Algorithms for matching

Exercise session

Pierre Lison
(based on slides from Geert-Jan M. Kruijff)
〈plison,gj@dfki.de〉

The exercises for today

a. Show how to compute Z_{i} stepwise for $i>1$ (using the notion of Z-boxes) for the following strings:
i. AABCAABXAAZ
ii. ABCDXABCYABDXY
b. Apply the Boyer-Moore algorithm to find occurrences of $A B X Y A B X Z$ in XABXYABXYABXZABXZABXYABXZA

a.i.) Z_{i} for $A A B C A A B X A A Z$

$S=A A B C A A B X A A Z$

Step 0)

Compute $\mathrm{Z}_{2}(\mathrm{~S})$ by comparing left-to-right $\mathrm{S}[2 . . \mathrm{ISI}]$ and $\mathrm{S}[1 . . \mathrm{ISI}]$ until a mismatch is found; $Z_{2}(S)$ is the length of that string. If $Z_{2}(S)>0$ then $r=r 2=Z_{2}(S)+1$ and $I=2$, else $I=r=0$

S	A	A	B	C	A	A	B	X	A	A	Z
	1	2	3	4	5	6	7	8	9	10	11
$Z_{i}(\mathrm{~S})$	--	1									

Step 1)

$\mathrm{k}>\mathrm{r}$: $3>(\mathrm{r}=2)$ so find $\mathrm{Z}_{3}(\mathrm{~S})$ by comparing $\mathrm{S}[3 . . . \mathrm{ISI}]$ to $\mathrm{S}[1 . . \mathrm{ISI}]$ until a mismatch is found; if $Z_{3}(S)>0$ then $l=3, r=3+Z_{3}(S)-1$
$S(3)={ }^{\prime} B^{\prime} \neq S(1)={ }^{\prime} A^{\prime}$, hence $Z_{3}(S)=0, I$ and r remain as they are: $l=r=2$

S	A	A	B	C	A	A	B	X	A	A	Z
	I	2	3	4	5	6	7	8	9	10	11
$\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$	--	1	0								

a.i.) Z_{i} for $A A B C A A B X A A Z$

Step 1)

$\mathrm{k}>\mathrm{r}: 4>(\mathrm{r}=2)$ so find $\mathrm{Z}_{4}(\mathrm{~S})$ by comparing $\mathrm{S}[4 . . . \mathrm{ISI}]$ to $\mathrm{S}[1 . . \mathrm{ISI}]$ until a mismatch is found; if $Z_{4}(S)>0$ then $I=4, r=4+Z_{4}(S)-1$
$S(4)={ }^{\prime} C^{\prime} \neq S(1)={ }^{\prime} A^{\prime}$, hence $Z_{4}(S)=0, I$ and r remain as they are: $I=r=2$

S	A	A	B	C	A	A	B	X	A	A	Z
	I	2	3	4	5	6	7	8	9	10	11
$Z_{i}($ S $)$	--	1	0	0							

a.i.) Z_{i} for $A A B C A A B X A A Z$

Step 1)

$k>r: 5>(r=2)$ so find $Z_{5}(S)$ by comparing $S[5 \ldots . . I S I]$ to $S[1 . . I S I]$ until a mismatch is found; if $Z_{5}(S)>0$ then $l=5, r=5+Z_{5}(S)-1$
$S[5 . .7]=" A A B$ " matches $S[1 . .3]=" A A B$ ", hence $Z_{5}(S)=3$, and I and r are set as follows: $l=5, r=5+Z_{5}(S)-1=5+3-1=7$

S	A	A	B	C	A	A	B	X	A	A	Z
	1	2	3	4	5	6	7	8	9	10	11
$\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$	--	1	0	0	3						

a.i.) Z_{i} for $A A B C A A B X A A Z$

Step 2)

$6 \leq(r=7)$: position $k=6$ is contained in a Z-box (namely, "AAB"=S[5..7], with $\left.\mathrm{S}(6)={ }^{\prime} \mathrm{A}^{\prime}\right)$.

Hence $S(6)$ also appears in k ' $=k-l=6-5+1=2: S(6)=S(2)=' A$ '
Therefore, S[6..7] must match S[2..3], which it does
Furthermore, there must be a match to a prefix of S of length minimum $\left[Z_{2}(S), I S[2 . .3]\right]$, i.e. minimum $[1, r-k+1=2]=2$

Step 2a)

$$
Z_{6}(S)=Z_{2}(S)=1 \text { which is smaller than the length of } S[2 . .3] \text {, hence } I \text { and } r \text { stay the same }
$$

S	A	A	B	C	A	A	B	X	A	A	Z
	1	2	3	4	5	6	7	8	9	10	11
$Z_{i}(S)$	--	I	0	0	3	1					

$$
Z_{6}(S)=Z_{2}(S)=1 \text { so } I \text { and } r \text { remain the same: } l=5, r=7
$$

a.i.) Z_{i} for $A A B C A A B X A A Z$

Step 2)

$7 \leq(r=7)$: position $k=7$ is contained in $S[5 . .7]$, with $S(7)={ }^{\prime} B^{\prime}$.
Hence $S(7)$ also appears in k ' $=k-l=7-5+1=3: S(7)=S(3)=$ 'B'
Therefore, $S[7 . .7]$ must match $S[3 . .3]$, i.e. $S(7)=S(3)$, which it does
Furthermore, there must be a match to a prefix of S of length minimum $\left[Z_{3}(S), I S[3 . .3] \mid\right]$, i.e. minimum $[0, r-k+1=1]=1$

Step 2a)

$Z_{7}(S)=Z_{3}(S)=0$ which is smaller than the length of $S[3 . .3]$, hence I and r stay the same

	A	A	B	C	A	A	B	X	A	A	Z
$Z_{i}(S)$	I	2	3	4	5	6	7	8	9	10	$I I$
	-	I	0	0	3	1	0				

$$
Z_{7}(S)=Z_{3}(S)=0 \text { so } I \text { and } r \text { remain the same: } l=5, r=7
$$

a.i.) Z_{i} for $A A B C A A B X A A Z$

$k=8>(r=7)$ so step 1 :

match $\mathrm{S}[8 . . \mathrm{ISI}]$ to $\mathrm{S}[1 . . \mathrm{ISI}]$: mismatch, so $\mathrm{Z}_{8}(\mathrm{~S})=0$, I and r remain the same

S	A	A	B	C	A	A	B	X	A	A	Z	$\mathrm{Z}_{8}(\mathrm{~S})=0$ so $\mathrm{l}=5, \mathrm{r}=7$
	1	2	3	4	5	6	7	8	9	10	11	
$\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$	--	1	0	0	3	1	0	0				

$k=9>(r=7)$ so step 1 :
match $\mathrm{S}[9 . . \mathrm{ISI}]$ to $\mathrm{S}[1 . . \mathrm{ISI}]$: match $\mathrm{S}[9 . .10]=\mathrm{S}[1 . .2]$, so $\mathrm{Z}_{9}(\mathrm{~S})=2, \mathrm{I}=9$ and $\mathrm{r}=10$

S	A	A	B	C	A	A	B	X	A	A	Z	$\mathrm{Z}_{9}(\mathrm{~S})=2$ sol=9, $\mathrm{r}=10$
	1	2	3	4	5	6	7	8	9	10	11	
$Z_{i}(S)$	--	1	0	0	3	1	0	0	2			

a.i.) Z_{i} for $A A B C A A B X A A Z$

$k=10 \leq(r=10)$ so step 2 :
$S(10)$ contained in $S[9 . .10] ; S(10)$ matches $S(10-9+1)=S(2)={ }^{\prime} A^{\prime}$;
$Z_{2}(S)=1 \geq|S[10 . .10]|=1$, hence Step $\left.2 b\right)$ but mismatch

S	A	A	B	C	A	A	B	X	A	A	Z
$Z_{i}(S)$	I	2	3	4	5	6	7	8	9	10	11
	--	1	0	0	3	1	0	0	2	1	

$k=11>(r=10)$ so step 1 :
match $\mathrm{S}[11 . . \mid \mathrm{IS}]$ to $\mathrm{S}[1 . . \mid \mathrm{ISI}]$: mismatch so $\mathrm{Z}_{11}(\mathrm{~S})=0$

S	A	A	B	C	A	A	B		X	A	A	Z	$\mathrm{Z}_{11}(\mathrm{~S})=0$
	1	2	3	4	5	6	7		8	9	10	11	
$\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$	--	1	0	0	3	1	0		0	2	1	0	

a.ii) $Z_{\text {i }}$ for $A B C D X A B C Y A B D X Y$

$Z_{2}(S): S(2) \neq S(1)$ so $Z_{2}(S)=0, r=1=0$

S	A	B	C	D	X	A	B	C	Y	A	B	D	X	Y	$\mathrm{Z}_{2}(\mathrm{~S})=0$
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
$\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$	--	0													

$i=3 . .5: Z_{i}(S): S(i) \neq S(1)$ so $Z_{i}(S)=0, r=l=0$

S	A	B	C	D	X	A	B	C	Y	A	B	D	X	Y	$\mathrm{Z}_{\mathrm{i}=3 . .5}(\mathrm{~S})=0$
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
$Z_{i}(S)$	--	0	0	0	0										

$Z_{6}(S): S(6)=S(1): S[6 . .8]$ matches $S[1 . .3]$, so $Z_{6}(S)=3, I=6$ and $r=8$

S	A	B	C	D	X	A	B	C	Y	A	B	D	X	Y	$\mathrm{Z}_{6}(\mathrm{~S})=3$
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
$\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$	--	0	0	0	0	3									

a.ii) Z_{i} for ABCDXABCYABDXY

$Z_{7}(S): 7 \leq(r=8)$ hence $S(7)=S(7-6+1)=S(2)={ }^{\prime} B^{\prime}, Z_{2}(S)=0$ whereas $|S[7 . .8]|=2$, hence $Z_{7}(S)=Z_{2}(S)=0$ and I and remain as they are: $I=6$ and $r=8$

S	A	B	C	D	X	A	B	C	Y	A	B	D	X	Y	$Z_{7}(S)=0$
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
$\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$	--	0	0	0	0	3	0								

$Z_{8}(S): 8 \leq(r=8)$ hence $S(8)=S(8-6+1)=S(3)={ }^{\prime} C^{\prime}, Z_{3}(S)=0$ whereas $|S[8 . .8]|=1$, hence $Z_{8}(S)=Z_{3}(S)=0$ and I and remain as they are: $I=6$ and $r=8$

S	A	B	C	D	X	A	B	C	Y	A	B	D	X	Y	$Z_{8}(S)=0$
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
$\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$	--	0	0	0	0	3	0	0							

$Z_{9}(S): 9>(r=8)$ but $S(9) \neq S(1)$ hence $Z_{9}(S)=0$ and I and remain as they are: $I=6$ and $r=8$

S	A	B	C	D	X	A	B	C	Y	A	B	D	X	Y	$Z_{9}(S)=0$
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
$\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$	--	0	0	0	0	3	0	0	0						

a.ii) Z_{i} for ABCDXABCYABDXY

$Z_{10}(S): 10>(r=8), S(10)=S(1)$, match $S[10 . .1]$ with $S[1 . .2]$, hence $Z_{10}(S)=2$ and $I=10$ and $r=11$

S	A	B	C	D	X	A	B	C	Y	A	B	D	X	Y
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$	--	0	0	0	0	3	0	0	0	2				

$Z_{11}(S): 11 \leq(r=11)$ hence $S(11)=S(11-10+1)=S(2)={ }^{\prime} B^{\prime}, Z_{2}(S)=0$ whereas $|S[11 . .11]|=1$, hence $Z_{11}(S)=Z_{2}(S)=0$ and I and remain as they are: $I=10$ and $r=11$

S	A	B	C	D	X	A	B	C	Y	A	B	D	X	Y	$\mathrm{Z}_{11}(\mathrm{~S})=0$
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
$Z_{i}(S)$	--	0	0	0	0	3	0	0	0	2	0				

$\mathrm{i}=12 . .14: \mathrm{Z}_{\mathrm{i}}(\mathrm{S})=0$

S	A	B	C	D	X	A	B	C	Y	A	B	D	X	Y	$\mathrm{i}=12 . .14: \mathrm{Z}_{\mathrm{i}}(\mathrm{~S})=0$
	I	2	3	4	5	6	7	8	9	10	11	12	13	14	
$\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$	--	0	0	0	0	3	0	0	0	2	0	0	0	0	

b) Boyer-Moore

- "Apply the Boyer-Moore algorithm to find occurrences of $P=A B X Y A B X Z$ in $T=X A B X Y A B X Y A B X Z A B X Z A B X Y A B X Z A "$
- The intuition behind Boyer-Moore:
- Align P with T, check whether characters in P and T match, from right to left
- Apply two heuristic rules: the bad character rule and the good suffix rule -- and apply the rule which yields the maximum shift

We start with the necessary preprocessing:

- Compute $L^{\prime}(i)$ and $l^{\prime}(i)$ for each position i of P
- and compute $R(x)$ for each character $x \in \Sigma$

b) Boyer-Moore: preprocessing

First preprocessing step: computing L'(i) for each position in P

- For each $\mathrm{i}, \mathrm{L}^{\prime}(\mathrm{i})$ is the largest position less than n such that string $\mathrm{P}[\mathrm{i} . \mathrm{n}]$ matches a suffix of $\mathrm{P}\left[1 . . \mathrm{L}^{\prime}(\mathrm{i})\right]$ and such that the character preceding the suffix is not equal to $\mathrm{P}(\mathrm{i}-1)$.
- and $L^{\prime}(i)=0$ if there is no position satisfying the conditions.
- Example:

$$
P=\begin{aligned}
& \mathrm{C} A \mathrm{~B} \\
& \mathrm{P} \\
& 1
\end{aligned} \mathbf{2}
$$

- For our pattern $\mathbf{P}=\mathbf{A B X Y A B X Z}$, we can notice right away that L‘(i) $=0$ for all i , but here we'll show the computation in detail
- Why? Since the character "Z" only appears once at the end of the string, there can be no substring of $P[1 \ldots(n-1)]$ able to match a suffix of P

b) Boyer-Moore: preprocessing

- We can compute $L^{\prime}(i)$ based on the $N_{j}(P)$ values
- $N_{j}(P)$ is the length of the longest suffix of the substring $P[1 \ldots j]$ that is also a suffix of the full string P.
- $N_{j}(P)$ is the reverse operation of $Z_{j}(P)$
- For our pattern $\mathbf{P}=\mathbf{A B X Y A B X Z}$, we can immediately notice that $\mathbf{N}_{\mathrm{j}}(\mathbf{P})=\mathbf{0}$ for all $1 \leq \mathrm{j} \leq|P|$
- As a consequence, $L^{\prime}(i)$ is also $=0$ for all $1 \leq i \leq|P|$

b) Boyer-Moore: preprocessing

- Second preprocessing step: Computing the l'(i) values:
- $l^{\prime}(i)$ denotes the longest suffix of $P[i . . n]$ that is also a prefix of P, if one exists. If none exists, let l'(i) be zero.
- For our pattern $\mathbf{P}=\mathbf{A B X Y A B X Z}$, there is no suffix of $P[i . . n]$ that is also a prefix of P
- Why? Same reason as for L'(i): the character Z does not appear anywhere else in the string
- Third (and final) preprocessing step: computing $\mathrm{R}(\mathrm{x})$ for each character $x \in \Sigma$
- For our pattern $\mathbf{P}=\mathbf{A B X Y A B X Z}$, we therefore have $R(A)=5, R(B)=$ $6, R(X)=7, R(Y)=4$, and $R(Z)=8$

b) Boyer-Moore: search

ABXYABXZ
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
mismatch at $T(8)=X$
... and $R(X)=7$
The bad character rule tells us that we can shift P to the right by $\max [\mathrm{I}, \mathrm{i}-\mathrm{R}(\mathrm{T}(\mathrm{k}))]=$ places
$\leadsto I n$ this case, $\max [\mathrm{I}, \mathrm{i}-\mathrm{R}(\mathrm{T}(\mathrm{k}))]=\mathrm{I}$

b) Boyer-Moore: search

ABXYABXZ
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
$x \quad$ mismatch at $T(9)=Y$
... and $R(Y)=4$
The bad character rule tells us that we can shift P to the right by $\max [\mathrm{I}, \mathrm{i}-\mathrm{R}(\mathrm{T}(\mathrm{k}))]=$ places
$\leadsto \ln$ this case, $\max [\mathrm{I}, \mathrm{i}-\mathrm{R}(\mathrm{T}(\mathrm{k}))]=4$

ABXYABXZ
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

We found a full match at T[6] !
We can now shift the pattern by ($\mathrm{n}-\mathrm{l}^{\prime}(2)$) places
$\rightleftharpoons I n$ this case, $\left(n-l^{\prime}(2)\right)=8$
mismatch at $\mathrm{T}(2 \mathrm{I})=\mathrm{Y}$
... and $R(Y)=4$
The bad character rule tells us that we can shift P to the right by $\max [I, i-R(T(k))]=$ places
$\leadsto \ln$ this case, $\max [\mathrm{I}, \mathrm{i}-\mathrm{R}(\mathrm{T}(\mathrm{k}))]=4$

We found another full match at $\mathrm{T}[\mathrm{I} 8]$!
... and we're done :-)

- The exam will contain one question about string matching
- It will consist of a question similar to the ones of this exercise session (no bad surprises)
- What is important is that you describe in detail the steps that you follow in the algorithm
- Provide intermediate results (values for $Z_{i}, N_{i}, L^{\prime}(i)$, etc.)
- Show me that you understand how the algorithm works!

Shameless plug

- I assume that many of you will start searching soon for a good topic for your M.Sc. thesis

- If you're interested, I wrote down a list of topics for which I can provide some guidance
- Mostly about dialogue systems, but also 2-3 more "linguistically-oriented" topics
- The list is available on my website:
- http://www.dfki.de/~plison/thesistopics.html
- Just let me know if you're interested!

