
Andreas Eisele
DFKI GmbH, LT Lab

eisele@dfki.de

Introduction to Computational Linguistics, SS 2010

2 eisele@dfki.de

today’s plan:
 Motivation: What is alignment? What is it good for?

What forms can it take?
 How to find longest common subsequences (LCS)

Simple application of “dynamic programming”
 Sentence alignment in bilingual documents

Same approach, but more sophisticated
 A simplified model for word alignment

Which words in translated texts correspond?

Introduction to Computational Linguistics SS 2010

Introduction to Computational Linguistics SS 2010 3 eisele@dfki.de

Given two or more structures that have
corresponding parts, find out the
correspondences

4 eisele@dfki.de

On an abstract level, there are four broad
reasons to compute alignments of
structures:

 Judging the similarity of the structures
 Extracting the corresponding parts
 Merging into larger structure
 Surgery: replacing some of the parts

5 eisele@dfki.de

Difficulty of alignment ranges from fairly easy to arbitrarily complex.
There are several aspects that may contribute to the difficulty
  Similarity metric to judge whether parts correspond

  corresponding parts are equal
  corresponding parts are similar wrt. given metric
  similarity metric needs to be induced from data
  alignment on a finer level (recursive alignment)

  Properties of structures
  sequences
  trees
  unordered collections
  others…

  Size of the structures
  larger structures lead to larger search spaces, are more difficult to align

  Constraints on alignments, e.g. monotonicity, exhaustivity, structural similarity
  stronger constraints can make search faster, but may also lead to more complex

algorithms
  non-exhaustive alignment is easier to compute, but less informative

 (bootstrapping less effective)

Difficulty of alignment ranges from fairly easy to arbitrarily complex.
There are several aspects that may contribute to the difficulty
  Similarity metric to judge whether parts correspond

  corresponding parts are equal
  corresponding parts are similar wrt. given metric
  similarity metric needs to be induced from data
  alignment on a finer level (recursive alignment)

  Properties of structures
  sequences
  trees
  unordered collections
  others…

  Size of the structures
  larger structures lead to larger search spaces, are more difficult to align

  Constraints on alignments, e.g. monotonicity, exhaustivity, structural similarity
  stronger constraints can make search faster, but may also lead to more complex

algorithms
  non-exhaustive alignment is easier to compute, but less informative

 (bootstrapping less effective)

6 eisele@dfki.de

Only a small sample of all the possibilities…
Structures Parts to align What to do What for

Files Lines Find (minimal set of) differences general-purpose tool diff, version
control (CVS, SVN)

Word Sequences Words Textual similarity Document retrieval, clustering,
plagiarism detection,
MT evaluation

Words/ phoneme
strings

characters/phonemes phonetic alignment Speech recognition, speech
synthesis, phonetic search

Character Strings
(Words)

Characters Longest common subsequence,
similar words wrt. given metric

Spelling correction, post-OCR/
post-ASR correction

Text + Translation Sentences Align sentences with their
translation

Translation memories,
statistical and example-based
machine translation

Sentence + Translation Words/phrases Align words and phrases Statistical machine translation

Syntactic structures Constituents Align corresponding
constituents

Adaptive MT, translate between
annotation formalisms

HTML code relevant text pieces find out what is relevant wrapper induction for building
crawlers, IE systems

7 eisele@dfki.de

…are numerous, such as
 Bio-Informatics:
 Find genes, judge similarities between species,

reconstruct historical evolution
 Alignment between different representations, e.g. DNA

and protein sequences
 Data mining in general
 Fusing output of multiple sensors
 identification of objects in stereo vision
 fusing multiple (audio-, video-) channels from meeting

recordings

8 eisele@dfki.de

 Given strings s1 and s2, the goal is to find a common
subsequence of maximal length (LCS)

  Finding LCSs constitutes the simplest form of alignment
between strings, but has very many uses in NLP, such as
measuring similarities of words, sentences, documents,
phoneme sequences, …

  Several popular notions in text processing are closely
related, such as Levenshtein distance, edit-distance

  A string s has 2 |s| subsequences, hence an algorithm
based on a naïve enumeration would be far too expensive

  Better: decompose into smaller problems, solve them in a
systematic order and avoid repeated computation of
identical sub-problem, i.e. apply
 “dynamic programming (DP)”

 Given strings s1 and s2, the goal is to find a common
subsequence of maximal length (LCS)

  Finding LCSs constitutes the simplest form of alignment
between strings, but has very many uses in NLP, such as
measuring similarities of words, sentences, documents,
phoneme sequences, …

  Several popular notions in text processing are closely
related, such as Levenshtein distance, edit-distance

  A string s has 2 |s| subsequences, hence an algorithm
based on a naïve enumeration would be far too expensive

  Better: decompose into smaller problems, solve them in a
systematic order and avoid repeated computation of
identical sub-problem, i.e. apply
 “dynamic programming (DP)”

9 eisele@dfki.de

Assume we search LCS(“abc”, “bacba”)
We can draw a rectangular graph of all possible character

alignments
 b a c b a

 a

 b

 c

10 eisele@dfki.de

We can traverse the rectangle and compute the length of
the LCS of the corresponding prefixes

 b a c b a

 a

 b

 c

0 0 0 0 0 0

0 0 1 1 1 1

0 1 1 1 2 2

0 1 1 2 2 2

11 eisele@dfki.de

The idea is realized in the following little algorithm (expressed in Python 2.X
for concreteness):

def matrix(l1,l2): return [[0 for i2 in range(l2)] for i1 in range(l1)]

def match(c1,c2): return 0+(c1==c2)

def lcsScores(s1,s2):
 l1,l2 = len(s1),len(s2)
 score = matrix(l1+1,l2+1)
 for i1 in range(l1):
 for i2 in range(l2):
 score[i1+1][i2+1] = \
 max(score[i1][i2+1],
 score[i1+1][i2],
 score[i1][i2]+ match(s1[i1],s2[i2]))
 return score

def lenLCS(s1, s2): return lcsScores(s1, s2)[-1][-1]

12 eisele@dfki.de

In order to actually extract one of the longest subsequences,
one can traverse the array backwards

def lcs(s1,s2):
 score = lcsScores(s1,s2)
 i1 = len(s1)
 i2 = len(s2)
 res = []
 while score[i1][i2]:
 if s1[i1-1]==s2[i2-1]:
 i1 -= 1 ; i2 -= 1
 res.insert(0,s1[i1])
 elif score[i1-1][i2] > score[i1][i2-1]: i1 -= 1
 else: i2 -= 1
 return res

13 eisele@dfki.de

The function lcs() does not explicitly state the alignment between the two
sequences. To cure this, we can e.g. insert explicit traces of null-
alignments into the result (and obtain pairs of results with lengths equal
to the input arguments):

def lcsTrace(s1,s2):
 score = lcsScores(s1,s2)
 i1 = len(s1)
 i2 = len(s2)
 res1 = []; res2 = []
 while score[i1][i2]:
 if s1[i1-1]==s2[i2-1]:
 i1 -= 1 ; i2 -= 1
 res1.insert(0,s1[i1])
 res2.insert(0,s1[i1])
 elif score[i1-1][i2] > score[i1][i2-1]:
 i1 -= 1
 res1.insert(0,None)
 else:
 i2 -= 1
 res2.insert(0,None)
 for i in range(i1): res1.insert(0,None)
 for i in range(i2): res2.insert(0,None)

 return res1, res2

14 eisele@dfki.de

The problem:
 Assume you are given an English text of 100

sentences and a German translation consisting of
102 sentences, and you want to find corresponding
sentence pairs

 Closer inspection shows that some sentences are
omitted, sometimes sentences are split or merged
or swapped.

 Assume you need to automate the process of
aligning the sentences (e.g. as a module in a
translation memory system)

15 eisele@dfki.de

The solution:
 The basic structure of a possible algorithm

corresponds exactly the DP computation of the
LCS (the details are messier…)

 Useful similarity measures:
 Church/Gale: estimate probabilities for n-m matches

from sample, estimate probabilities that sentences
(groups) of given length correspond

 Kay/Röscheisen: count pairs of words that are known
to be translations, bootstrap alignments on sentence
and word level

 Even simpler: maximize the overall text length that can
be explained by the alignment

16 eisele@dfki.de

?

Complexity is O(n*m)
Additional evidence (e.g. from invariant or cognate words)

can be helpful

17 eisele@dfki.de

Code used in a real project (not optimized for efficiency):
bonus=80
alignmentPatterns = [(1, 1, bonus), (0, 1, 1), (1, 0, 1), (2, 2, bonus)] + \
 [(1, o, bonus) for o in range(2,13)] + \
 [(o, 1, bonus) for o in range(2,13)]

def sentAlign(sentsX, sentsY, alignmentPatterns, separator="§"):
 matrix=[]
 for x in range(len(sentsX)+1):
 row=[]
 matrix+=[row]
 for y in range(len(sentsY)+1):
 paths=[(-1,[],[])]
 for (dX, dY, bonus) in alignmentPatterns:
 (sX,sY) = (x-dX, y-dY)
 if min(sX,sY) >= 0 :
 (sScore,sslX, sslY)=matrix[sX][sY]
 incX=separator.join(sentsX[sX:x])
 incY=separator.join(sentsY[sY:y])
 incScore=min(len(incX),len(incY))
 bonus=min(bonus,incScore)
 paths+= [(sScore+incScore+bonus,sslX+[incX], sslY+[incY])]
 paths.sort()
 row+=[paths[-1]]
 return matrix[-1][-1]

18 eisele@dfki.de

Commercially useful sentence alignment algorithms need to
be highly sophisticated, because:

  Real data is messy, so algorithms need to be robust
 Multiple knowledge sources need to be integrated

(cognates, heuristics, lexicons, …)
  Texts may have hierarchical structure that can/should be

exploited
  Texts can be long, so a simple O(n*m) algorithm may

consume too much space/time need beam search
  Users would like to see what is going on, and also need

possibility to correct the results
  Sentence alignment and word alignment should feed each

other in a bootstrapping process

19 eisele@dfki.de

The problem:
 We need to know alignments between texts and

translations on word or phrase level (useful for
terminology extraction, statistical MT, improved translation
memories, algorithms for translation checking etc.)

 This is more difficult as for sentences, as the order
on both sides does not agree

 There is no a-priory notion of similarity, possible
correspondences need to be learned from data

20 eisele@dfki.de

A typical solution
 Assume a probabilistic model for co-occurrences

between words/phrases
 Train parameters from data

But we have a chicken-and-egg situation:
 given alignments, we can learn the parameters
 given parameters, we can estimate alignments
 we don’t know how to start

21 eisele@dfki.de

  Similar situations are ubiquitous in learning stochastic models
from raw data lacking annotation (NLP: HMMs, PCFGs, …)

  There is a generic scheme for how to deal with this problem,
called EM algorithm

  Basic idea:
  Start with a simple model (e.g. a uniform probability distribution)
  Estimate a probabilistic annotation
  Train a model from this estimate
  Iterate re-estimation until result is good enough

  Properties of EM:
  Likelihood of model is guaranteed to increase in each iteration
  EM hence converges towards a maximum likelihood estimate (MLE)
  But this maximum is only local
  (Even global) MLE need not be useful for unseen data, less iterations

may give better models

22 eisele@dfki.de

  Researchers at IBM have developed a cascade of
approaches, called IBM Models 1…5 for statistical MT

  In the sequel, we will use a simplified version of IBM
Model 1 (called Model 0), assuming that each word in a
foreign language text f is the translation of (generated by)
some word in the English version e

  Probability that the ith foreign word fi is generated, given
an English sentence e, is modeled as:

 P(fi|e) = ∑j P(fi | ej)
  Probability that the complete foreign sentence is

generated (omitting some boring details):
P(f|e) = ∏i P(fi|e) = ∏i∑j P(fi | ej)

23 eisele@dfki.de

 From a set of annotated data (i.e. sentence
pairs with word alignments), we can obtain
a new translation model:

P(fi|ej) = freq(fi,ej) / freq(ej)
 From a model P, a foreign word fi, and a

sequence e = e1…en of possible “causes”,
we can estimate frequencies as

 freq(fi|ej) = P(fi|ej) / ∑k=1
n P(fi|ek)

24 eisele@dfki.de

Corpus:
chien méchant dangerous dog

petit chien small dog

Initial model:
 p0(fi|ej) = constant

Update steps:
 see last slide

25 eisele@dfki.de

Local frequency estimates

Global frequencies and probabilities

freq(fi|ej) chien méchant
dangerous 0.5 0.5

dog 0.5 0.5

freq(fi|ej) petit chien

small 0.5 0.5

dog 0.5 0.5

freq(fi|ej) petit chien méchant
small 0.5 0.5
dangerous 0.5 0.5
dog 0.5 1.0 0.5

p(fi|ej) petit chien méchant
small 0.5 0.5
dangerous 0.5 0.5
dog 0.25 0.5 0.25

26 eisele@dfki.de

Probabilities from iteration 1

New frequency estimates
freq(fi|ej) chien méchant
dangerous 0.5 0.67

dog 0.5 0.33

freq(fi|ej) petit chien

small 0.67 0.5

dog 0.33 0.5

p(fi|ej) petit chien méchant
small 0.5 0.5
dangerous 0.5 0.5
dog 0.25 0.5 0.25

27 eisele@dfki.de

Local frequency estimates

Global frequencies and probabilities

freq(fi|ej) chien méchant
dangerous 0.5 0.67

dog 0.5 0.33

freq(fi|ej) petit chien

small 0.67 0.5

dog 0.33 0.5

freq(fi|ej) petit chien méchant
small 0.67 0.5
dangerous 0.5 0.67
dog 0.33 1.0 0.33

p(fi|ej) petit chien méchant
small 0.57 0.43
dangerous 0.43 0.57
dog 0.2 0.6 0.2

28 eisele@dfki.de

Idea:
 Each word of the foreign sentence is generated/

explained by some English word
 There is no limitation on the number of foreign

words a given English word may generate, these
influences are seen as independent

 Word order is completely ignored (bag of word)
 These slightly unrealistic assumptions simplify the

mathematical analysis tremendously: Given a
model and a sentence pair (f,e), estimated counts
for the events can be obtained in closed form.

29 eisele@dfki.de

Joint Probability of alignment and translation:

Probability of translation:

Can be reorganized into:

Counts for word-pair events can now be collected for foreign words,
given bag of English words, but independent of foreign context

30 eisele@dfki.de

 Builds on Model I, but has some limited support
for preserving word order

 The probability that a foreign word at position i is
generated by an English word at position j is
moderated by a alignment probability that
depends on i and j, which is learned from the
data.

 This has the effect that alignments near the
diagonal are preferred over alignments that would
require displacement.

 Other problems of Model I remain.

31 eisele@dfki.de

  Introduces the concept of fertility: For each of the English words, a
number of resulting foreign words is generated (e.g. not may give rise
to two foreign words ne..pas, hence P(fertility=2|not) is high).

  Resulting words are generated independently up to the chosen
number; hence not may as well generate ne..ne or pas..pas

  This plausible refinement destroys some of the computational
simplicity of Models I and II: Summation over all possible alignments
can no more be done efficiently.

  Exact computation for an overly simplified model is therefore replaced
by approximation for a better model:

  Instead of using all possible alignments, a smaller set of good
alignments (called Viterbi alignments) is generated that are much
more likely than the ones that are left out, hence the impact of the
error should be small.

32 eisele@dfki.de

Examples of translation probabilities/fertilities
nodding faire (un) signe de tête affirmativ/que oui/…

33 eisele@dfki.de

  Alleviates the problem that up to Model III, movement of a
longer phrase as a whole is difficult, as each word is
placed (and has to be moved) independently.

  foreign words that originate from the same English source
are now placed collectively (starting with a “head”, and
placing the remaining words nearby)

  The relation between heads and subordinate words is
moderated via a classification of words into 50 classes.
This classification is induced from un-annotated text.

34 eisele@dfki.de

  This solves the technical problem that models III and IV
are deficient, i.e. the placement of foreign words is
modeled in such a way that the foreign sentence could
e.g. have three second words, but no first word.

 Model V makes sure that the resulting sentence is indeed
a string. This refinement again increases the
computational burden of finding good alignments, so it is
only reasonable after some iterations through earlier
models have generated strong lexical preferences that
constrain the search space.

35 eisele@dfki.de

… designed such that data generated in each step can also be used
by the next level. Hence the idea of the EM algorithm is generalized
to iteration along this cascade

36 eisele@dfki.de

… in more recent work in a similar spirit. Koehn uses the
outcome of GIZA++ (which goes up to model V), but
improves and re-interprets this output in several ways:

  Integration of IBM models for both directions into a joint
alignment

  Reinforcing consistent parts, removing inconsistent parts
  Extension of the common core to an exhaustive alignment

using various heuristics

37 eisele@dfki.de

… in many more ways:
 Given more than n>2 languages, we can compute n*(n-1)

directed alignments and combine them to distinguish
various levels of confidence

  There is no reason why existing linguistic knowledge for
any of the involved languages could not be used to make
final alignments still much better

  This would significantly alleviate the severe impact of
certain systematic alignment errors in the current SMT
approach

38 eisele@dfki.de

IBM translation models
Model I:

Generate foreign words independently, each depending on 0 or 1 English words
Ignore word order

Model II:
Position of foreign words depends on position of English origin

Model III:
English words have “fertilities” to determine number of foreign words they generate

Model IV:
Groups of words are moved to their target location as a whole

Model V:
Avoid loss of probabilities on impossible strings

Models can “feed each other”: Alignments of Model k can be used to
estimate parameters of Model k+1

To use these models on real data, the best place to start are the baseline
systems for the shared tasks listed on http://www.statmt.org/

39 eisele@dfki.de

Sentence alignment
 Manning, C. & Schütze, H. (1999): Foundations of

Statistical Natural Language Processing. MIT Press,
Chap. 13.1 und 13.2.

 Gale, W.A. & Church, K.W. (1993): A program for
aligning sentences in bilingual corpora. Computational
Linguistics 19,p. 75-102.

 Kay, M. & Röscheisen, M. (1993): Text-translation
alignment. Computational Linguistics 19, p. 121-142.

40 eisele@dfki.de

Word alignment
  Brown, Cocke, Della Pietra, Della Pietra, Jelinek, Lafferty, Mercer,

and Roossin (1993): A Statistical Approach to Machine
Translation. In: Computational Linguistics 16,2.

  Franz Josef Och, Christoph Tillmann, and Hermann Ney
(1999):Improved alignment models for statistical machine
translation. In: Proceedings of EMNLP

  Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase
based translation. In: Proceedings of HLT-NAACL.

  Philipp Koehn (2004). Pharaoh Training Manual. Unpublished
manuscript. Available from http://www.statmt.org/wmt06/
shared-task/training-release-1.3.tgz

41 eisele@dfki.de

Exercise 1:
 Implement the LCS procedure in a programming

language of your choice
 Try it on at least 20 pairs of strings, make sure that the

boundary conditions work
Exercise 2:
 Generalize the result of Exercise 1 to use a different

error metric, where a replacement of a vowel by
another vowel or of a consonant by another consonant
count only as 0.5 errors. Which of the test cases from
Exercise 1 are affected?

Send the code and the results via email to eisele@dfki.de

