or rejection of an input can be computed in linear time O(n) for
inputs of length n

— Especially important for processing of LARGE documents

= Appropriate problem classes for FSAs

— Recognition and acceptance of regular languages,
in particular string manipulation, regular phonological and morphological
processes

— Approximations of non-regular languages in morphology, shallow finite-
state parsing, ...

© 2010 Pierre Lison (based on slides from A. Frank) —— o ea Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

quivalent FSAs

FSA for the language L., .= { lehrbar, lehrbarkeit, belehrbar,
belehrbarkeit, unbelehrbar, unbelehrbarkeit, unlehrbar, unlehrbarkeit }

DEFSA for L,

Regular expression and FSA for LlehI (un | €) (be lehr | lehr) bar (keit | €)

(non-deterministic) un NG ek keit
b
-

Equivalent FSA
(non-deterministic)

© 2010 Pierre Lison (based on slides from A. Frank) —_—— , dedE Computational Linguistics, SS 2010

Lecture 1: Finite-State Automata

Montag, 19. April 2010

e Background

® Chomsky hierarchy of languages

® Basic definitions, generic operations on languages
e Generalities about Finite-State Automata (FSA)
® Regular languages, regular expressions and FSAs
® Constructing a FSA from a regular expression
® Non-deterministic FSAs
® Optimization algorithms for FSAs
® Determinization of a FSA via subset construction
® Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

® Applications of FSAs & extensions to finite-state transducers

® Conclusions, exercises

© 2010 Pierre Lison (based on slides from A. Frank) —_—_—, deds Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

= FSAs for even mildly complex regular languages are best constructed
from regular expressions!

* Every regular expression denotes a regular language

- L(e={¢} — L(af) =L(a)L(P
~ L@={a}foralacey - L(aUp)=L(a)UL(p)
— L(a*) = L(a@)*

= Every regular expression translates to a FSA (Closure properties)
— An FSA for a (with L(a) = {a}),a € 2.: a

— AnFSA for £ (with (&) = {¢ }), eE 3 m

— Concatenation of two FSAs F, and Fj:
oncatenation o wo s F, and Fy . 3 @ F,n
* S,g=S, (S initial state) A B
* F,g=Fg (Fsetof final states)
* Opp=0,U 05U {0(<q;,e>,qp) | q; € Fy, q;=Sg }

© 2010 Pierre Lison (based on slides from A. Frank) —_—— , dedE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

— union of two FSAs F, and F:

* S,z=5, (new state)
* F\g=1 S; } (new state)
* 0,p=0,U 0Op
U {0(<q,y,e>,9,) 19y =S,5,(q,=S,0rq,=Sp)}
U {0(<q,.e>q; | (q,EF, or q,EFp), q; EF 3}

— Kleene Star over an FSAF, : 4 P D B

* S,.=8, (new state) _, £ FA £ O

* F,.={ q; } (new state) -
¢ §,,=9, U N~ /
AB~ 9a
U {0(<q;e>,9,) 1q;EF,,q,=S,)}
U {6(<q098>’qz) | q() — SA*’ (qz= SA or qz= FA*)}
U {8(<q,.e>.q) | q,EF, , 4EF,.}

© 2010 Pierre Lison (based on slides from A. Frank) —_— Al Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

" g-transition: move to 0(q, €) without reading an input symbol

* FSA construction from regular expressions yields
a non-deterministic FSA (NFSA)

— Choice of next state is only partially determined by the current configuration,
1.e., we cannot always predict which state will be the next state in the traversal

© 2010 Pierre Lison (based on slides from A. Frank) —_—— , dedE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

e Background
® Chomsky hierarchy of languages
® Basic definitions, generic operations on languages

e Generalities about Finite-State Automata (FSA)
® Regular languages, regular expressions and FSAs
® Constructing a FSA from a regular expression
® Non-deterministic FSAs
® Optimization algorithms for FSAs
® Determinization of a FSA via subset construction
® Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

® Applications of FSAs & extensions to finite-state transducers

® Conclusions, exercises

© 2010 Pierre Lison (based on slides from A. Frank) —_—_—, deds Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

* Non-determinism
— Introduced by e-transitions and/or

— Transition being a relation A over ® x Z* x @, i.e. a set of triples <qgycesZ Qarger™
Equivalently: Transition function 0 maps to a set of states: 0: ® x £ — £ (D)

* A non-deterministic FSA (NFSA) is a tuple A = <® .2, 9, q,,F>
— @ a finite non-empty set of states
— 2 a finite alphabet of input letters
— 0 a transition function ® x ¥ — g(®P) (or a finite relation over ® x X* x D)
— o, € O the initial state
— F C @ the set of final (accepting) states

* Adapted definitions for transitions and acceptance of a string by a NFSA
— (q.W) |-, (@",w,,) iff w,=2zw. for zEX* and q’E 8(q,z)

— An NDFA (w/o €) accepts a string w iff there 1s some traversal such that
QW) |-*, (@’ €) and q’ CF.

— A string w is rejected by NDFA A iff A does not accept w,
1.€. all configurations of A for string w are rejecting configurations!

© 2010 Pierre Lison (based on slides from A. Frank) —_——— , dodE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) S A e Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

£
£ E E
e a b E :
SO O
£ £ £ a £ g
E
DEDNENE
© 2010 Pierre Lison (based on slides from A. Frank) —_— Ao Computational Linguistics, SS 2010

Lecture 1: Finite-State Automata

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) S A e Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

rminism in FSAs

(ab U aba)*

© 2010 Pierre Lison (based on slides from A. Frank) —_— , _doSE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

rminism in FSAs

(ab U aba)*

© 2010 Pierre Lison (based on slides from A. Frank)

—_— , delE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

e of DFSAs and NFSAs

= Despite non-determinism, NFSAs are not more powerful than DFSAs:
they accept the same class of languages: regular languages

= For every non-deterministic FSA there 1s deterministic FSA that
accepts the same language (and vice versa)

— The corresponding DFESA has in general more states, in which it models
the sets of possible states the NFSA could be in in a given traversal

= There 1s an algorithm (via subset construction) that allows conversion
of an NFSA to an equivalent DFSA

Efficiency considerations: an FSA 1s most efficient and compact iff
= Jtisa DFSA (efficiency) — Determinization of NFSA
= Jtis minimal (compact encoding) — Minimization of FSAs

© 2010 Pierre Lison (based on slides from A. Frank) —_— , dodE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

iew of the lecture

e Background
® Chomsky hierarchy of languages
® Basic definitions, generic operations on languages
® Generalities about Finite-State Automata (FSA)
® Regular languages, regular expressions and FSAs
® Constructing a FSA from a regular expression
® Non-deterministic FSAs
Optimization algorithms for FSAs
© Determinization of a FSA via subset construction
© Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

® Applications of FSAs & extensions to finite-state transducers

® Conclusions, exercises

Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

|
|
k‘.
3

© 2010 Pierre Lison (based on slides from A. Frank)

Montag, 19. April 2010

e Background
® Chomsky hierarchy of languages
® Basic definitions, generic operations on languages
® Generalities about Finite-State Automata (FSA)
® Regular languages, regular expressions and FSAs
® Constructing a FSA from a regular expression
® Non-deterministic FSAs
® Optimization algorithms for FSAs
® Determinization of a FSA via subset construction
® Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

® Applications of FSAs & extensions to finite-state transducers

® Conclusions, exercises

© 2010 Pierre Lison (based on slides from A. Frank) —_—_—, deds Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

NESA A=<® 3, 8.q,.F> A‘=<®’ 3,8 q, F>

Subset construction:

Compute 0’ from 0
for all subsets S C® and aEX s.th.
0’(S,a) = { 8’| AsES s.th. (s,a,5°)Ed}

L(A)=a(ba)* U a(bba)*

© 2010 Pierre Lison (based on slides from A. Frank) —_—— , dedE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

subset construction

NFSA A=<® 3, 8,q,F> A‘=<®’3,8,q, F>

®={BIBC{123456}

Qo =11},

0’({1},a)={2,3}, 0’({4},a)= {2},

8’ ({1},b)=0, 8’ ({4} b)= O,

0’({2,3},a)=0, 0’({3},2)=4,

0’({2,3}b)=1{4,5}, 0’({3},b)= {5},

0’({4,5},a)= {2}, 0’({5},a)=9,

0’({4,5},b)= {6}, 0’({5},b)={6}
L(A)= a(ba)* U a(bba)* 0’({2},2)=9,

0’({2},b)= {4}, F'={{23}.{2}.{3}}

o’({6}.a)= {3},
0’({6}.,b)= 9,

© 2010 Pierre Lison (based on slides from A. Frank) —_—— , dedE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

subset construction

NFSA A=<® 3,0,49,> A‘=<®’32,0’,q,.F>

@'=4BIBL 1123456}

qo ={1},

o’({1},2)={2,3}, 0’({4},2)= {2},
o’({1},b)=92, 0’({4}.,b)= O,
0’({2.3},2)= O, 0'({3}.2)=9,
0’({2,3}b)=1{4.5}, 0’({3},b)= {5},
0’({4.5},2)={2}, 0’({5},2)=9,
0’({4,5}b)={6}, 0’({5},b)= {6}
0'({2}.2)= 9,

0’({2},b)= {4}, F'={{23},{2},{3}}

0’({6},a)= {3},
0’({6}.,b)= 2,

© 2010 Pierre Lison (based on slides from A. Frank) —_—— , dedE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

subset construction

NESA A=<® 3, 8,9, F> A‘=<d’3,8’,q, F>

P’={BIBC{1.2345.6}

qo =t1},

o'({1},2)={2,3}, 0’({4},2)={2},
o’({1},b)=92, 0’({4}.b)= 9,
0’({2,3},2)= 9, 0’({3},2)= 9,
0’({2,3},b)={4.5}, 0’({3},b)= {5},
0’({4.5},2)= {2}, 0’({5},2)=9,
0’({4,5}.b)={6}, 0’({5}.,b)= {6}
o'({2},2)=9,

0'({2},b)= {4}, F'={{23}.{2},{3}}

0’({6},a)= {3},
0’({6}.,b)= 4,

© 2010 Pierre Lison (based on slides from A. Frank) —_—— , dedE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

subset construction

NESA A=<® 2, 049,> A‘=<®’2,0’,q,.F>

’=1IBIBC {123456}

qo ={1},

o’({1},2)={2,3}, 0'({4},2)={2},
0’({1},b)=9, 0’({4}.,b)= 4,
0’'({2,3},2)= 9, 0’({3}.a)= 9,
0’({2,3},b)={4.5}, 0’({3}.b)= {5},
0'({4.5}.a)= {2}, 0’({5},a)=9,
0’({4.5}b)={6}, 0’({5},b)={6}
0'({2},2)=9,

0’({2},b)= {4}, F'={{23},{2}.,{3}}

0’({6},a)= {3},
0’({6}.,b)= 4,

© 2010 Pierre Lison (based on slides from A. Frank) —_— Al Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

subset construction

NFSA A=<® 3, §,q,.F>

DFSA A‘=<®’ >, 0’, q, ,F>

L(A) =L(A’) =a(ba)* U a(bba)*

© 2010 Pierre Lison (based on slides from A. Frank)

Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

ns and €-closure

= Subset construction must account for g-transitions

= ¢-closure
— The e-closure of some state q consists of q as well as all states that
can be reached from q through a sequence of e-transitions
* (€ e-closure(q)
e Ifr&e-closure(q) and (r, €,q°)E0, then q’€ e-closure(q),
— g-closure defined on sets of states
e g-closure(R) = U e-closure(q) (with R C ®)

qER
= Subset construction for e-NFSAs

— Compute &’ from 0 for all subsets S C® and aEX s.th.
d’(S,a) = { s’ IsES s.th. (s,a,s°)Ed and s’ € e-closure(s’) }

© 2010 Pierre Lison (based on slides from A. Frank) —— o ea Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

€-C|

£-C!|
e-closure(6)={6,7,9},
e-closure(7)={7},

losure(8)={8,7,9},

losure(9)={9}

E-Cl

osure for all s&®:
losure(0)={0,1,2},
e-closure(1)={1},
e-closure(2)={2},

losure(3)={3,5,6,79},
g-closure(4)={4,5,6,79},

losure(5)={5,6,79},

Transition function over subsets

0’({0}.8)= 10,12},
8’({0,1,2},2)={3,5,6,7.9},
0’({0,1,2} b)={4,5,6,7.9},
6°({3,5.6,7.9}0)={8.7.9},
6’({4,5.6,79}0)= {8,793},
0’ ({8,7.9}0)={8,7.9}

© 2010 Pierre Lison (based on slides from A. Frank)

— e~

Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

for subset construction

* Construction of DFSA A‘=<®’ 2, 0’,q,",F’> from NFSA A=<® 2,9, q,.F>

— ®’={B| BC®}, if unconstrained can be 2'®
with I®| = 33 this could lead to an FSA with 233 states
(exceeds the range of integers in most programming languages)

— Many of these states may be useless

L= (alb)a* U ab+a*

© 2010 Pierre Lison (based on slides from A. Frank) —_— Al Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

for subset construction

= Construction of DFSA A‘=<®’ 2, §’ q,,F’> from NFSA A=<® X, 9, q,,F>

— ®©’={BI BC®}, if unconstrained can be 2'
with I®| = 33 this could lead to an FSA with 2% states
(exceeds the range of integers in many programming languages)

— Many of these states may be useless b

L= (alb)a* U ab+a*

© 2010 Pierre Lison (based on slides from A. Frank) —_—— , dedE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

for subset construction

= Construction of DFSA A‘=<®’ 2, §’,q,,F’> from NFSA A=<® 2, 9, q,.F>

— ®’={BI BC®}, if unconstrained can be 2'¥
with |®| = 33 this could lead to an FSA with 233 states
(exceeds the range of integers in many programming languages)

— Many of these states may be useless b

No transition can

L= (alb)a* U ab+a*
ever enter these states

© 2010 Pierre Lison (based on slides from A. Frank) —_—— , dedE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

for subset construction

= Construction of DFSA A‘=<®’ X2, ¢’ q,,F’> from NFSA A=<® 2, 9, q,.F>

— ®’={BlI BC®}, if unconstrained can be 2'¥'
with |®| = 33 this could lead to an FSA with 2% states
(exceeds the range of integers in many programming languages)

— Many of these states may be useless 1

L= (alb)a* U ab*a* Only consider states
that can be traversed
starting from q
© 2010 Pierre Lison (based on slides from A. Frank) —_—— , dedE Computational Linguistics, SS 2010

Lecture 1: Finite-State Automata

Montag, 19. April 2010

for subset construction

= Basic idea: we only need to consider states B C ® that can ever be traversed
by a string w&x*, starting from q,°

= J.e.,those B C ® for which B = d’(q,,w), for some w&x*, with §’ the
recursively constructed transition function for the target DESA A’

= Consider all strings w&2* 1n order of their length: €, a,b, aa,ab,ba,bb, aaa,...

1=0 (¢) =1 (a,b) =234, ... (aa, ab, ba, bb, aaa, aab, aba, ...)

— Construction by increasing lengths of strings

— For each a&€ZX, construct transitions to known or new states according to o
— New target states (A’) are placed in a queue (FIFO)
— Termination: no states left on queue

© 2010 Pierre Lison (based on slides from A. Frank) —_—— , dedE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

e Background
® Chomsky hierarchy of languages
® Basic definitions, generic operations on languages
® Generalities about Finite-State Automata (FSA)
® Regular languages, regular expressions and FSAs
® Constructing a FSA from a regular expression
® Non-deterministic FSAs
® Optimization algorithms for FSAs
® Determinization of a FSA via subset construction
® Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

® Applications of FSAs & extensions to finite-state transducers

® Conclusions, exercises

© 2010 Pierre Lison (based on slides from A. Frank) —_—_—, deds Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

ion of FSAs

= (Can we transform a large automaton into a smaller one
(provided a smaller one exists)?

= [f A 1sa DFSA, is there an algorithm for constructing an
equivalent minimal automaton A . from A?

A’ A 1s equivalent to A°

ie.,L(A)=L(A")

A°‘ 1s smaller than A
1.e., Dl > |PF

= A can be transformed to A°:

— States 2 and 3 in A “do the same job”: once A 1s 1n state 2 or 3, it
accepts the same suffix string. Such states are called equivalent.

— Thus, we can eliminate state 3 without changing the language of A,
by redirecting all arcs leading to 3 to 2, instead.

© 2010 Pierre Lison (based on slides from A. Frank) —_—— , dedE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

on of FSAs

= A DFSA can be minimized
if there are pairs of states q,q €D that are equivalent

= Two states q.q’ are equivalent iff they accept the same right language.

= Right language of a state:

— For A=<® 2,0, q,,F> a DFSA, the right language L™(q) of a state
gED 1s the set of all strings accepted by A starting in state q:
L~(q) = {wEZ* | 0*(q,w) EF}

— Note: L~(q,) = L(A)

= State equivalence:

— For A=<® 3, 0, q,,F> a DFSA,
if ,.°€D, g and q° are equivalent (q =q’) iff L™(q) =L7(q’)

— =1s an equivalence relation (i.e., reflexive, transitive and symmetric)

— = partitions the set of states @ into a number of disjoint sets Q, .. Q, of

equivalence classes s.th. Uizl..m Q. =®andq=q’ forall q,g’€E Q,

© 2010 Pierre Lison (based on slides from A. Frank) —_— , dodE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

All classes C, consist
of equivalent states q;
that accept identical

right languages 1.7°(q;)

=1..n

Whenever two states q.,q°
belong to different classes,

L™(q)=L7(Qq")
Equivalence classes Minimization:
on state set defined by = elimination of equivalent states
© 2010 Pierre Lison (based on slides from A. Frank) —_——— , dodE Computational Linguistics, SS 2010

Lecture 1: Finite-State Automata

Montag, 19. April 2010

on of a DFSA

A DFSA A=<® 3, 9, q,,F>> that contains equivalent states q, q’
can be transformed to a smaller, equivalent DFSA A’=<®’ X, §’, q,,F’> where
- ©’=0\{q’}, F'=F\{q'},

— 0’ 1s like 0 with all transitions to q’ redirected to q: 8’(s.a) =qif 8(s,a) =q’;
0’(s,a) = 0(s,a) otherwise

= Two-step algorithm
— Determine all pairs of equivalent states q,q
— Apply DFSA reduction until no such pair q,q’ is left in the automaton
* Minimality
— The resulting FSA is the smallest DESA (in size of @) that accepts L(A):
we never merge different equivalence classes, so we obtain one state per class.
 We cannot do any further reduction and still recognize L(A).
* As long as we have >1 state per class, we can do further reduction steps.

* A DFSA A=<® 2, 9, q,,F> is minimal iff there is no pair of distinct but equivalent
states €EP,1.e. Vq,q€EP: q=q < q=q

© 2010 Pierre Lison (based on slides from A. Frank) —_——— , dodE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) e _ Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) e _ Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

e Background
® Chomsky hierarchy of languages
® Basic definitions, generic operations on languages
® Generalities about Finite-State Automata (FSA)
® Regular languages, regular expressions and FSAs
® Constructing a FSA from a regular expression
® Non-deterministic FSAs
® Optimization algorithms for FSAs
® Determinization of a FSA via subset construction
® Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

® Applications of FSAs & extensions to finite-state transducers

® Conclusions, exercises

© 2010 Pierre Lison (based on slides from A. Frank) —_—_—, deds Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

L(A)
DEFSA A

Reversal

* 0 (q,a) = {pED
e LIAH =L(A)!

Ki‘s algorithm

L(A)*!

BE) |NFSA A

reverse

determinize

DFSA (A"

L(A)¢am

determinize

10(p,a)=q }

 Final states of A~ : set of initial states of A
e Initial statc of A~ : Fof A

Minimization by reversal and determinization

DFSA A™!

L(A) l reverse

NFSA (A1)

© 2010 Pierre Lison (based on slides from A. Frank)

e —

Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

DESA A |HE) [NFSA A" DESA A -iNFSA (A1) ﬁ DESA (A1)’

rev det rey

NFSA (A

rev

Consider the right languages of states q, q* in NFSA (A™):

o [f for all distinct states q,q° L™(q) = L™(q’),i.e. L™(q) "L™(q’) =9,
it holds that each pair of states q,q’ recognize different right languages,
and thus, that the NFSA (A™)"! satisfies the minimality condition for a DFSA.

e If there were states q,q” in NFSA (A ! s.th. L~(q) N L~(q’) = &,
there would be some string w that leads to two distinct states in DFSA A™.
This contradicts the determinicity criterion of a DFSA.

e Determinization of NFSA (A7) does not destroy the property of minimality

© 2010 Pierre Lison (based on slides from A. Frank) —_— Al Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

e Background
® Chomsky hierarchy of languages
® Basic definitions, generic operations on languages
® Generalities about Finite-State Automata (FSA)
® Regular languages, regular expressions and FSAs
® Constructing a FSA from a regular expression
® Non-deterministic FSAs
® Optimization algorithms for FSAs
® Determinization of a FSA via subset construction
® Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

® Applications of FSAs & extensions to finite-state transducers

® Conclusions, exercises

© 2010 Pierre Lison (based on slides from A. Frank) —_—_—, deds Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

ns: string matching

» Exact, full string matching
— Lexicon lookup: search for given word/string in a lexicon
— Compile lexicon entries to FSA by union
— Test input words for acceptance in lexicon-FSA

compile recognition/application/lookup
to FSA of input word w in/to FSA A

lexicon:

Word

liSt ‘ .\"—/":. (q()’w) |_*Alcxicon (qf’ 8) IS true,

with q, initial state andq,C F

transition table!
y o

traversal and recognition (acceptance)

© 2010 Pierre Lison (based on slides from A. Frank) —_—— , dedE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

ns: string matching

= Substring matching
— Identify stop words in stream of text
— Stem recognition: small, smaller, smallest

= Make use of full power of finite-state operations!
— Regular expression with any-symbols for text search

e 7% gmall(€lerlest)?*
e *(althel...)?*

— Compilation to NFSA, convert to DESA

— Application by composition of FST with full text

e FSA 0. FST : if defined, search term is substring of text

text stream small

© 2010 Pierre Lison (based on slides from A. Frank) —_—— , dedE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

ONnS: replacement

* (Sub)string replacement
— Delete stop words in text
— Stemming: reduce/replace inflected forms to stems: smallest — small

— Morphology: map inflected forms to lemmas (and PoS-tags):
good, better, best — good+Ad]

— Tokenization: insert token boundaries

—> Finite-state transducers (FST)

© 2010 Pierre Lison (based on slides from A. Frank) —_— Al Computational Linguistics, SS 2010 @
Lecture 1: Finite-State Automata

Montag, 19. April 2010

Automata
= recognition of an input string w

)mata to transducers

Transducers
= recognition of an input string w

= generation of an output string w*

e O e O O O B O Y R (e O ©

* define a language

= accept strings, with transitions
defined for symbols €X

* define a relation between languages

= equivalent to FSAs that accept
pairs of strings, with transitions
defined for pairs of symbols <x,y>
= operations: replacement
— deletion <a, &>, a €2-{¢}
— 1nsertion <g, a>, a €Z-{¢}
— substitution <a,b>,abEXZ,a=b

© 2010 Pierre Lison (based on slides from A. Frank)

e L dE Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

e Background
® Chomsky hierarchy of languages
® Basic definitions, generic operations on languages
® Generalities about Finite-State Automata (FSA)
® Regular languages, regular expressions and FSAs
® Constructing a FSA from a regular expression
® Non-deterministic FSAs
® Optimization algorithms for FSAs
® Determinization of a FSA via subset construction

® Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

® Applications of FSAs & extensions to finite-state transducers

® Conclusions, exercises

© 2010 Pierre Lison (based on slides from A. Frank) —_—_—, deds Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

In this lecture, we presented finite-state automata and their algorithms

FSAs and regular expressions have the same expressive power: they both define a
regular language, type-3 in the Chomsky hierarchy

FSAs can be automatically constructed from a given regular expression

FSAs can be deterministic or non-deterministic

We also saw two algorithms used to improve the (runtime) efficiency of a
finite-state automata:

FSA determinization, via subset construction

FSA minimization, via either equivalence classes, or Brzozowski

Finite-state automata can be extended to finite-state transducers, which
define relations between languages

Due to their simplicity and efficiency, FSAs are pervasive in computational
linguistics (morphology, parsing, dialogue management, etc.)

© 2010 Pierre Lison (based on slides from A. Frank) sl el Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

Montag, 19. April 2010

1. Write a program for acceptance of a string by a DFSA.
Then extend it to a finite-state transducer that can translate a surface form to lemma
+ POS, or between upper and lower case.
< : 2 b
2. Determinize the following NFSA by subset construction. (:’)‘ paq)
A =<{p.q.rs}.{a,b},0,,p,{s}>where 0, is as follows: q | r | r
r S -
S S S
3. Construct an NFSA with e-transitions from the regular expression (alb)ca*®,
according to the construction principled for union, concatenation and kleene star.
Then transform the NFSA to a DESA by subset construction.
4. Find a minimal DFSA for the FSA A=<{A,...E},{0,1},0;,A{C.E}>
(using the table filling algorithm by propagation). 5.] 0 | 1
A | B | D
B B | €
C"1:D E
el ESHE:]
E | C -
© 2010 Pierre Lison (based on slides from A. Frank) —_—— , dedE Computational Linguistics, SS 2010

Lecture 1: Finite-State Automata

Montag, 19. April 2010

