
Algorithms for
matching

Computational Linguistics,
Summer Semester 2010

Pierre Lison
(based on slides from Geert-Jan M. Kruijff)

〈plison,gj@dfki.de〉

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms2

Todayʼs lecture

Objective:

Efficient algorithms for finding matches of patterns (strings) in texts.

The focus is on exact matching

But we‘ll also quickly review inexact matching in the last part of the lecture

We deal with chars/Strings, but this generalizes to words/Strings

Why efficient methods for pattern matching?

Applications of pattern matching in search (web search for IR, IE, Q/A),
tagging (named entity recognition), shallow processing (parsing)

Efficiency pays off when dealing with large amounts of data!

Furthermore: preliminaries for finite-state automata, dynamic
programming/memoization techniques in parsing

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms3

What will you learn?

1. The naive method for exact string matching

Method for finding matches of a pattern P in a text T using O(|P|·|T|) comparisons

2. Methods for fundamental preprocessing of a pattern

Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found

3. The Booyer-Moore algorithm

Smart shifts in sublinear O(|P|+|T|) time (B-M) thanks two complementary rules: the bad
character rule and the good suffix rule

4. Inexact matching

The edit distance algorithm

Reference: Dan Gusfield. Algorithms on Strings, Trees and Sequences. CUP, 1997:
Chapters 1 & 2

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms4

 Outline

1. The naive method for exact string matching

Method for finding matches of a pattern P in a text T using O(|P|·|T|) comparisons

2. Methods for fundamental preprocessing of a pattern

Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found

3. The Booyer-Moore algorithm

Smart shifts in sublinear O(|P|+|T|) time (B-M), thanks to 2 complementary rules: the bad
character rule and the good suffix rule

4. Inexact matching

The edit distance algorithm

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms5

Preliminaries

A string S is an ordered list of characters, written
contiguously from left to right. For any string S, S[i..j] is the
(contiguous) substring of S that starts at position i and ends
at position j.

The substring S[1..i] is the prefix of S that ends at position i,
and the substring S[j..|S|] is the suffix of S starting at position
i, with |S| the length of S.

For any string S, S(i) denotes the character at position i in S.

S
1 |S|i j

S(i)
S[1..i] S[j..|S|]

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms6

The naive method for matching
Given

a pattern P, and a text T in which we are looking for matches of P

Pointers: p to position in P; t to position in T; s to start of matching P in T

Algorithm

[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T: set position in P, p=1; set position in T, t=1

2. Set the current left-alignment position in T to s=1

[Loop]

3. Compare the character at P(p) with the character at T(t)

4. If P(p) == T(t):

If p < |P| then set p=p+1 and set t=t+1; else report match, and set p=1, s=s+1, t=s;

 Else p=1 and s=s+1, t=s

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms7

The naive method for matching

A B X Y A B X ZP=

X A B X Y A B X Y A B X ZT=
1 2 3 4 5 6 7 8 9 10 11 12 13

A B X Y A B X Z

✘

[Start: p=1, t=1,s=1]

1. Align the left of P with the left of T:

2. p=1; t=1; s=1

[Loop]

2. Compare P(p) with T(t)

3. If P(p) == T(t):

If p < |P|:

p=p+1 and t=t+1;

Else: report match, and p=1, s=s+1, t=s;

 Else: p=1 and s=s+1, t=s

✔

p=1
t=2
s=2

✔

p=2
t=3
s=2

✔

p=3
t=4
s=2

✔

p=4
t=5
s=2

✔

p=5
t=6
s=2

✔

p=6
t=7
s=2

✔

p=7
t=8
s=2

✘

p=7
t=8
s=2

A B X Y A B X Z
✘

A B X Y A B X Z
✘

A B X Y A B X Z
✘

A B X Y A B X Z
✔✔✔✔✔ ✔✔ ✔

p=1
t=3
s=3

⇒

In total,
we had to make

20
comparisons

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms8

The naive method for matching

Observations

The worst-case number of comparisons is O(|P|·|T|)

This is not so useful in real-life applications!

E.g. |P|=30 and |T|=200K: 6M comparisons; with 1ms per
comparison this would mean 6000s, or 100 minutes, i.e. 1:40h. If we
manage to get linear complexity O(|P|+|T|) we are down to 3.33min!

Ideas for speeding up the naive method

Try to shift further when a mismatch occurs, but never so far as to
miss an occurrence of P in T

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms9

Speeding up thru smarter shifting

A B X Y A B X ZP=

X A B X Y A B X Y A B X ZT=
1 2 3 4 5 6 7 8 9 10 11 12 13

✘
A B X Y A B X Z
✔✔✔✔✔ ✔✔ ✘

A B X Y A B X Z
✔✔✔✔✔ ✔✔ ✔

The next occurrence of P(1)=”A”
in T is not before position 5 in T,
so shift to position 6!

In total,
we had to make

17
comparisons

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms10

Speeding up thru smarter shifting

A B X Y A B X ZP=

X A B X Y A B X Y A B X ZT=
1 2 3 4 5 6 7 8 9 10 11 12 13

✘
A B X Y A B X Z
✔✔✔✔✔ ✔✔ ✘
Assume: we know prefix P[1..3]=”A B X”
starts at T(6). P[1..3]=T[6..8]; align at T(6)
but start matching P(4) against T(9)

A B X Y A B X Z
✔✔ ✔✔ ✔

In total,
we had to make

14
comparisons

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms11

 Outline

1. The naive method for exact string matching

Method for finding matches of a pattern P in a text T using O(|P|·|T|) comparisons

2. Methods for fundamental preprocessing of a pattern

Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is
found

3. The Booyer-Moore algorithm

Smart shifts in sublinear O(|P|+|T|) time (B-M), thanks to 2 complementary rules: the bad
character rule and the good suffix rule

4. Inexact matching

The edit distance algorithm

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms12

Smarter shifting thru preprocessing

Before searching, preprocess P (or T, or P+T)

Fundamental preprocessing of a string S

At S(i), i > 1 compute length of longest prefix of S[i..|S|] that is a prefix of S

Let Zi(S) be that length at i

S = A A B C A A B X A A Z
1 2 3 4 5 6 7 8 9 10 11

Z5(S)=3: (A A B C...A A B X)

Z6(S)=1: (A A ... A B)
Z7(S)=Z8(S)=0
Z9(S)=2: (A A B ... A A Z)

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms13

Given a string S=P$T

The dollar sign $ is not in the languages for P or T

|P|=n, |T|=m, n≤m, so S=n+m+1

Compute Zi(S) for 2 < i < n+m+1

Because “$” is not in the language for P, Zi(S) ≤ n for every i > 1

Zi(S)=n for i > n+1 identifies an occurrence of P starting at i-(n+1) in T

Also: If P occurs in T starting at position j, then it must be that Z(n+1)+j(S)=n

If Zi(S) is computable in linear time, then we have linear time
matching

Matching = search ⇒ matching = preprocessing + search

Smarter shifting thru preprocessing

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms

α

14

Computing Zi(S) in linear time

The task: Compute Zi(S) in linear time, i.e. O(|S|)

The notion of a Z-box

For every i > 1 with Zi(S) > 0, define a Z-box to be the substring from

i until i+Zi(S)-1, i.e. S[i...i+Zi(S)-1]

For every i > 1, ri is the right-most endpoint of the Z-boxes that

begin at or before i;

i.e, ri is the largest value of j+Zj(S)-1 for all 1 < j ≤ i such that Zi(S) > 0

α

1
S

li ri
i

li
Z

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms15

Sketch of the algorithm

We need to compute Zi(S), ri and li for every i > 2

In any iteration i, we only need rj and lj for j=i-1; i.e just r, l

If we discover a new Z-box at i, set r to the end of that Z-box,
which is the right-most position of any Z-box discovered so far

Step 0 (initialisation)

Find Z2(S) by comparing left to right S[2..|S|] and S[1..|S|] until a mismatch is

found; Z2(S) is the length of that string. If Z2(S) > 0 then set r=r2 to Z2(S)+1

and l=l2, else r=l=0

Induction hypothesis: we have correct Zi(S) for i up to k-1>1, r, l

Next, compute Zi(S) from the already computed Z values

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms16

Compute Zi(S) from Zj(S), 2 < j < i

Simplest case: inclusion

E.g. for k=121, we have Z2(S)...Z120(S), and r120=130, l120=100

Thus: a substring of length 31 starting at position 100, matching S[1..31]

And: the substring of length 10 starting at 121 must match S[22..31], so
Z22 could help!

For example, if Z22 is 3, then Z121 must also be 3

121100 1301 3122

Z22 might be useful to compute Z121!

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms17

Compute Zi(S) from Zj(S), 2 < j < i

Given Zi(S) for all 1 < i ≤ k-1, and the current values of

Zk(S), r, and l; compute the updated r and l

Step 1:

if k > r, then find Zk(S) by comparing the characters starting at k to

the characters starting at position 1 in S, until a mismatch is found.
The length of the match is Zk(S). If Zk(S) > 0, set r=k+Zk(S)-1, and l=k.

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms18

Compute Zi(S) from Zj(S), 2 < j < i

Step 2

If k ≤ r, then position k is contained in a Z-box, and hence S(k) is
contained in a substring S[l..r] (call it α) such that l > 1 and α
matches a prefix of S.

Therefore, character S(k) also appears in position k’=k-l+1 of S.

By the same reasoning, the substring S[k..r] (call it β) must match
substring S[k’..Zl(S)]. (Remember the example with Z22(S), r=121!)

Hence, the substring at position k must match a prefix of S of length
at least the minimum of Zk’(S) and |β| (which is r-k+1).

α α

S
l rk

lZ
ββ

k’

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms19

Two cases given the minimum

Case 1: If Zk’(S) < |β|

then position k is a Z-box (call it γ) contained within a larger Z-box

set Zk(S)=Zk’(S) and leave r and l as they are

α α
S

l rk
lZ

ββ
k’

γγγ

k+ Zk(S)-1k’+ Zk’(S)-1

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms20

Two cases given the minimum

Case 2: If Zk’(S) ≥ |β|

then the entire substring S[k..r] must be a prefix of S and Zk(S)≥|β|=r-k+1

However, Zk(S) may be strictly larger, so compare characters starting at r

+1 of S to the characters starting at |β|+1 of S until a mismatch occurs
(Remember the second smart improvement over the naive method!)

Say the mismatch is at q ≥ r+1. Then Zk(S)=q-k, r=q-1, and l=k

α α
S

l rk
lZ

ββ
k’

k+ Zk(S)-1

β ?

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms21

Linear time computation

“The algorithm computes all the Zi(S) values in O(|S|) time”

The time is proportional to the number of iterations, |S|, plus the number
of character comparisons. Each comparison is either a match or a
mismatch. Each iteration that performs any character comparisons at all
ends the first time it finds a mismatch; hence there are at most |S|
mismatches during the entire algorithm. To bound the number of
mismatches, note first that rk ≥ rk-1 for every iteration k. Now, let k be an

iteration where q > 0 matches occur. Then rk is set to rk+q at least. Finally,

rk ≤ |S| so the total number of matches that can occur during any

execution of the algorithm is at most |S|.

“Computing Zi(S) on S=P$T finds matches of P in T in O(|T|)”

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms22

 Outline

1. The naive method for exact string matching

Method for finding matches of a pattern P in a text T using O(|P|·|T|) comparisons

2. Methods for fundamental preprocessing of a pattern

Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found

3. The Booyer-Moore algorithm

Smart shifts in sublinear O(|P|+|T|) time (B-M), thanks to 2 complementary rules: the
bad character rule and the good suffix rule

4. Inexact matching

The edit distance algorithm

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms23

The Boyer-Moore algorithm

Like the naive method

Align P with T, check whether characters in P and T match

After the check is complete, P is shifted rightwards relative to T

Smarter shifting

For an alignment, check whether P occurs in T scanning right-to-left in P

The bad character shift: shift right beyond the bad character

The good suffix shift: shift right using the match of the good suffix of P

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms24

Boyer-Moore: right-to-left scan

For any alignment of P against T, check P right-to-left

For example,

P(7)=T(9) ... but P(3) ≠ T(5)

Upon a mismatch, shift P right relative to T

The linear nature of the algorithm is in the shifts

Scanning right-to-left still yields an algorithm running in O(nm) time

X P B C T B X A B P Q X C T B P Q
T P A B X A B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T =
P =

1 2 3 4 5 6 7

✔✔✔✔✘

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms25

B-M: The bad character shift

The basic idea

Suppose the rightmost character in P is y, aligned to x in T with x≠y

If x is in P, then we can shift P so that the rightmost x is below x in T

If x is not in P, then we can shift P completely beyond the x in T

Possibly sublinear matching: not all characters in T may
need to be compared

Very efficient for natural language text, esp. English

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms26

B-M: The bad character shift

Store the right-most position of each character

For each character x in the alphabet, let R(x) be the rightmost position of
x in P. R(x) is defined to be 0 if x is not in P.

The bad character shift rule makes use of R

Suppose for an alignment of P against T, the rightmost n-i characters of P
match against T, but the character at P(i) is a mismatch with the character T(k).
Now, we can shift P right by max[1,i-R(T(k))] places; i.e. if the right-most
occurrence in P of the character T(k) is in position j < i (possibly with j=0), then
shift P so that the character j of P is below character k of T. Else, shift P by 1.

X P B C T B X A B P Q X C T B P Q
T P A B X A B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T =
P =

1 2 3 4 5 6 7

R(“T”)=1

T P A B X A B
✔✔✔✔✘

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms27

B-M: the good suffix rule

The basic idea:

Given the character T(k) against which P mismatches,

Take the good suffix t of P, i.e. the part that matched against T

Look in P for the right-most copy t’ of t, such that the character k’ to
the immediate left of t’ differs from T(k); else the shift would yield the
same mismatch!

Then, shift P to the right such that t’ is below the matching t in T.

✔✔✘

P R S T A B S T U B A B V Q X R S T
Q C A B D A B D A B

T =
P =

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Q C A B D A B D A B

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms28

B-M: the good suffix rule

Suppose for a given alignment of P and T, a substring t of T matches a suffix of
P, but a mismatch occurs at the next comparison to the left. Then find, if it
exists, the right-most copy t’ of t in P such that t’ is not a suffix of P and the
character to the left of t’ in P differs from the character to the left of t in P. Shift
P to the right so that the substring t’ in P is below substring t in T. If t’ does not
exist, then shift the left end of P past the left end of t in T by the least amount
so that a prefix of the shifted pattern matches a suffix of t in T.

If no such shift is possible, then shift P by n places to the right. If an occurrence
of P is found, then shift P by the least amount so that a proper prefix of the
shifted P matches a suffix of the occurrence of P in T. If no such shift is
possible, then shift P by n places, past t in T.

t

tt’

t’

z

z

x

y

T

P before shift

P after shift

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms29

Preprocessing

We need some preprocessing for the good suffix rule

We need to compute the positions of copies of suffixes of P

whereby a copy differs from the suffix in its immediate left character

Definition

For each i, L(i) is the largest position less than n such that string P[i..n]
matches a suffix of P[1..L(i)]. Let L(i) be zero if there is no position
satisfying the conditions. For each i, L’(i) is the largest position less
than n such that string P[i..n] matches a suffix of P[1..L’(i)] and such
that the character preceding the suffix is not equal to P(i-1). Let L’(i)
be 0 if there is no position satisfying the conditions.

C A B D A B D A BP =
1 2 3 4 5 6 7 8 9

L(8)=6 L’(8)=3

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms30

Preprocessing

Computing L’(i)

For string P, Nj(P) is the length of the longest suffix of the substring

P[1...j] that is also a suffix of the full string P.

We can compute Ni(S) from Zi(S)

Recall that Zi(S) is the length of the longest substring of S that starts

at i and is a prefix of S

Ni(S) is the reverse of Z: if Pr is the reverse of P, then Nj(P)=Zn-j+1(Pr)

Hence we can obtain the values for N using the linear algorithm for Z

C A B D A B D A BP =
1 2 3 4 5 6 7 8 9

N3(P)=2 N6(P)=5

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms31

Preprocessing: from N to Lʼ

Z-based Boyer-Moore for obtaining L’(i) from Ni(P)

for i := 1 to n do L’(i) := 0

for j := 1 to n-1 do

begin

i := n - Nj(P) + 1

L’(i) := j

end

Intuition

We have computed the lengths of the longest suffixes as Nj(P)

Cycle over P right-to-left, looking at where the longest suffixes start

Assign to L’(i) the largest index j such that Nj(P) = |P[i..n]| = (n-i+1)

Those L’(i) for which there is no such index have been initialized to 0.

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms32

The final preprocessing detail ...

Let l’(i) denote the longest suffix of P[i..n] that is also a prefix of
P, if one exists. If none exists, let l’(i) be zero.

Once more, all the preprocessing and rules:

Bad character rule: given a mismatch on x in T, shift P right to align with an
x in P (if any)

Compute R(x), the right-most occurrence of x in P

Good suffix rule: shift P right to a copy of the matching suffix but with a
different character to its immediate left

Use Zj(P) to compute Nj(P), the length of the longest suffix of P[1..j] that is a suffix of P

Use Nj(P) to compute L’(i), the largest position less than n s.t. P[i..n] matches a suffix of P[1..L’(i)]

Compute l’(i), to deal with the case when we have L’(i) = 0 or when an occurrence of P is found

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms33

The Boyer-Moore algorithm
[Preprocessing stage]

Given the pattern P

Compute L’(i) and l’(i) for each position i of P

and compute R(x) for each character x ∈ Σ

[Search stage]

k := n

while k ≤ m do

i := n

h := k

while i > 0 and P(i) = T(h) do

i := i-1

h := h-1

if i = 0 then

report an occurrence of P in T ending at position k

k := k+n - l’(2)

else

shift P (increase k) by the maximum amount determined by the bad character rule
and the good suffix rule

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms34

 Outline

1. The naive method for exact string matching

Method for finding matches of a pattern P in a text T using O(|P|·|T|) comparisons

2. Methods for fundamental preprocessing of a pattern

Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found

3. The Booyer-Moore algorithm

Smart shifts in sublinear O(|P|+|T|) time (B-M), thanks to 2 complementary rules: the bad
character rule and the good suffix rule

4. Inexact matching

The edit distance algorithm

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms35

Inexact matching

So far: exact matching problem

Inexact matching: approximation of pattern in text

From substring to subsequence matching

The edit distance between two strings

Transformation: insertion, deletion, substitution of material

A string over the alphabet I, D, R, M, that describes a transformation
of one string to another is called an edit transcript of the two strings

R I M D M D M M I

v i n t n e r

w r i t e r s

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms36

Edit distance

Edit distance

The edit distance between two strings is defined as the minimum
number of edit operations - insert, delete, substitute - needed to
transform the first string into the second. (Matches are not counted.)

The edit distance problem

The edit distance problem is to compute the edit distance between
two given strings, along with an optimal edit transcript that describes
the transformation.

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms37

Dynamic programming

For strings S1 and S2, D(i,j) is the edit distance between
S1[1..i] and S2[1..j]. Let n=|S1| and m=|S2|.

Dynamic programming:

Recurrence relation: recursive relationship between i and j in D(i,j)

Tabular computation: memoization technique for computing D(i,j)

Traceback: computing the optimal edit transcript from the table

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms38

Recurrence relation

Recursive relationship

Relate value of D(i,j) for i and j positive, and values of D with index
pairs smaller than i, j.

Base conditions: D(i,0) = i and D(0,j) = j

Recurrence relation for D(i,j) for i,j > 0

D(i,j) = min[D(i-1,j)+1, D(i,j-1)+1, D(i-1,j-1)+t(i,j)]

where t(i,j) is 1 if S1(i) ≠ S2(j) and 0 if S1(i)=S2(j)

Complexity issue

The number of recursive calls grows exponentially with n and m

But, there are only (n+1) * (m+1) combinations of i and j, hence only
(n+1) * (m+1) distinct recursive calls

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms39

Bottom-up tabular computation

(n+1) * (m+1) table

Base: compute D(i,j) for the smallest possible values of i and j

Induction: compute D(i,j) for increasing values of i and j, one row at the time

D(i,j
)

w r i t e r s
0 1 2 3 4 5 6 7

 0 0 1 2 3 4 5 6 7

v 1 1 1 2 3 *

i 2 2

n 3 3

t 4 4

n 5 5

e 6 6

r 7 7

 Step: D(i,j) = min[D(i-1,j)+1, D(i,j-1)+1, D(i-1,j-1)+t(i,j)], t(i,j) is 1 if S1(i) ≠ S2(j) and 0 if S1(i)=S2(j)

	 Base: D(i,0) = i, D(0,j) = j

D(1,1) = min[D(0,1)+1, D(1,0)+1, D(0,0)+t(1,1)]
 = min[2,2,0+1] = 1

D(1,2) = min[D(0,2)+1, D(1,1)+1, D(1,1)+t(1,2)]
 = min[3,2,1+1] = 2
D(1,3) = min[D(0,3)+1, D(1,2)+1, D(0,2)+t(1,3)]
 = min[4,3,2+1] = 3

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms40

Traceback

Pointer-based approach:

When computing (i,j), set a pointer to the cell yielding the minimum

If (i,j) = D(i,j-1)+1 set a pointer from (i,j) to (i,j-1): ←

If (i,j) = D(i-1,j)+1 set a pointer from (i,j) to (i-1,j): ↑

If (i,j) = D(i-1,j-1)+t(i,j) set a pointer from (i,j) to (i-1,j-1):

There may be several pointers if several predecessors yield the
same minimum value

To retrieve the optimal edit transcripts

Trace back the path(s) from (n,m) to (0,0)

A horizontal edge (←) represents an insertion

A vertical edge (↑) represents a deletion

A diagonal edge () represents a match if S1(i)=S2(j), and a
substitution if S1(i)≠S2(j)

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms41

Time-complexity

Filling the table costs O(nm) time

To fill one cell takes a constant number of cell examinations,
arithmetic operations, and comparisons

The table consists of n by m cells, hence O(nm) time

Retrieving the optimal path(s) costs O(n+m) time

© 2005-2010, Pierre Lison & Geert-Jan M. Kruijff Introduction to Computational Linguistics: Matching algorithms42

Conclusions

Exact matching problem

Naive method compares character by character, single shift of P
against T

Optimization through smarter shifting; base information for smarter
shifting is provided by Z-boxes, computable in linear time

Boyer-Moore algorithm can run in sublinear time; thanks to two
complementary rules: the bad character rule, and the good suffix rule

Inexact matching problem

Looking for subsequences rather than substrings

Dynamic programming approach to establishing edit distance
between two strings, specified as an edit transcript

