Deutsches Forschungszentrum fur Kunstliche Intelligenz = —— e 70

Algorithms for
matching

Computational Linguistics,
Summer Semester 2010

Pierre Lison

(based on slides from Geert-dan M. Kruijff)
{plison,gj@dfki.de)

”r
4 & S
, Deutsches Forschungszentrum fiir Kiinstliche Intelligenz gt s ‘ Ij. ‘ Hﬁ
O ay S e C u re German Research Center for Artificial Intelligence —_ E—A ij, ‘ = o are

* Objective:
o Efficient algorithms for finding matches of patterns (strings) in texts.

* The focus is on exact matching

* But we'll also quickly review inexact matching in the last part of the lecture

* We deal with chars/Strings, but this generalizes to words/Strings

* Why efficient methods for pattern matching?

e Applications of pattern matching in search (web search for IR, IE, Q/A),
tagging (named entity recognition), shallow processing (parsing)

o Efficiency pays off when dealing with large amounts of data!

* Furthermore: preliminaries for finite-state automata, dynamic
programming/memoization technigques in parsing

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 2 Introduction to Computational Linguistics: Matching algorithms

-
/ \’/\ .P\v: »
[] <
Iq 1 ’ Deutsches Forschungszentrum fur Ktinstliche Intelligenz gt i ‘j =
W at WI I I yo u I e a rI l German Research Center for Artificial Intelligence —_ _ IAA,J ‘ Mﬁ—-
[|

1. The naive method for exact string matching

* Method for finding matches of a pattern P in a text T using O(|P| - |T|) comparisons

2. Methods for fundamental preprocessing of a pattern

* Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found

3. The Booyer-Moore algorithm

* Smart shifts in sublinear O(|P|+|T]) time (B-M) thanks two complementary rules: the bad
character rule and the good suffix rule

4. Inexact matching

* The edit distance algorithm

Reference: Dan Gusfield. Algorithms on Strings, Trees and Sequences. CUP, 1997:
Chapters | & 2

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 3 Introduction to Computational Linguistics: Matching algorithms

QOutline

1. The naive method for exact string matching

e Method for finding matches of a pattern P in a text T using O(|P] - |T]) comparisons

2. Methods for fundamental preprocessing of a pattern

e Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found

3. The Booyer-Moore algorithm

* Smart shifts in sublinear O(|P|+|T]) time (B-M), thanks to 2 complementary rules: the bad
character rule and the good suffix rule

4. Inexact matching

* The edit distance algorithm

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 4 Introduction to Computational Linguistics: Matching algorithms

-
n n n y
Deutsches Forschungszentrum fur Kiinstliche Intelligenz gt = ‘ Ij. I ==ﬂ
re I I I l I I l a rI e S German Research Center for Artificial Intelligence —_ WAAxJ. ‘ = 7

* A string S is an ordered list of characters, written
contiguously from left to right. For any string S, SJi..j] is the
(contiguous) substring of S that starts at position i and ends
at position j.

* The substring S[1..i] is the prefix of S that ends at position i,
and the substring SJj..|S|] is the suffix of S starting at position
i, with |S| the length of S.

* For any string S, S(i) denotes the character at positioniin S.

S(i)

R S[i-IS|T.
S
| 7 B

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 5 Introduction to Computational Linguistics: Matching algorithms

. . r Kunstliche INtelligenz | ———— s o ""//’ T_\ s
The naive method for matching T T — i] e T
* GGiven
* a pattern P, and a text T in which we are looking for matches of P

* Pointers: p to position in P; t to position in T; s to start of matching P in T

» Algorithm
[Start: p=1, t=1,s=1]
1. Align the left of P with the left of T: set position in P, p=1; set position in T, t=1
2. Set the current left-alignment position in T to s=1
[Loop]
3. Compare the character at P(p) with the character at T(t)
4. If P(p) == T(1):
If p < |P| then set p=p+1 and set t=t+1; else report match, and set p=1, s=s+1, t=s;

Else p=1 and s=s+1, t=s

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 6 Introduction to Computational Linguistics: Matching algorithms

The naive method for matching
@@@@@@@@@m” .

T= XABXYABXYABXZ
P= ABXYABXZ

ABXYABXZ

* ABXYABX?Z

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 7

[Start: p=1, t=1,s=1]
1. Align the left of P with the left of T:
2. p=1; t=1; s=1
[Loop]
2. Compare P(p) with T(t)
3. If P(p) == T(t):
If p <|P|:
p=p+1 and t=t+1;

Else: report match, and p=1, s=s+1, t=s;

Else: p=1 and s=s+1, t=s

In total,
we had to make

20

comparisons

Introduction to Computational Linguistics: Matching algorithms

- . / P oy oagn
I m m Deutsches Forschungszentrum fur Kiinstliche Intelligenz gt —— ! ‘ -
h e n a I Ve et h Od fo r atC h I n g German Research Center for Artificial Intelligence —_ WAij, ‘ m—,—

* Observations
* The worst-case number of comparisons is O(|P| - |T])
* This is not so useful in real-life applications!
* E.g. |P|=30 and |T|=200K: 6M comparisons; with 1ms per

comparison this would mean 6000s, or 100 minutes, i.e. 1:40h. If we
manage to get linear complexity O(|P|+|T]) we are down to 3.33min!

* |deas for speeding up the naive method

* Try to shift further when a mismatch occurs, but never so far as to
miss an occurrence of P in T

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 8 Introduction to Computational Linguistics: Matching algorithms

Speeding up thru smarter shifting T f

A S)

12

T=XABXYABXYABXZ

P= ABXYABXZ

X
ABXYABXZ

X

In total,
we had to make

17

comparisons

” b

in T is not before position 5 inT,
so shift to position 6!

ABXYABXZ

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms

-
4 S

Deutsches Forschungszentrum fur Ktinstliche Intelligenz ot it ‘ [I. l ==ﬂ
German Research Center for Artificial Intelligence —_ H_A Af—-i ‘ O

Speeding up thru smarter shifting

A S)

12

1= XABXYABXYABXZ

P= ABXYABXZ

X
ABXYABXZ

X

In total,
we had to make

14

comparisons

Assume: we know prefix P[1..3]="A B X”
starts at T(6). P[1..3]=T[6..8]; align at T(6)
but start matching P(4) against T(9)

ABXYABXZ

Introduction to Computational Linguistics: Matching algorithms

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 10

QOutline

1. The naive method for exact string matching

* Method for finding matches of a pattern P in a text T using O(|P| - |T]) comparisons

2. Methods for fundamental preprocessing of a pattern

* Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is
found

3. The Booyer-Moore algorithm

* Smart shifts in sublinear O(|P|+|T]) time (B-M), thanks to 2 complementary rules: the bad
character rule and the good suffix rule

4. Inexact matching

* The edit distance algorithm

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 11 Introduction to Computational Linguistics: Matching algorithms

Smarter shifting thru preprocessing

* Before searching, preprocess P (or T, or P+T)

* Fundamental preprocessing of a string S
* At S(i), i > 1 compute length of longest prefix of SJi..|S|] that is a prefix of S

. Let Z(S) be that length at |
S=AABCAABXAAZ
Z.(S)=3: (C... X)
Z.(S)=1: (A ..AB)
Z,(5)=Z,(S)=0
Z,(5)=2: (AA B ..AAZ)

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 12 Introduction to Computational Linguistics: Matching algorithms

g . y o
Smarter shifting thru preprocessing - e

» Given a string S=P$T
* The dollar sign $ is not in the languages for P or T
¢ |P|=n, [T|=m, n<m, so S=n+m+1

» Compute Z(S) for 2 <i< n+m+1

- Because “$” is not in the language for P, Z(S) < n for every i > 1

« Z(S)=n for i > n+1 identifies an occurrence of P starting at i-(n+1) in T

» Also: If P occurs in T starting at position |, then it must be that Z(S)=n

n+‘|)+j(

o If Z(S) is computable in linear time, then we have linear time
matching

* Matching = search = matching = preprocessing + search

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 13 Introduction to Computational Linguistics: Matching algorithms

r
Ny
n]]] / G ¥
m n n n m Deutsches Forschungszentrum fiir Kiinstliche Intelligenz gt s ‘ = ' Hﬁ
C O p u t I g Z' S I I I e a r t I e German Research Center for Artificial Intelligence —_ E—A ij, ‘ Ij = o are
|

» The task: Compute Z(S) in linear time, i.e. O(|S|)

* The notion of a Z-box

o For every i > 1 with Z(S) > 0, define a Z-box to be the substring from
L until i+Z,(5)-1, i.e. §]i...i+Z(S)-1]

o For every i > 1, r, is the right-most endpoint of the Z-boxes that
begin at or before i;

o i.e, r. is the largest value of j+Zj(S)-1 forall 1 <j<isuch that Z(S) > 0

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 14 Introduction to Computational Linguistics: Matching algorithms

Ie‘-: y
n _
m Deutsches Forschun gszentrum fur Ktnstliche Intelligenz gt —— ‘ ‘ -
S ketC h Of t h e aI g O rlt h German Research Center for Artificial Intelligence —_ E—A ij, ‘ I#-M v,

» We need to compute Z(S), r, and |, for every i > 2
 In any iteration i, we only need r and Ij for j=1-1; i.e justr, |

* |[f we discover a new Z-box at i, set r to the end of that Z-box,
which is the right-most position of any Z-box discovered so far

» Step O (initialisation)

Find ZQ(S) by comparing left to right S[2..|S|] and S[1..|S|] until a mismatch is
found; ZZ(S) is the length of that string. If Z5(S) > 0 then set r=r, to Z,(S)+1

2 2 2
and I=I2, else r=[=0

» Induction hypothesis: we have correct Z(S) for i up to k-1>1, r, |

» Next, compute Zi(S) from the already computed Z values

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 15 Introduction to Computational Linguistics: Matching algorithms

: . 4o P . " .“//r /—\ .P‘.: 1
Compute Z(S) from Z(S), 2 <j < | e e e — g gl i

* Simplest case: inclusion

» E.g. for k=121, we have Z,(S)...Z,,,(S), and r,,,=130, 1.,,=100

Tt T120

* Thus: a substring of length 31 starting at position 100, matching S[1..31]

* And: the substring of length 10 starting at 121 must match S[22..31], so
Z,, could help!

» For example, if Z,,is 3, then Z.,, must also be 3

I |
I 22 3l 100 121 130

\Zzz might be useful to compute Zj>;!

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 16 Introduction to Computational Linguistics: Matching algorithms

Compute Z(S) from Z | (S),2<j<i Pesmrospmn e . gl i

» Given Zi(S) for all 1 <i < k-1, and the current values of

Z, (S), r,and |; compute the updated r and |

k
* Step 1:

o if k> 1, then find Z, (S) by comparing the characters starting at k to

the characters starting at position 1 in S, until a mismatch is found.
The length of the match is Z, (S). If Z,(S) > 0, set r=k+Z, (5)-1, and I=k.

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 17 Introduction to Computational Linguistics: Matching algorithms

”r
. . A S
m m Deutsches Forschungszentrum fiir Kiinstliche Intelligenz gt s ‘ =
CO p ute Zi (S) fro Zi (S)) 2 < J < I German Research Center for Artificial Intelligence —_ E—A ij, ‘ I#-M_,—'

* Step 2

 If K < r, then position k is contained in a Z-box, and hence S(k) is
contained in a substring S[l..r] (call it «) such that | > 1 and «
matches a prefix of S.

* Therefore, character S(k) also appears in position k’=k-I+1 of S.

* By the same reasoning, the substring S[k..r] (call it) must match
substring S[k’..Z/(S)]. (Remember the example with Z,,(S), r=121/)

* Hence, the substring at position k must match a prefix of S of length
at least the minimum of Z,(S) and |B| (which is r-k+1).

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 18 Introduction to Computational Linguistics: Matching algorithms

-
n n] 4
I Iq Deutsches Forschungszentrum fur Ktinstliche Intelligenz g =t ‘ =
WO CaS e S g Ive I l t e I I I I I I I I I I u I I I German Research Center for Artificial Intelligence —_ I‘i?AAf—j ‘ i m—,—

- Case 1: If Z,.(S) < |B]

* then position k is a Z-box (call it y) contained within a larger Z-box

» set Z (S)=Z,.(S) and leave r and | as they are

K+ Z, ,(S)-1 k+ Z, (S)-1

k!

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 19 Introduction to Computational Linguistics: Matching algorithms

Two cases given the minimum g [

. Case 2:If Z,, > ||

» then the entire substring S[k..r] must be a prefix of S and Z, (S)=|B|=r-k+1

» However, Z, (S) may be strictly larger, so compare characters starting at r

+1 of S to the characters starting at |B|+1 of S until a mismatch occurs
(Remember the second smart improvement over the naive method!)

» Say the mismatch is at g = r+1. Then Z, (S)=g-k, r=g-1, and I=k

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 20 Introduction to Computational Linguistics: Matching algorithms

Linear time computation g (W

» “The algorithm computes all the Z(S) values in O(|S|) time”

The time is proportional to the number of iterations, |S|, plus the number
of character comparisons. Each comparison is either a match or a
mismatch. Each iteration that performs any character comparisons at all
ends the first time it finds a mismatch; hence there are at most |S|
mismatches during the entire algorithm. To bound the number of
mismatches, note first that r, > r,_, for every iteration k. Now, let k be an

iteration where g > 0 matches occur. Thenr, is set to r, +q at least. Finally,
< |S| so the total number of matches that can occur during any
execution of the algorithm is at most |S|.

» “Computing Z(S) on S=P$T finds matches of P in T in O(|T|)”

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 21 Introduction to Computational Linguistics: Matching algorithms

QOutline

1. The naive method for exact string matching

e Method for finding matches of a pattern P in a text T using O(|P| - |T]) comparisons

2. Methods for fundamental preprocessing of a pattern

e Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found

3. The Booyer-Moore algorithm

e Smart shifts in sublinear O(|P|+|T]) time (B-M), thanks to 2 complementary rules: the
bad character rule and the good suffix rule

4. Inexact matching

* The edit distance algorithm

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 22 Introduction to Computational Linguistics: Matching algorithms

”r
/ | oy oagn
L
I h e e h m Deutsches Forschungszentrum fur Kiinstliche Intelligenz gt —— ! ‘ -
e B Oy r- M O O r a I g O rlt German Research Center for Artificial Intelligence —_ E—A ij, ‘ m—,—

* Like the naive method
* Align P with T, check whether characters in P and T match

» After the check is complete, P is shifted rightwards relative to T

» Smarter shifting
* For an alignment, check whether P occurs in T scanning right-to-left in P
* The bad character shift: shift right beyond the bad character

* The good suffix shift: shift right using the match of the good suffix of P

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 23 Introduction to Computational Linguistics: Matching algorithms

Boyer-Moore: right-to-left scan

* For any alignment of P against T, check P right-to-left

| 2 3 4 5 6 7 8 910 Il 12 13 14 1516 17

T= XPBCTBXABPQXCTBPQ
P= TPABXAB
| 2 3 4 5 6 7

) 4

* For example,
* P(7)=T(9) ... but P(3) = T(5)
* Upon a mismatch, shift P right relative to T
* The linear nature of the algorithm is in the shifts

e Scanning right-to-left still yields an algorithm running in O(nm) time

Introduction to Computational Linguistics: Matching algorithms

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 24

”r
/ | oy oagn
L}
u I h h Deutsches Forschungszentrum fur Kiinstliche Intelligenz gt —— ! ‘ -
e b ad C a raCt r S I ft German Research Center for Artificial Intelligence —_ E—A ij, ‘ m—,—

* The basic idea
* Suppose the rightmost character in P is y, aligned to x in T with xzy
° If x is in P, then we can shift P so that the rightmost x is below xin T

* If x is not in P, then we can shift P completely beyond the x in T

* Possibly sublinear matching: not all characters in T may
need to be compared

* Very efficient for natural language text, esp. English

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 25 Introduction to Computational Linguistics: Matching algorithms

B-M: The bad character shift omremns s o g

» Store the right-most position of each character

For each character x in the alphabet, let R(x) be the rightmost position of
X in P. R(x) is defined to be O if x is not in P.

* The bad character shift rule makes use of R

Suppose for an alignment of P against T, the rightmost n-i characters of P
match against T, but the character at P(i) is a mismatch with the character T(k).
Now, we can shift P right by max[1,i-R(T(k))] places; i.e. if the right-most
occurrence in P of the character T(k) is in position j < i (possibly with j=0), then
shift P so that the character j of P is below character k of T. Else, shift P by 1.

4 5 6 9 10 Il 12 I3 14 1516 17
T= XPBCTBXABPQXCTBPQ
P = TPABXAB R(“T)=1
|l 2 3 4 5 6 7
X
TPABXAB

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 26 Introduction to Computational Linguistics: Matching algorithms

B-M: the good suffix rule g e

* The basic idea:
* Given the character T(k) against which P mismatches,
* Take the good suffix t of P, i.e. the part that matched against T

* Look in P for the right-most copy t’ of t, such that the character k’ to
the immediate left of t’ differs from T(k); else the shift would yield the
same mismatch!

* Then, shift P to the right such that t’ is below the matching tin T.

|l 2 3 4 5 67 8 9 10 111213 14 15 16 17 I8

T= PRSTABSTUBABVQXRST
P= QCABDABDAB

2 3 4 5 6 7 8 9 10

QCABDABDAB

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 27 Introduction to Computational Linguistics: Matching algorithms

”r
/ /—\ I.\r‘- y
[}
n Iq Deutsches Forschungszentrum fiir Kiinstliche Intelligenz — e ‘ &
B - M n t e g O O d S u ff I X rl ‘ I e German Research Center for Artificial Intelligence —_ E—A ij, ‘ I#-M_,—'

Suppose for a given alignment of P and T, a substring t of T matches a suffix of
P, but a mismatch occurs at the next comparison to the left. Then find, if it
exists, the right-most copy t’ of t in P such that t’ is not a suffix of P and the
character to the left of t’ in P differs from the character to the left of t in P. Shift
P to the right so that the substring t’ in P is below substring tin T. If t* does not
exist, then shift the left end of P past the left end of t in T by the least amount
so that a prefix of the shifted pattern matches a suffix of t in T.

If no such shift is possible, then shift P by n places to the right. If an occurrence
of P is found, then shift P by the least amount so that a proper prefix of the
shifted P matches a suffix of the occurrence of P in T. If no such shift is
possible, then shift P by n places, pasttinT.

T x| t
P before shift z| ¢ y| t
P after shift z| ¢t

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 28 Introduction to Computational Linguistics: Matching algorithms

4 S
Deutsches Forschungszentrum fiir Kiinstliche Intelligenz gt s ‘ Ij. ‘ Hﬁ
German Research Center for Artificial Intelligence —_ E—A ij, ‘ = o e

Preprocessing

* We need some preprocessing for the good suffix rule

* We need to compute the positions of copies of suffixes of P

* whereby a copy differs from the suffix in its immediate left character

* Definition

For each i, L(i) is the largest position less than n such that string PJi..n]
matches a suffix of P[1..L(i)]. Let L(i) be zero if there is no position
satisfying the conditions. For each i, L’(i) is the largest position less
than n such that string PJ[i..n] matches a suffix of P[1..L’(i)] and such
that the character preceding the suffix is not equal to P(i-1). Let L(i)
be O if there is no position satisfying the conditions.

P= CABDABDAB L(8)=6 L(8)=3

|l 2 3 4 5 6 7 8 9

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 29 Introduction to Computational Linguistics: Matching algorithms

-
4 S
- i
Deutsches Forschungszentrum fur Ktinstliche Intelligenz gt s ‘ [I. ' Hﬁ
re p rO‘ e S S I I l g German Research Center for Artificial Intelligence — _ _ TA Af—-i ‘ i = o are

* Computing L’(i)

» For string P, Nj(P) IS the length of the longest suffix of the substring
P[1...j] that is also a suffix of the full string P.

P= CABDABDAB No(P)=2 Ne(P)=5

Il 2 3 4 5 6 7 8 9

» We can compute N(S) from Z(S)

» Recall that Z(S) is the length of the longest substring of S that starts
at i and is a prefix of S

» N(S) is the reverse of Z: if P" is the reverse of P, then N,(P)=2 (P")

T n-j+1

* Hence we can obtain the values for N using the linear algorithm for Z

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 30 Introduction to Computational Linguistics: Matching algorithms

”r
/ /—\ I.\r‘- y
u Deutsches Forschungszentrum fur Kiinstliche Intelligenz gt —— ¥ ‘ =
re p rOceSS I g] fro N to German Research Center for Artificial Intelligence —_ EAAJJ,‘ I#-M_,—'

» Z-based Boyer-Moore for obtaining L'(i) from N.(P)
fori:=1tondo () :=0
forj:=1ton-1do
begin
i:=n-N(P)+1
L’() :=j
end

e Intuition

» We have computed the lengths of the longest suffixes as Nj(P)

» Cycle over P right-to-left, looking at where the longest suffixes start

» Assign to L()) the largest index j such that N(P) = IP[i..n]| = (n-i+1)

* Those L(i) for which there is no such index have been initialized to 0.

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 31 Introduction to Computational Linguistics: Matching algorithms

/ | oy oagn
]] u
I h n e e n Deutsches Forschungszentrum fur Kiinstliche Intelligenz gt —— ! ‘ -
e f I a I p r p rO C S S I g d eta I I German Research Center for Artificial Intelligence —_ E—A ij, ‘ m—,—
mEnm

 Let I’(i) denote the longest suffix of PJi..n] that is also a prefix of
P, if one exists. If none exists, let I'(i) be zero.

* Once more, all the preprocessing and rules:

» Bad character rule: given a mismatch on x in T, shift P right to align with an
X in P (if any)

¢ Compute R(x), the right-most occurrence of x in P

» Good suffix rule: shift P right to a copy of the matching suffix but with a
different character to its immediate left

» Use Zj(P) to compute Nj(P), the length of the longest suffix of P[1..j] that is a suffix of P

» Use Nj(P) to compute L(i), the largest position less than n s.t. P[i..n] matches a suffix of P[1..L(i)]

* Compute I'(i), to deal with the case when we have L'(i) = 0 or when an occurrence of P is found

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 32 Introduction to Computational Linguistics: Matching algorithms

-
(] i
I h Iq Deutsches Forschungszentrum fur Kiinstliche Intelligenz gt = ‘ =
e B Oye r- M O O re a I g O rlt I I l German Research Center for Artificial Intelligence —_ TA Af—j ‘ i m—,—

[Preprocessing stage]
Given the pattern P
Compute L(i) and I’(i) for each position i of P

and compute R(x) for each character x € 2

[Search stage]

K:=n
while k < m do
| :=n
h:=k
while i > 0 and P(i) = T(h) do
i i=i-1
h := h-1
if i = 0 then
report an occurrence of P in T ending at position k
K:=k+n -I'(2)
else

shift P (increase k) by the maximum amount determined by the bad character rule
and the good suffix rule

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 33 Introduction to Computational Linguistics: Matching algorithms

QOutline

1. The naive method for exact string matching

e Method for finding matches of a pattern P in a text T using O(|P| - |T]) comparisons

2. Methods for fundamental preprocessing of a pattern

e Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found

3. The Booyer-Moore algorithm

e Smart shifts in sublinear O(|P|+|T]) time (B-M), thanks to 2 complementary rules: the bad
character rule and the good suffix rule

4. Inexact matching

* The edit distance algorithm

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 34 Introduction to Computational Linguistics: Matching algorithms

Inexact matching

» So far: exact matching problem

4 & S
Deutsches Forschungszentrum fur Ktinstliche Intelligenz e ag? et ‘ Ij. I Hﬁ
German Research Center for Artificial Intelligence —_ _ E—A ij. ‘ = e mard

* Inexact matching: approximation of pattern in text

* From substring to subsequence matching

* The edit distance between two strings

* Transformation: insertion, deletion, substitution of material

MID MDD M M| I
il n|t|n|e]|Tr
i t el r| s

* A string over the alphabet |, D, R, M, that describes a transformation
of one string to another is called an edit transcript of the two strings

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff

35

Introduction to Computational Linguistics: Matching algorithms

”r
/ /\ I.\r‘. y
u]
Deutsches Forschungszentrum fiir Kiinstliche Intelligenz gt s g ‘ Ij. ' ==ﬂ
I I S a I l Ce German Research Center for Artificial Intelligence —_ E—A ij, ‘ = o are

» Edit distance

The edit distance between two strings is defined as the minimum
number of edit operations - insert, delete, substitute - needed to
transform the first string into the second. (Matches are not counted.)

* The edit distance problem

The edit distance problem is to compute the edit distance between
two given strings, along with an optimal edit transcript that describes
the transformation.

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 36 Introduction to Computational Linguistics: Matching algorithms

”r
/ /—\ I.\': y
[} []
Deutsches Forschungszentrum fur Ktinstliche Intelligenz g == ‘ = h Hﬁ
Dy n a m I C p rO g ra I I l I I l I I l g German Research Center for Artificial Intelligence —_ EAij. ‘ IJ = 7

* For strings S1 and S2, D(i,)) is the edit distance between
S1[1..i] and S2[1..j]. Let n=|S1| and m=|S2|.

* Dynamic programming:
e Recurrence relation: recursive relationship between i and j in D(,))

* Tabular computation: memoization technique for computing D(i,j)

* Traceback: computing the optimal edit transcript from the table

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 37 Introduction to Computational Linguistics: Matching algorithms

”r
/ /—\ Ie‘-: y
u
R e n e e n Deutsches Forschungszentrum fur Kiinstliche Intelligenz gt —— ! ‘ -
e C u r r C r I at I O German Research Center for Artificial Intelligence —_ E—A ij, ‘ m—,—

* Recursive relationship

* Relate value of D(i,j) for i and j positive, and values of D with index
pairs smaller than i, |.

* Base conditions: D(i,0) =i and D(0,j) = j
* Recurrence relation for D(i,j) fori,j > 0
* D(i,j) = min[D(i-1,j)+1, D(i,j-1)+1, D(i-1,j-1)+1(,j)]
* where t(i,j) is 1 if S1(i) 2 S2(j) and 0 if S1(i)=S2())
* Complexity issue
* The number of recursive calls grows exponentially with n and m

» But, there are only (n+1) * (m+1) combinations of i and j, hence only
(n+1) * (m+1) distinct recursive calls

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 38 Introduction to Computational Linguistics: Matching algorithms

V (e Ew;i
[} o
Deutsches Forschungszentrum fir Ktinstliche Intelligenz " == " w h Iﬁ
BOttO I I l - l I p ta b l I I a r ‘ O I I l p u tat I O I l German Research Center for Artificial Intelligence —_ I‘i—"—AAx-.{ ‘ i Ij S

° (n+1) * (m+1) table
* Base: compute D(i,j) for the smallest possible values of i and |

 Induction: compute D(i,j) for increasing values of i and j, one row at the time

D\(i,i W | r i t| e | r | s
oy 1| 2| 3| 4| 5| 6| 7
6joj 23| 4 6| 7 D(1,1) = min[D(0, 1)+1, D(1,0)+1, D(0,0)+t(1,1)]
\Y I I | | 2| 3| * = min[2,2,0+1] = |
2] 9 D(1,2) = min[D(0,2)+1, D(I,1)+1,D(I,1)+t(1,2)]
= min[3,2,1+1] =2
n| 3] 3 D(1,3) = min[D(0,3)+1, D(1,2)+1, D(0,2)+t(1,3)]
¢ 4 4 = min[4,3,2+1] =3
n| 5] 5
e | 6| 6
r| 71 7

Base: D(i,0) = i, D(0,]) =
Step: D(i,j) = min[D(i-1,j)+1, D(i,j-1)+1, D(-1,j-1)+t(i,)], tG,j) is 1 if S1() = S2() and 0 if S1()=S2())

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 39 Introduction to Computational Linguistics: Matching algorithms

”r
4 S
Deutsches Forschungszentrum fiir Kiinstliche Intelligenz — s ‘ Ij. ‘ Hﬁ
race aC German Research Center for Artificial Intelligence —_ E—A ij, ‘ = o are

* Pointer-based approach:

* When computing (i,j), set a pointer to the cell yielding the minimum

* If (i,j) = D(i,j-1)+1 set a pointer from (i,j) to (i,j-1): <
e If (i,j) = D(i-1,j)+1 set a pointer from (i,j) to (i-1,j): T
e If (i,j) = D(i-1,j-1)+1(i,j) set a pointer from (i,j) to (i-1,j-1): \

* There may be several pointers if several predecessors yield the
same minimum value

* To retrieve the optimal edit transcripts
* Trace back the path(s) from (n,m) to (0,0)
* A horizontal edge (+) represents an insertion
* A vertical edge (1) represents a deletion

* A diagonal edge (\) represents a match if S1(i)=S2(j), and a
substitution if S1(i)2S2())

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 40 Introduction to Computational Linguistics: Matching algorithms

”r
/ /\ I.\r‘. y
n n
Deutsches Forschungszentrum fur Kiinstliche Intelligenz — = fi: ‘ Ij. i Hﬁ
I I I l e -(:O I I l p eXI y German Research Center for Artificial Intelligence —_ _ EAAxJ, el = o e

* Filling the table costs O(nm) time

* To fill one cell takes a constant number of cell examinations,
arithmetic operations, and comparisons

* The table consists of n by m cells, hence O(hm) time

 Retrieving the optimal path(s) costs O(n+m) time

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 41 Introduction to Computational Linguistics: Matching algorithms

”r
4 S
n
Deutsches Forschungszentrum fiir Kiinstliche Intelligenz — s 7 ‘ Ij. ‘ Hﬁ
O I I C l I S I O I I S German Research Center for Artificial Intelligence —_ WAij, ‘ = o are

* Exact matching problem

* Naive method compares character by character, single shift of P
against T

» Optimization through smarter shifting; base information for smarter
shifting is provided by Z-boxes, computable in linear time

* Boyer-Moore algorithm can run in sublinear time; thanks to two
complementary rules: the bad character rule, and the good suffix rule

* [nexact matching problem
* Looking for subsequences rather than substrings

* Dynamic programming approach to establishing edit distance
between two strings, specified as an edit transcript

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff 42 Introduction to Computational Linguistics: Matching algorithms

