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today’s plan: 
 Motivation: What is alignment? What is it good for? 

What forms can it take? 
 How to find longest common subsequences (LCS) 

Simple application of “dynamic programming” 
 Sentence alignment in bilingual documents 

Same approach, but more sophisticated 
 A simplified model for word alignment 

Which words in translated texts correspond? 

Introduction to Computational Linguistics SS 2010 
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Given two or more structures that have 
corresponding parts, find out the 
correspondences 
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On an abstract level, there are four broad 
reasons to compute alignments of 
structures: 

 Judging the similarity of the structures 
 Extracting the corresponding parts 
 Merging into larger structure 
 Surgery: replacing some of the parts 
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Difficulty of alignment ranges from fairly easy to arbitrarily complex.  
There are several aspects that may contribute to the difficulty 
  Similarity metric to judge whether parts correspond 

  corresponding parts are equal 
  corresponding parts are similar wrt. given metric 
  similarity metric needs to be induced from data 
  alignment on a finer level (recursive alignment) 

  Properties of structures 
  sequences 
  trees 
  unordered collections 
  others… 

  Size of the structures 
  larger structures lead to larger search spaces, are more difficult to align 

  Constraints on alignments, e.g. monotonicity, exhaustivity, structural similarity 
  stronger constraints can make search faster, but may also lead to more complex 

algorithms 
  non-exhaustive alignment is easier to compute, but less informative  

 ( bootstrapping less effective) 
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Only a small sample of all the possibilities… 
Structures Parts to align What to do What for 

Files Lines Find (minimal set of) differences general-purpose tool diff, version 
control (CVS, SVN) 

Word Sequences Words Textual similarity Document retrieval, clustering, 
plagiarism detection, 
MT evaluation 

Words/ phoneme 
strings 

characters/phonemes phonetic alignment Speech recognition, speech 
synthesis, phonetic search 

Character Strings 
(Words) 

Characters Longest common subsequence, 
similar words wrt. given metric 

Spelling correction, post-OCR/ 
post-ASR correction 

Text + Translation Sentences Align sentences with their 
translation 

Translation memories, 
statistical and example-based 
machine translation 

Sentence + Translation Words/phrases Align words and phrases Statistical machine translation 

Syntactic structures Constituents Align corresponding 
constituents 

Adaptive MT, translate between 
annotation formalisms 

HTML code relevant text pieces find out what is relevant wrapper induction for building 
crawlers, IE systems 
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…are numerous, such as 
 Bio-Informatics: 
 Find genes, judge similarities between species, 

reconstruct historical evolution 
 Alignment between different representations, e.g. DNA 

and protein sequences 
 Data mining in general 
 Fusing output of multiple sensors 
 identification of objects in stereo vision 
 fusing multiple (audio-, video-) channels from meeting 

recordings 
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 Given strings s1 and s2, the goal is to find a common 
subsequence of maximal length (LCS) 

  Finding LCSs constitutes the simplest form of alignment 
between strings, but has very many uses in NLP, such as 
measuring similarities of words, sentences, documents, 
phoneme sequences, … 

  Several popular notions in text processing are closely 
related, such as Levenshtein distance, edit-distance 

  A string s has 2 |s| subsequences, hence an algorithm 
based on a naïve enumeration would be far too expensive 

  Better: decompose into smaller problems, solve them in a 
systematic order and avoid repeated computation of 
identical sub-problem, i.e. apply  
  “dynamic programming (DP)” 
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Assume we search LCS(“abc”, “bacba”) 
We can draw a rectangular graph of all possible character 

alignments 
   b  a  c  b  a 

  a 

  b 

  c 



10 eisele@dfki.de 

We can traverse the rectangle and compute the length of 
the LCS of the corresponding prefixes 

   b  a  c  b  a 

  a 

  b 

  c 

0  0  0  0  0  0 

0  0  1  1  1  1 

0  1  1  1  2  2 

0  1  1  2  2  2 
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The idea is realized in the following little algorithm (expressed in Python 2.X 
for concreteness): 

def matrix(l1,l2): return [[0 for i2 in range(l2)] for i1 in range(l1)] 

def match(c1,c2): return 0+(c1==c2) 

def lcsScores(s1,s2): 
    l1,l2 = len(s1),len(s2) 
    score = matrix(l1+1,l2+1) 
    for i1 in range(l1): 
       for i2 in range(l2): 
            score[i1+1][i2+1] = \ 
                max(score[i1][i2+1], 
                    score[i1+1][i2], 
                    score[i1][i2]+ match(s1[i1],s2[i2])) 
    return score 

def lenLCS(s1, s2): return lcsScores(s1, s2)[-1][-1] 



12 eisele@dfki.de 

In order to actually extract one of the longest subsequences, 
one can traverse the array backwards 

def lcs(s1,s2): 
    score = lcsScores(s1,s2) 
    i1 = len(s1) 
    i2 = len(s2) 
    res = [] 
    while score[i1][i2]: 
        if s1[i1-1]==s2[i2-1]: 
            i1 -= 1 ; i2 -= 1 
            res.insert(0,s1[i1]) 
        elif score[i1-1][i2] > score[i1][i2-1]: i1 -= 1 
        else: i2 -= 1 
    return res 
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The function lcs() does not explicitly state the alignment between the two 
sequences. To cure this, we can e.g. insert explicit traces of null-
alignments into the result (and obtain pairs of results with lengths equal 
to the input arguments): 

def lcsTrace(s1,s2): 
    score = lcsScores(s1,s2) 
    i1 = len(s1) 
    i2 = len(s2) 
    res1 = []; res2 = [] 
    while score[i1][i2]: 
        if s1[i1-1]==s2[i2-1]: 
            i1 -= 1 ; i2 -= 1 
            res1.insert(0,s1[i1]) 
            res2.insert(0,s1[i1]) 
        elif score[i1-1][i2] > score[i1][i2-1]: 
            i1 -= 1 
            res1.insert(0,None) 
        else: 
            i2 -= 1 
            res2.insert(0,None) 
    for i in range(i1): res1.insert(0,None) 
    for i in range(i2): res2.insert(0,None) 

    return res1, res2 
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The problem: 
 Assume you are given an English text of 100 

sentences and a German translation consisting of 
102 sentences, and you want to find corresponding 
sentence pairs 

 Closer inspection shows that some sentences are 
omitted, sometimes sentences are split or merged 
or swapped. 

 Assume you need to automate the process of 
aligning the sentences (e.g. as a module in a 
translation memory system) 
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The solution: 
 The basic structure of a possible algorithm 

corresponds exactly the DP computation of the 
LCS (the details are messier…) 

 Useful similarity measures: 
 Church/Gale: estimate probabilities for n-m matches 

from sample, estimate probabilities that sentences 
(groups) of given length correspond 

 Kay/Röscheisen:  count pairs of words that are known 
to be translations, bootstrap alignments on sentence 
and word level 

 Even simpler: maximize the overall text length that can 
be explained by the alignment 
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? 

Complexity is O(n*m) 
Additional evidence (e.g. from invariant or cognate words) 

can be helpful 
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Code used in a real project (not optimized for efficiency): 
bonus=80 
alignmentPatterns = [(1, 1, bonus), (0, 1, 1), (1, 0, 1), (2, 2, bonus)] + \ 
                    [(1, o, bonus) for o in range(2,13)] + \ 
                    [(o, 1, bonus) for o in range(2,13)]  

def sentAlign(sentsX, sentsY, alignmentPatterns, separator="§"): 
    matrix=[] 
    for x in range(len(sentsX)+1): 
        row=[] 
        matrix+=[row] 
        for y in range(len(sentsY)+1): 
            paths=[(-1,[],[])] 
            for (dX, dY, bonus) in alignmentPatterns: 
                (sX,sY) = (x-dX, y-dY) 
                if min(sX,sY) >= 0 : 
                    (sScore,sslX, sslY)=matrix[sX][sY] 
                    incX=separator.join(sentsX[sX:x]) 
                    incY=separator.join(sentsY[sY:y]) 
                    incScore=min(len(incX),len(incY)) 
                    bonus=min(bonus,incScore) 
                    paths+= [(sScore+incScore+bonus,sslX+[incX], sslY+[incY])] 
            paths.sort() 
            row+=[paths[-1]] 
    return matrix[-1][-1] 
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Commercially useful sentence alignment algorithms need to 
be highly sophisticated, because: 

  Real data is messy, so algorithms need to be robust 
 Multiple knowledge sources need to be integrated 

(cognates, heuristics, lexicons, …) 
  Texts may have hierarchical structure that can/should be 

exploited 
  Texts can be long, so a simple O(n*m) algorithm may 

consume too much space/time  need beam search  
  Users would like to see what is going on, and also need 

possibility to correct the results 
  Sentence alignment and word alignment should feed each 

other in a bootstrapping process 
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The problem: 
 We need to know alignments between texts and 

translations on word or phrase level (useful for 
terminology extraction, statistical MT, improved translation 
memories, algorithms for translation checking etc.) 

 This is more difficult as for sentences, as the order 
on both sides does not agree 

 There is no a-priory notion of similarity, possible 
correspondences need to be learned from data 
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A typical solution 
 Assume a probabilistic model for co-occurrences 

between words/phrases  
 Train parameters from data 

But we have a chicken-and-egg situation:  
 given alignments, we can learn the parameters 
 given parameters, we can estimate alignments 
 we don’t know how to start 
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  Similar situations are ubiquitous in learning stochastic models 
from raw data lacking annotation (NLP: HMMs, PCFGs, …) 

  There is a generic scheme for how to deal with this problem, 
called EM algorithm 

  Basic idea: 
  Start with a simple model (e.g. a uniform probability distribution)  
  Estimate a probabilistic annotation 
  Train a model from this estimate 
  Iterate re-estimation until result is good enough 

  Properties of EM: 
  Likelihood of model is guaranteed to increase in each iteration 
  EM hence converges towards a maximum likelihood estimate (MLE) 
  But this maximum is only local 
  (Even global) MLE need not be useful for unseen data, less iterations 

may give better models 
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  Researchers at IBM have developed a cascade of 
approaches, called IBM Models 1…5 for statistical MT 

  In the sequel, we will use a simplified version of IBM 
Model 1 (called Model 0), assuming that each word in a 
foreign language text f is the translation of (generated by) 
some word in the English version e 

  Probability that the ith foreign word fi is generated, given 
an English sentence e, is modeled as: 

 P(fi|e) = ∑j P(fi | ej)  
  Probability that the complete foreign sentence is 

generated (omitting some boring details): 
P(f|e) = ∏i P(fi|e) = ∏i∑j P(fi | ej) 
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 From a set of annotated data (i.e. sentence 
pairs with word alignments), we can obtain 
a new translation model: 

P(fi|ej) = freq(fi,ej) / freq(ej)  
 From a model P, a foreign word fi, and a 

sequence e = e1…en of possible “causes”, 
we can estimate frequencies as 

 freq(fi|ej) = P(fi|ej) / ∑k=1
n P(fi|ek)  
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Corpus: 
chien méchant   dangerous dog 

petit chien  small dog 

Initial model: 
 p0(fi|ej) = constant 

Update steps: 
 see last slide 
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Local frequency estimates 

Global frequencies and probabilities 

freq(fi|ej) chien méchant 
dangerous 0.5 0.5 

dog 0.5 0.5 

freq(fi|ej) petit chien 

small 0.5 0.5 

dog 0.5 0.5 

freq(fi|ej) petit chien méchant 
small 0.5 0.5 
dangerous 0.5 0.5 
dog 0.5 1.0 0.5 

p(fi|ej) petit chien méchant 
small 0.5 0.5 
dangerous 0.5 0.5 
dog 0.25 0.5 0.25 
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Probabilities from iteration 1 

New frequency estimates 
freq(fi|ej) chien méchant 
dangerous 0.5 0.67 

dog 0.5 0.33 

freq(fi|ej) petit chien 

small 0.67 0.5 

dog 0.33 0.5 

p(fi|ej) petit chien méchant 
small 0.5 0.5 
dangerous 0.5 0.5 
dog 0.25 0.5 0.25 
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Local frequency estimates 

Global frequencies and probabilities 

freq(fi|ej) chien méchant 
dangerous 0.5 0.67 

dog 0.5 0.33 

freq(fi|ej) petit chien 

small 0.67 0.5 

dog 0.33 0.5 

freq(fi|ej) petit chien méchant 
small 0.67 0.5 
dangerous 0.5 0.67 
dog 0.33 1.0 0.33 

p(fi|ej) petit chien méchant 
small 0.57 0.43 
dangerous 0.43 0.57 
dog 0.2 0.6 0.2 
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Idea:  
 Each word of the foreign sentence is generated/

explained by some English word 
 There is no limitation on the number of foreign 

words a given English word may generate, these 
influences are seen as independent 

 Word order is completely ignored (bag of word) 
 These slightly unrealistic assumptions simplify the 

mathematical analysis tremendously: Given a 
model and a sentence pair (f,e), estimated counts 
for the events can be obtained in closed form. 
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Joint Probability of alignment and translation: 

Probability of translation: 

Can be reorganized into: 

Counts for word-pair events can now be collected for foreign words, 
given bag of English words, but independent of foreign context 
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 Builds on Model I, but has some limited support 
for preserving word order 

 The probability that a foreign word at position i is 
generated by an English word at position j is 
moderated by a alignment probability that 
depends on i and j, which is learned from the 
data. 

 This has the effect that alignments near the 
diagonal are preferred over alignments that would 
require displacement. 

 Other problems of Model I remain. 
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  Introduces the concept of fertility: For each of the English words, a 
number of resulting foreign words is generated (e.g. not may give rise 
to two foreign words ne..pas, hence P(fertility=2|not) is high). 

  Resulting words are generated independently up to the chosen 
number; hence not may as well generate ne..ne or pas..pas 

  This plausible refinement destroys some of the computational 
simplicity of Models I and II: Summation over all possible alignments 
can no more be done efficiently. 

  Exact computation for an overly simplified model is therefore replaced 
by approximation for a better model: 

  Instead of using all possible alignments, a smaller set of good 
alignments (called Viterbi alignments) is generated that are much 
more likely than the ones that are left out, hence the impact of the 
error should be small. 
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Examples of translation probabilities/fertilities 
nodding  faire (un) signe de tête affirmativ/que oui/… 
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  Alleviates the problem that up to Model III, movement of a 
longer phrase as a whole is difficult, as each word is 
placed (and has to be moved) independently. 

  foreign words that originate from the same English source 
are now placed collectively (starting with a “head”, and 
placing the remaining words nearby) 

  The relation between heads and subordinate words is 
moderated via a classification of words into 50 classes. 
This classification is induced from un-annotated text. 
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  This solves the technical problem that models III and IV 
are deficient, i.e. the placement of foreign words is 
modeled in such a way that the foreign sentence could 
e.g. have three second words, but no first word. 

 Model V makes sure that the resulting sentence is indeed 
a string. This refinement again increases the 
computational burden of finding good alignments, so it is 
only reasonable after some iterations through earlier 
models have generated strong lexical preferences that 
constrain the search space. 
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… designed such that data generated in each step can also be used 
by the next level. Hence the idea of the EM algorithm is generalized 
to iteration along this cascade 
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… in more recent work in a similar spirit. Koehn uses the 
outcome of GIZA++ (which goes up to model V), but 
improves and re-interprets this output in several ways: 

  Integration of IBM models for both directions into a joint 
alignment 

  Reinforcing consistent parts, removing inconsistent parts 
  Extension of the common core to an exhaustive alignment 

using various heuristics 
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… in many more ways: 
 Given more than n>2 languages, we can compute n*(n-1) 

directed alignments and combine them to distinguish 
various levels of confidence 

  There is no reason why existing linguistic knowledge for 
any of the involved languages could not be used to make 
final alignments still much better 

  This would significantly alleviate the severe impact of 
certain systematic alignment errors in the current SMT 
approach 
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IBM translation models 
Model I: 

Generate foreign words independently, each depending on 0 or 1 English words  
Ignore word order  

Model II: 
Position of foreign words depends on position of English origin 

Model III: 
English words have “fertilities” to determine number of foreign words they generate 

Model IV: 
Groups of words are moved to their target location as a whole 

Model V: 
Avoid loss of probabilities on impossible strings 

Models can “feed each other”: Alignments of Model k can be used to 
estimate parameters of Model k+1 

To use these models on real data, the best place to start are the baseline 
systems for the shared tasks listed on http://www.statmt.org/ 
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Sentence alignment 
 Manning, C. & Schütze, H. (1999): Foundations of 

Statistical Natural Language Processing. MIT Press, 
Chap. 13.1 und 13.2. 

 Gale, W.A. & Church, K.W. (1993): A program for 
aligning sentences in bilingual corpora. Computational 
Linguistics 19,p. 75-102. 

 Kay, M. & Röscheisen, M. (1993): Text-translation 
alignment. Computational Linguistics 19, p. 121-142. 
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Word alignment 
  Brown, Cocke, Della Pietra, Della Pietra, Jelinek, Lafferty, Mercer, 

and Roossin (1993): A Statistical Approach to Machine 
Translation. In: Computational Linguistics 16,2. 

  Franz Josef Och, Christoph Tillmann, and Hermann Ney 
(1999):Improved alignment models for statistical machine 
translation. In: Proceedings of EMNLP 

  Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase 
based translation. In: Proceedings of HLT-NAACL. 

  Philipp Koehn (2004). Pharaoh Training Manual. Unpublished 
manuscript. Available from      http://www.statmt.org/wmt06/
shared-task/training-release-1.3.tgz 



41 eisele@dfki.de 

Exercise 1: 
 Implement the LCS procedure in a programming 

language of your choice 
 Try it on at least 20 pairs of strings, make sure that the 

boundary conditions work 
Exercise 2: 
 Generalize the result of Exercise 1 to use a different 

error metric, where a replacement of a vowel by 
another vowel or of a consonant by another consonant 
count only as 0.5 errors. Which of the test cases from 
Exercise 1 are affected? 

Send the code and the results via email to eisele@dfki.de 


