
Computational Linguistics:
Part 1: Finite-State Automata

Pierre Lison

Language Technology Lab
DFKI GmbH, Saarbrücken

http://talkingrobots.dfki.de

Montag, 19. April 2010

http://talkingrobots.dfki.de
http://talkingrobots.dfki.de

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Welcome to the course

Welcome to the Computational Linguistics course, Summer Semester
2010 edition!

Hope you will find it interesting & enjoyable :-)

As you know, the course timetable is as follows:

Lecture every Monday, 14 - 16 hr

Exercise session every Thursday, 14 - 16 hr

The course will be given by five lecturers: Bernd Kiefer, Hans-Ulrich Krieger,
Dietrich Klakow, Andreas Eisele and myself (Pierre Lison)

Successful completion of the course will grant you 6 credit points

Also keep in mind that this course is one of the core courses for the
“Computational Linguistics” specialization of the M.Sc. program

2

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Infos & contacts

The website for the course is up and running:

You will find there a detailed schedule of the course, as well as
the necessary resources (slides, assignments, solutions)

A mailing list has also been created. Please subscribe to stay
informed about the course details over the semester:

As I‘m officially responsible for the course, so if you have any
general question or request about the course, don‘t hesitate to
contact me: plison@dfki.de

Or drop by at my office (preferably with a short email beforehand):

Building D 3.1 (DFKI Altbau), room C 1.11 (floor +1).

3

http://www.dfki.de/~plison/lectures/compling2010/index.html

http://ml.coli.uni-saarland.de/cgi-bin/mailman/listinfo/compling2010

Montag, 19. April 2010

mailto:plison@dfki.de
mailto:plison@dfki.de
http://www.dfki.de/~plison/lectures/compling2010/index.html
http://www.dfki.de/~plison/lectures/compling2010/index.html
http://ml.coli.uni-saarland.de/cgi-bin/mailman/listinfo/compling2010
http://ml.coli.uni-saarland.de/cgi-bin/mailman/listinfo/compling2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Evaluation

Assignments:

Assignments will be given after every lecture, to do before the following
exercise session

Each completed assignment is to be sent via email to the lecturer. The exact
deadline for submitting your assignment will be provided in due time by the
corresponding lecturers

In order to be able to register for the exam, you need to pass at least 80% of
the required assignments

The final evaluation will consist of a usual 90-minutes written
exam

A Probeklausur will be offered one week before the exam to give you an idea
of what you should expect

The final grade will be a composite of the assignment grades,
and of course the exam (exact percentage still unknown)

4

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Learning materials

The course content will be mostly provided via PDF
slides available on the course website

Additional readings might also be provided during the
lecture

The two following textbooks are warmly recommended:

D. Jurafsky and J. H. Martin: Speech and Language Processing: An
Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition, Prentice-Hall, 2009.

C. Manning and H. Schütze: Foundations of Statistical Natural
Language Processing, MIT Press, 1999.

They are both available at the CoLi library

5

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Goal of the course

The course focuses on the core algorithms used in
computational linguistics

How they work, on which representations they operate

Formal properties, computational complexity

Pros and cons of each approach

Use in practical applications

Learning objectives:

gain a reasonable understanding of how each of these algorithms work

Both in theory and in practice (hands-on exercises)

And (perhaps more importantly): understand the relative merits and
limitations of these algorithms

The goal is to understand which algorithm(s) should be used to solve a particular problem!

6

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Main topics

In particular, we will review the following topics this semester:

Finite-State Automata and their algorithms (Pierre)

Chart-based parsing & generation (Bernd)

Unification-based parsing & generation (Bernd)

Ontologies (Uli)

Maximum Entropy Models (Dietrich)

Conditional Random Fields (Dietrich)

Alignment algorithms (Andreas)

Shallow matching algorithms for strings & trees (Pierre)

7

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Course schedule
Mon 19.4: Seminar: Lison - Introduction to the course, Finite-State Automata

Thu 22.4: Exercises: Lison - Finite-State Automata

Mon 26.4: Seminar: Kiefer - Chart-based parsing and generation

Thu 29.4: Exercises: Kiefer - Chart-based parsing and generation

Mon 03.5: Seminar: Krieger - Ontologies

Thu 06.5: Exercises: Krieger - Ontologies

Mon 10.05: Seminar: Kiefer - Unification-based parsing and generation

Thu 13.05: PUBLIC HOLIDAYS (Himmelfahrt)

Mon 17.05: Seminar: Klakow - Maximum Entropy Models

Thu 20.05: Exercises: Kiefer - Unification-based parsing and generation

Mon 24.05: PUBLIC HOLIDAYS (Pfingstmontag)

Thu 27.05: Exercises: Klakow - Maximum Entropy Models

Mon 31.05: Seminar: Klakow - Conditional Random Fields

Thu 03.06: PUBLIC HOLIDAYS (Fronleichnam)

Mon 07.06: Seminar: Eisele - Alignment algorithms

Thu 10.06: Exercises: Klakow - Conditional Random Fields

Mon 14.06: Seminar: Lison: Shallow matching algorithms (strings)

Thu 17.06: Exercises: Eisele - Alignment algorithms

Mon 21.06: Seminar: Lison: Shallow matching algorithms (trees)

Thu 24.06: Exercises: Lison: Shallow matching algorithms

Mon 28.06: Question hour

Thu 01.07: Test exam

Mon 05.07: NO SEMINAR

Thu 08.07: Final exam (90 minutes writing time)

8

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

9

Lecture 1:
Finite-State Automata

(based on slides from Annette Frank)

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Overview of the lecture

Background

Chomsky hierarchy of languages

Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

Regular languages, regular expressions and FSAs

Constructing a FSA from a regular expression

Non-deterministic FSAs

Optimization algorithms for FSAs

Determinization of a FSA via subset construction

Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises

10

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Overview of the lecture

Background

Chomsky hierarchy of languages

Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

Regular languages, regular expressions and FSAs

Constructing a FSA from a regular expression

Non-deterministic FSAs

Optimization algorithms for FSAs

Determinization of a FSA via subset construction

Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises

11

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Finite-state automata: what for?

12

Chomsky Hierarchy of
Languages

Regular languages
(type-3)

Context-free languages
(type-2)

Context-sensitive languages
(type-1)

Unconstrained languages
(type-0)

Hierarchy of Grammars &
Automata

Regular PS grammar
Finite-state automata

Context-free PS grammar
Push-down automata

Tree adjoining grammars
Linear bounded automata

General PS grammars
Turing machine

More expressivity
Less computational efficiency

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 FSAs and regular expressions

13

Regular expressions

Finite-state
automata

Regular languages

de
sc

rib
e

/ s
pe

ci
fy describe / specify

describe / specify
recognise

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Some basic definitions

Alphabet Σ: finite set of symbols

String: sequence x1...xn of symbols xi taken from the
alphabet Σ

Language over Σ: set of strings that can be generated from Σ

Sigma star Σ*: set of all possible strings over the alphabet Σ,

For instance, if Σ = {a,b}, then Σ* = {ε, a, b, aa, ab, ba, bb, aaa, aab, ... }

Sigma plus Σ+ removes the empty element: Σ+ = Σ* - {ε}

Special language ∅ = {}, called the empty language

Attention: note the difference with {ε}: language with one element, the empty string

Formal language: a subset of Σ*

14

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Some basic definitions (3)

A formal grammar is a tuple G= < Σ, Φ, S, R >, where

Σ is an alphabet of terminal symbols

Φ is an alphabet of non-terminal symbols

S is the start symbol

R is a finite set of rules, with R ⊆ Γ+ × Γ*.

Γ is the union of terminal and non-terminal symbols: Γ = Σ ∪ Φ

Each rule ∈ R is of the form α → β

15

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Some basic definitions (4)

Derivation:

Assume a grammar G= < Σ, Φ, S, R > and two arbitrary strings u
and v ∈ Γ* = (Σ ∪ Φ)*

A direct derivation u ⇒G v holds iff there exists s1, s2 ∈ Γ* such that u

= (s1 α s2) and v = (s1 β s2) and there is a rule α → β in R

A general derivation u ⇒G* v holds iff either u = v or there exists a

string z ∈ Γ* such that u ⇒G* z and z ⇒G v

The language L(G) generated by a grammar G is defined
as the set of strings w ⊆ Σ* that can be derived from the
start symbol S according to the grammar G

In other words: L(G) = {w : S ⇒G* w ∧ w ∈ Σ*}

16

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Some basic definitions (5)

Basic operation on strings: concatenation •

Assume two strings a and b, defined by a = xi... xm and b=xm+1 ... xn

Then the concatenation a • b = xi ... xm xm+1 ... xn

Concatenation is associative, but not commutative

ε is the identity element: a • ε = ε • a = a

17

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Chomsky Hierarchy of grammars

Classification of languages generated by formal grammars

 A language is of type i (i = 0,1,2,3) iff it is generated by a type-i grammar

Classification according to increasingly restricted types of production
rules:

L-type-0 ⊃ L-type1 ⊃ L-type-2 ⊃ L-type-3

Every grammar generates a unique language, but a language can be
generated by several different grammars.

Two grammars are

(Weakly) equivalent if they generate the same string language

Strongly equivalentif they generate both the same string language and
the same tree language

18

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Chomsky Hierarchy of grammars (2)

Type - 0 languages: general phrase structure grammars

No restrictions on the form of production rules: arbitrary strings on both
the left-hand and right-hand side of rules

A grammar G= < Σ, Φ, S, R > generates a language L-type-0 iff:

All rules R are of the form α→β, where α ∈ Γ+ and β ∈ Γ*

In other words, the LHS must be a nonempty sequence of non-terminal or terminal symbols

And RHS a (possibly empty) sequence of non-terminal or terminal symbols

Example of type-0 grammar:

G = < {S, A, B, C, D, E}, {a}, S, R >, with the following production rules:

Question: what is the language generated by G?

19

S → ACaB CB → E aE → Ea

Ca → aaC aD → Da AE → ε
CB →DB AD → AC

L(G) = {a2
n

|n ≥ 1}

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Chomsky Hierarchy of grammars (3)

Type-1 languages: context-sensitive grammars

a grammar G= < Σ, Φ, S, R > generates a language L-type-1 iff

all rules are of the form αAϒ → αβϒ, where A is a non-terminal (∈ Φ) and α,β,ϒ ∈ Γ*

In other words, the LHS is a non-empty sequence of NT and T symbols, with at least
one NT symbol

The RHS is a non-empty sequence of NT or T symbols

Example:

G = < {S,B,C}, {a,b,c}, S, R >, with the following production rules:

Question: what is the language generated by G?

20

S → a S B C a B → a b

S → a B C b B → b b

C B→B C b C → b c c C → c c

L(G) = {anbncn|n ≥ 1}

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Chomsky Hierarchy of grammars (4)

Type-2 languages: context-free grammars

a grammar G= < Σ, Φ, S, R > generates a language L-type-2 iff

all rules are of the form A → α, where A is a non-terminal (∈ Φ) and α ∈ Γ*

In other words, the LHS is a single NT symbol

The RHS is a non-empty sequence of NT or T symbols

Example:

G = < {S, A}, {a, b}, S, R >, with the following production rules:

Question: what is the language generated by G?

21

S → A S A A → a

S → b

L(G) = {anban|n ≥ 1}

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Chomsky Hierarchy of grammars (5)

Type-3 languages: regular or finite-state grammars

a grammar G= < Σ, Φ, S, R > generates a language L-type-2 iff

all rules are of the form A → wB or A →w , where A, B are non-terminals (∈ Φ) and w ∈ Σ*

In other words, the LHS is a single NT symbol, and the RHS is a possibly empty sequence of T
symbols, optionally followed by a single NT symbol

The definition above is right linear. Left linear grammars have rules of the form A → Bw, and
function similarly

Example:

G = < {S, A, B}, {a, b}, S, R >, with the following production rules:

Question: what is the language generated by G?

22

S → a A B → b B a → b b B

A → a A B → b

L(G) = {aa∗bbb∗b}

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Operations on languages

23

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Overview of the lecture

Background

Chomsky hierarchy of languages

Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

Regular languages, regular expressions and FSAs

Constructing a FSA from a regular expression

Non-deterministic FSAs

Optimization algorithms for FSAs

Determinization of a FSA via subset construction

Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises

24

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Overview of the lecture

Background

Chomsky hierarchy of languages

Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

Regular languages, regular expressions and FSAs

Constructing a FSA from a regular expression

Non-deterministic FSAs

Optimization algorithms for FSAs

Determinization of a FSA via subset construction

Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises

25

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 FSAs and regular expressions

26

Regular expressions

Finite-state
automata

Regular languages

de
sc

rib
e

/ s
pe

cif
y describe / specify

describe / specify
recognise

Executable!

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Regular languages & expressions

27

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Finite-state automata (FSA)

28

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 FSA transition graphs

29

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 FSA transition graphs (2)

30

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Traversal & acceptance

31

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Regular grammars & FSAs

32

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Deterministic finite-state automata

33

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Multiple equivalent FSAs

34

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Overview of the lecture

Background

Chomsky hierarchy of languages

Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

Regular languages, regular expressions and FSAs

Constructing a FSA from a regular expression

Non-deterministic FSAs

Optimization algorithms for FSAs

Determinization of a FSA via subset construction

Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises

35

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Defining FSAs through regexps

36

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Defining FSAs through regexps

37

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Defining FSAs through regexps

38

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Overview of the lecture

Background

Chomsky hierarchy of languages

Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

Regular languages, regular expressions and FSAs

Constructing a FSA from a regular expression

Non-deterministic FSAs

Optimization algorithms for FSAs

Determinization of a FSA via subset construction

Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises

39

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Non-deterministic FSA

40

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Non-determinism in FSAs

41

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Non-determinism in FSAs

42

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Non-determinism in FSAs

43

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Non-determinism in FSAs

44

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Non-determinism in FSAs

45

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Equivalence of DFSAs and NFSAs

46

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Overview of the lecture

Background

Chomsky hierarchy of languages

Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

Regular languages, regular expressions and FSAs

Constructing a FSA from a regular expression

Non-deterministic FSAs

Optimization algorithms for FSAs

Determinization of a FSA via subset construction

Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises

47

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Overview of the lecture

Background

Chomsky hierarchy of languages

Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

Regular languages, regular expressions and FSAs

Constructing a FSA from a regular expression

Non-deterministic FSAs

Optimization algorithms for FSAs

Determinization of a FSA via subset construction

Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises

48

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Determin. by subset construction

49

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Determin. by subset construction

50

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Determin. by subset construction

51

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Determin. by subset construction

52

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Determin by subset construction

53

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Determin. by subset construction

54

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 ε-transitions and ε-closure

55

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Example

56

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Algorithm for subset construction

57

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Algorithm for subset construction

58

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Algorithm for subset construction

59

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Algorithm for subset construction

60

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Algorithm for subset construction

61

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Overview of the lecture

Background

Chomsky hierarchy of languages

Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

Regular languages, regular expressions and FSAs

Constructing a FSA from a regular expression

Non-deterministic FSAs

Optimization algorithms for FSAs

Determinization of a FSA via subset construction

Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises

62

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Minimization of FSAs

63

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Minimization of FSAs

64

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Partitioning in equivalence classes

65

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Minimization of a DFSA

66

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Example

67

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Example

68

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Overview of the lecture

Background

Chomsky hierarchy of languages

Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

Regular languages, regular expressions and FSAs

Constructing a FSA from a regular expression

Non-deterministic FSAs

Optimization algorithms for FSAs

Determinization of a FSA via subset construction

Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises

69

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Brzozowski‘s algorithm

70

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Why does it yield a minimal DFSA?

71

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Overview of the lecture

Background

Chomsky hierarchy of languages

Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

Regular languages, regular expressions and FSAs

Constructing a FSA from a regular expression

Non-deterministic FSAs

Optimization algorithms for FSAs

Determinization of a FSA via subset construction

Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises

72

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Applications: string matching

73

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Applications: string matching

74

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Applications: replacement

75

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 From automata to transducers

76

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Overview of the lecture

Background

Chomsky hierarchy of languages

Basic definitions, generic operations on languages

Generalities about Finite-State Automata (FSA)

Regular languages, regular expressions and FSAs

Constructing a FSA from a regular expression

Non-deterministic FSAs

Optimization algorithms for FSAs

Determinization of a FSA via subset construction

Minimization of a FSA: equivalence classes, Brzozowski‘s algorithm

Applications of FSAs & extensions to finite-state transducers

Conclusions, exercises

77

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Conclusions

In this lecture, we presented finite-state automata and their algorithms

FSAs and regular expressions have the same expressive power: they both define a
regular language, type-3 in the Chomsky hierarchy

FSAs can be automatically constructed from a given regular expression

FSAs can be deterministic or non-deterministic

We also saw two algorithms used to improve the (runtime) efficiency of a
finite-state automata:

FSA determinization, via subset construction

FSA minimization, via either equivalence classes, or Brzozowski

Finite-state automata can be extended to finite-state transducers, which
define relations between languages

Due to their simplicity and efficiency, FSAs are pervasive in computational
linguistics (morphology, parsing, dialogue management, etc.)

78

Montag, 19. April 2010

© 2010 Pierre Lison (based on slides from A. Frank) Computational Linguistics, SS 2010
Lecture 1: Finite-State Automata

 Exercises

79

Montag, 19. April 2010

