

Algorithms for matching

Exercise session

Pierre Lison

(based on slides from Geert-Jan M. Kruijff)

<plison,gj@dfki.de>

- a. Show how to compute Z_i stepwise for i > 1 (using the notion of Z-boxes) for the following strings:
 - i. AABCAABXAAZ
 - ii. ABCDXABCYABDXY
- b. Apply the Boyer-Moore algorithm to find occurrences of ABXYABXZ in XABXYABXYABXZABXZABXZABXYABXZA

S = AABCAABXAAZ

Step 0)

Compute $Z_2(S)$ by comparing left-to-right S[2..ISI] and S[1..ISI] until a mismatch is found; $Z_2(S)$ is the length of that string. If $Z_2(S) > 0$ then $r=r2=Z_2(S)+1$ and l=2, else l=r=0

S	Α	Α	В	С	A	A	В	X	A	Α	Z	
	I	2	3	4	5	6	7	8	9	10	11	
Z _i (S)		I										

 $Z_2(S)=1: \{ A | A | B ... \}$ so $I=2, r=Z_2(S)+1=1+1=2$

Step 1)

k > r: 3 > (r=2) so find $Z_3(S)$ by comparing S[3...ISI] to S[1..ISI] until a mismatch is found; if $Z_3(S) > 0$ then I=3, r=3+ $Z_3(S)$ -1

 $S(3)=B' \neq S(1)=A'$, hence $Z_3(S)=0$, I and r remain as they are: I=r=2

S	Α	Α	В	С	A	Α	В	Х	A	Α	Z	
	I	2	3	4	5	6	7	8	9	10	11	
Z _i (S)		Ι	0									

 $Z_3(S)=0$ so I=2, r=2

Step 1)

k > r: 4 > (r=2) so find $Z_4(S)$ by comparing S[4...ISI] to S[1..ISI] until a mismatch is found; if $Z_4(S) > 0$ then I=4, r=4+ $Z_4(S)$ -1

 $S(4)=C' \neq S(1)=A'$, hence $Z_4(S)=0$, I and r remain as they are: I=r=2

S	Α	Α	В	С	A	Α	В	X	Α	Α	Ζ	
	I	2	3	4	5	6	7	8	9	10	11	
Z _i (S)		I	0	0								

Z₄(S)=0 so I=2, r=2

Step 1)

k > r: 5 > (r=2) so find $Z_5(S)$ by comparing S[5...ISI] to S[1..ISI] until a mismatch is found; if $Z_5(S) > 0$ then I=5, r=5+ $Z_5(S)$ -1

S[5..7]="A A B" matches S[1..3]="A A B", hence $Z_5(S)=3$, and I and r are set as follows: I=5, r=5+ $Z_5(S)$ -1=5+3-1=7

S	Α	Α	В	С	Α	Α	В	Х	Α	Α	Ζ	
	I	2	3	4	5	6	7	8	9	10		
Z _i (S)		I	0	0	3							

Step 2)

 $6 \le (r=7)$: position k=6 is contained in a Z-box (namely, "AAB"=S[5..7], with S(6)='A').

Hence S(6) also appears in k'=k-l=6-5+1=2: S(6)=S(2)='A'

Therefore, S[6..7] must match S[2..3], which it does

Furthermore, there must be a match to a prefix of S of length minimum $[Z_2(S), IS[2..3]I]$, i.e. minimum [1,r-k+1=2] = 2

Step 2a)

 $Z_6(S)=Z_2(S)=1$ which is smaller than the length of S[2..3], hence I and r stay the same

S	Α	Α	В	С	Α	Α	В	Х	Α	Α	Ζ	
	I	2	3	4	5	6	7	8	9	10	11	
Z _i (S)		I	0	0	3	I						

 $Z_6(S)=Z_2(S)=1$ so I and r remain the same: I=5, r=7

Step 2)

 $7 \le (r=7)$: position k=7 is contained in S[5..7], with S(7)='B'.

Hence S(7) also appears in k'=k-l=7-5+1=3: S(7)=S(3)='B'

Therefore, S[7..7] must match S[3..3], i.e. S(7)=S(3), which it does

Furthermore, there must be a match to a prefix of S of length minimum $[Z_3(S), IS[3..3]I]$, i.e. minimum [0,r-k+1=1] = 1

Step 2a)

 $Z_7(S)=Z_3(S)=0$ which is smaller than the length of S[3..3], hence I and r stay the same

 $Z_7(S)=Z_3(S)=0$ so I and r remain the same: I=5, r=7

k=8 > (r=7) so step 1:

match S[8..ISI] to S[1..ISI]: mismatch, so Z₈(S)=0, I and r remain the same

S	Α	Α	В	С	Α	Α	В	Х	Α	Α	Z	$Z_{2}(S)=0$ so $l=5$ r=7
	I	2	3	4	5	6	7	8	9	10	П	<u> </u>
Z _i (S)		I	0	0	3		0	0				

k=9 > (r=7) so step 1:

match S[9..ISI] to S[1..ISI]: match S[9..10]=S[1..2], so Z₉(S)=2, I=9 and r=10

S	A	Α	В	С	A	Α	В	X	Α	A	Z	$7_{2}(S)=2 \text{ so } l=9 \text{ r}=10$
		2	3	4	5	6	7	8	9	10	11	-2g(0)-2001-0,1-1
Z _i (S)		I	0	0	3	I	0	0	2			

 $k=10 \le (r=10)$ so step 2:

S(10) contained in S[9..10]; S(10) matches S(10-9+1)=S(2)='A';

 $Z_2(S)=1 \ge |S[10..10]|=1$, hence **Step 2b)** but mismatch

S	Α	А	В	С	Α	Α	В	Х	А	Α	Z	$Z_{(s)}(S)=1$
	Ι	2	3	4	5	6	7	8	9	10	11	-10(0)-1
Z _i (S)		I	0	0	3	Ι	0	0	2	Ι		

k=11 > (r=10) so step 1:

match S[11..ISI] to S[1..ISI]: mismatch so Z₁₁(S)=0

S	Α	Α	В	С	Α	Α	В	X	A	Α	Z	Z(S)=(
	Ι	2	3	4	5	6	7	8	9	10	11	-11(0)-0
Z _i (S)			0	0	3	I	0	0	2	I	0	

Deutsches Forschungszentrum für Künstliche Intelligenz German Research Center for Artificial Intelligence

 $Z_{2}(S)$: S(2) \neq S(1) so $Z_{2}(S)=0$, r=l=0

	S	Α	В	C	D	X	A	В	C	Y	Α	В	D	Х	Y	$ 7_{2}(S)=0$
_		I	2	3	4	5	6	7	8	9	10		12	13	14	
Ζ	(S)		0													

i=3..5: $Z_i(S)$: $S(i) \neq S(1)$ so $Z_i(S)=0$, r=l=0

S	A	В	С	D	X	Α	В	C	Y	A	В	D	Х	Y	7(S)=0
	I	2	3	4	5	6	7	8	9	10		12	13	14	-I=35 ⁽³⁾
Z _i (S)		0	0	0	0										

 $Z_6(S)$: S(6) = S(1): S[6..8] matches S[1..3], so $Z_6(S)$ =3, I=6 and r=8

S	Α	В	С	D	X	Α	В	С	Y	Α	В	D	Х	Y	$7_{a}(S)=3$
	I	2	3	4	5	6	7	8	9	10		12	13	14	
Z _i (S)		0	0	0	0	3									

a.ii) Z_i for ABCDXABCYABDXY

Deutsches Forschungszentrum für Künstliche Intelligenz German Research Center for Artificial Intelligence

 $Z_7(S)$: 7 ≤ (r=8) hence S(7)=S(7-6+1)=S(2)='B', $Z_2(S)$ =0 whereas IS[7..8]I=2, hence $Z_7(S)=Z_2(S)=0$ and I and remain as they are: I=6 and r=8

S	Α	В	С	D	X	Α	В	С	Y	A	В	D	Х	Y	7_(S)=0
	I	2	3	4	5	6	7	8	9	10		12	13	14	
Z _i (S)		0	0	0	0	3	0								

 $Z_8(S): 8 \le (r=8)$ hence S(8)=S(8-6+1)=S(3)=C', $Z_3(S)=0$ whereas |S[8..8]|=1, hence $Z_8(S)=Z_3(S)=0$ and I and remain as they are: I=6 and r=8

S	Α	В	С	D	Х	Α	В	С	Y	Α	В	D	Х	Y	$Z_{a}(S)=0$
	I	2	3	4	5	6	7	8	9	10		12	13	14	8(0) 0
Z _i (S)		0	0	0	0	3	0	0							

 $Z_{0}(S)$: 9 > (r=8) but S(9) \neq S(1) hence $Z_{0}(S)$ =0 and I and remain as they are: I=6 and r=8

S	А	В	С	D	X	A	В	С	Y	A	В	D	Х	Y	$7_{a}(S)=0$
	I	2	3	4	5	6	7	8	9	10		12	13	14	<u> </u>
Z _i (S)		0	0	0	0	3	0	0	0						

 $Z_{10}(S): 10 > (r=8), S(10)=S(1), match S[10..1] with S[1..2], hence <math>Z_{10}(S)=2$ and l=10 and r=11

S	Α	В	С	D	X	Α	В	С	Y	Α	В	D	X	Y	Z. (S)=0
	I	2	3	4	5	6	7	8	9	10		12	13	14	-10(0)-0
Z _i (S)		0	0	0	0	3	0	0	0	2					

 $Z_{11}(S)$: 11 \leq (r=11) hence S(11)=S(11-10+1)=S(2)='B', $Z_2(S)=0$ whereas IS[11..11]I=1, hence $Z_{11}(S)=Z_2(S)=0$ and I and remain as they are: I=10 and r=11

S	Α	В	С	D	X	Α	В	С	Y	Α	В	D	Х	Y	Z(S)=0
	I	2	3	4	5	6	7	8	9	10		12	13	14	-11(0)-0
Z _i (S)		0	0	0	0	3	0	0	0	2	0				

i=12..14: Z_i(S)=0

S	Α	В	С	D	X	Α	В	С	Y	A	В	D	Х	Y	i=12 14 [·] 7·(S)=0
	I	2	3	4	5	6	7	8	9	10	11	12	13	14	
Z _i (S)		0	0	0	0	3	0	0	0	2	0	0	0	0	

- "Apply the Boyer-Moore algorithm to find occurrences of P = ABXYABXZ in T = XABXYABXYABXZABXZABXYABXZA"
- The intuition behind Boyer-Moore:
 - Align P with T, check whether characters in P and T match, from right to left
 - Apply two heuristic rules: the bad character rule and the good suffix rule -- and apply the rule which yields the maximum shift

We start with the necessary preprocessing:

- Compute L'(i) and l'(i) for each position i of P
- and compute R(x) for each character $x \in \Sigma$

First preprocessing step: computing L'(i) for each position in P

- For each i, L'(i) is the largest position less than n such that string P[i..n] matches a suffix of P[1..L'(i)] and such that the character preceding the suffix is not equal to P(i-1).
- and L'(i) = 0 if there is no position satisfying the conditions.

• Example:

- For our pattern P = ABXYABXZ, we can notice right away that L'(i)
 = 0 for all i, but here we'll show the computation in detail
 - Why? Since the character "Z" only appears once at the end of the string, there can be no substring of P[1...(n-1)] able to match a suffix of P

- We can compute L'(i) based on the N_i(P) values
 - N_j(P) is the length of the longest suffix of the substring P[1...j] that is also a suffix of the full string P.
 - $N_i(P)$ is the *reverse* operation of $Z_i(P)$
 - For our pattern P = ABXYABXZ, we can immediately notice that N_j(P) = 0 for all 1 ≤ j ≤ |P|
 - As a consequence, L'(i) is also = 0 for all $1 \le i \le |P|$

Second preprocessing step: Computing the I'(i) values:

- I'(i) denotes the longest suffix of P[i..n] that is also a prefix of P, if one exists. If none exists, let I'(i) be zero.
- For our pattern P = ABXYABXZ, there is no suffix of P[i..n] that is also a prefix of P
 - Why? Same reason as for L'(i): the character Z does not appear anywhere else in the string
- Third (and final) preprocessing step: computing R(x) for each character $x \in \Sigma$

For our pattern P = ABXYABXZ, we therefore have R(A) = 5, R(B) = 6, R(X) = 7, R(Y) = 4, and R(Z) = 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 XABXYABXYABXYABXZABXZABXYABXZA

A B X Y A B X Z 1 2 3 4 5 6 7 8

> mismatch at T(8) = X ... and R(X) = 7

The bad character rule tells us that we can shift P to the right by max[I, i-R(T(k))] = places

In this case, max[I, i-R(T(k))] = I

X

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 XABXYABXYABXZABXZABXZABXZABXZABXZABXZA

ABXYABXZ

- 1 2 3 4 5 6 7 8
 - x mismatch at T(9) = Y
 ... and R(Y) = 4

The bad character rule tells us that we can shift P to the right by max[I, i-R(T(k))] = places

In this case, max[I, i-R(T(k))] = 4

Deutsches Forschungszentrum für Künstliche Intelligenz German Research Center for Artificial Intelligence

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 XABXYABXYABXYABXZABXZABXYABXZA

ABXYABXZ 1 2 3 4 5 6 7 8

We found a full match at T[6] !

We can now shift the pattern by (n-l'(2)) places

X

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 X A B X Y A B X Y A B X Y A B X Z A B X Z A B X Y A B X Z A

A B X Y A B X Z 1 2 3 4 5 6 7 8

mismatch at T(2I) = Y

... and R(Y) = 4

The bad character rule tells us that we can shift P to the right by max[I, i-R(T(k))] = places

```
In this case, max[1, i-R(T(k))] = 4
```

Deutsches Forschungszentrum für Künstliche Intelligenz German Research Center for Artificial Intelligence

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 X A B X Y A B X Y A B X Y A B X Z A B X Z A B X Y A B X Z A

ABXYABXZ

1 2 3 4 5 6 7 8

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

We found another full match at T[18] !

... and we're done :-)

- The exam will contain one question about string matching
- It will consist of a question similar to the ones of this exercise session (no bad surprises)
- What is important is that you describe in detail the steps that you follow in the algorithm
 - Provide intermediate results (values for Z_i, N_i, L'(i), etc.)
 - Show me that you understand how the algorithm works!

 I assume that many of you will start searching soon for a good topic for your M.Sc. thesis

- If you're interested, I wrote down a list of topics for which I can provide some guidance
 - Mostly about dialogue systems, but also 2-3 more "linguistically-oriented" topics
- The list is available on my website:
 - http://www.dfki.de/~plison/thesistopics.html
 - Just let me know if you're interested!