Algorithms for matching

Computational Linguistics, Summer Semester 2010

Pierre Lison
(based on slides from Geert-Jan M. Kruijff)
〈plison,gj@dfki.de〉

Today's lecture

- Objective:
- Efficient algorithms for finding matches of patterns (strings) in texts.
- The focus is on exact matching
- But we'll also quickly review inexact matching in the last part of the lecture
- We deal with chars/Strings, but this generalizes to words/Strings
- Why efficient methods for pattern matching?
- Applications of pattern matching in search (web search for IR, IE, Q/A), tagging (named entity recognition), shallow processing (parsing)
- Efficiency pays off when dealing with large amounts of data!
- Furthermore: preliminaries for finite-state automata, dynamic programming/memoization techniques in parsing

What will you learn?

1. The naive method for exact string matching

- Method for finding matches of a pattern P in a text T using $O(|P| \cdot|T|)$ comparisons

2. Methods for fundamental preprocessing of a pattern

- Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found

3. The Booyer-Moore algorithm

- Smart shifts in sublinear $O(|P|+|T|)$ time (B-M) thanks two complementary rules: the bad character rule and the good suffix rule

4. Inexact matching

- The edit distance algorithm

Reference: Dan Gusfield. Algorithms on Strings, Trees and Sequences. CUP, I997:
Chapters I \& 2

Outline

1. The naive method for exact string matching

- Method for finding matches of a pattern P in a text T using $O(|P|=|T|)$ comparisons

2. Methods for fundamental preprocessing of a pattern

- Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found

3. The Booyer-Moore algorithm

- Smart shifts in sublinear $O(|P|+|T|)$ time (B-M), thanks to 2 complementary rules: the bad character rule and the good suffix rule

4. Inexact matching

- The edit distance algorithm

Preliminaries

- A string S is an ordered list of characters, written contiguously from left to right. For any string S, $S[i . . j]$ is the (contiguous) substring of S that starts at position i and ends at position j .
- The substring $\mathrm{S}[1 . . \mathrm{i}]$ is the prefix of S that ends at position i, and the substring $S[j . .|S|]$ is the suffix of S starting at position i, with $|S|$ the length of S.
- For any string S, S(i) denotes the character at position in S .

The naive method for matching

- Given
- a pattern P , and a text \mathbf{T} in which we are looking for matches of \mathbf{P}
- Pointers: p to position in $\mathrm{P} ; t$ to position in T ; s to start of matching P in T
- Algorithm

```
[Start: p=1, t=1,s=1]
    1. Align the left of P with the left of T: set position in P, p=1; set position in T,t=1
    2. Set the current left-alignment position in T to s=1
[Loop]
    3. Compare the character at P(p) with the character at T(t)
    4. If }P(p)==T(t)
    If p < P| then set p=p+1 and set t=t+1; else report match, and set p=1,s=s+1,t=s;
    Else p=1 and s=s+1,t=s
```


The naive method for matching

The naive method for matching

- Observations
- The worst-case number of comparisons is $O(|P| \cdot|T|$
- This is not so useful in real-life applications!
- E.g. $|\mathrm{P}|=30$ and $|T|=200 \mathrm{~K}$: 6M comparisons; with 1 ms per comparison this would mean 6000s, or 100 minutes, i.e. 1:40h. If we manage to get linear complexity $O(|P|+|T|)$ we are down to 3.33 min !
- Ideas for speeding up the naive method
- Try to shift further when a mismatch occurs, but never so far as to miss an occurrence of P in T

Speeding up thru smarter shifting

$$
\begin{aligned}
& P=A B X Y A B X Z \\
& \text { ABXYABXZ } \\
& \text { The next occurrence of } P(I)=" A " \\
& \text { in } \mathrm{T} \text { is not before position } 5 \text { in } \mathrm{T} \text {, } \\
& \text { so shift to position } 6 \text { ! }
\end{aligned}
$$

ABXYABXZ

Speeding up thru smarter shifting

$$
\begin{aligned}
& \mathrm{T}=X A B X Y A B X Y A B X Z \\
& P=A B X Y A B X Z
\end{aligned}
$$

$$
A B X Y A B X Z
$$

Assume: we know prefix P[I..3]="A B X" starts at $\mathrm{T}(6) . \mathrm{P}[\mathrm{I} . .3]=\mathrm{T}[6.8]$; align at $\mathrm{T}(6)$ but start matching $P(4)$ against $T(9)$

ABXYABXZ

Outline

1. The naive method for exact string matching

- Method for finding matches of a pattern P in a text T using $O(|P| \cdot|T|)$ comparisons

2. Methods for fundamental preprocessing of a pattern

- Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found

3. The Booyer-Moore algorithm

- Smart shifts in sublinear $O(|P|+|T|)$ time (B-M), thanks to 2 complementary rules: the bad character rule and the good suffix rule

4. Inexact matching

- The edit distance algorithm

Smarter shifting thru preprocessing

- Before searching, preprocess P (or T, or $\mathrm{P}+\mathrm{T}$)
- Fundamental preprocessing of a string S
- At $S(i), i>1$ compute length of longest prefix of $S[i . .|S|]$ that is a prefix of S
- Let $\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$ be that length at i

$$
\begin{aligned}
& S=A^{2} A^{3} B^{4} C^{5} A^{6} A^{\prime} B^{8} X^{9} A A^{\prime \prime} Z^{\prime} \\
& Z_{5}(S)=3:(A A B C . . . A A B X) \\
& Z_{6}(S)=I:(A A \ldots A B) \\
& Z_{7}(S)=Z_{8}(S)=0 \\
& Z_{9}(S)=2:(A A B A A B)
\end{aligned}
$$

Smarter shifting thru preprocessing

- Given a string S=P\$T
- The dollar sign $\$$ is not in the languages for P or T
- $|P|=n,|T|=m, n \leq m$, so $S=n+m+1$
- Compute $\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$ for $2<\mathrm{i}<\mathrm{n}+\mathrm{m}+1$
- Because " $\$$ " is not in the language for $\mathrm{P}, \mathrm{Z}_{\mathrm{i}}(\mathrm{S}) \leq \mathrm{n}$ for every $\mathrm{i}>1$
- $Z_{i}(S)=n$ for $\mathrm{i}>\mathrm{n}+1$ identifies an occurrence of P starting at $\mathrm{i}-(\mathrm{n}+1)$ in T
- Also: If P occurs in T starting at position j, then it must be that $Z_{(n+1)+j}(S)=n$
- If $Z_{i}(S)$ is computable in linear time, then we have linear time matching
- Matching $=$ search \Rightarrow matching $=$ preprocessing + search

Computing $Z_{i}(S)$ in linear time

- The task: Compute $Z_{i}(S)$ in linear time, i.e. $O(\mid S \|$
- The notion of a Z-box
- For every $i>1$ with $Z_{i}(S)>0$, define a Z-box to be the substring from i until $i+Z_{i}(S)-1$, i.e. $S\left[i \ldots i+Z_{i}(S)-1\right]$
- For every $i>1, r_{i}$ is the right-most endpoint of the Z-boxes that begin at or before i;
- i.e, r_{i} is the largest value of $j+Z_{j}(S)-1$ for all $1<j \leq i$ such that $Z_{i}(S)>0$

Sketch of the algorithm

- We need to compute $Z_{i}(S), r_{i}$ and l_{i} for every $i>2$
- In any iteration i , we only need r_{j} and I_{j} for $\mathrm{j}=\mathrm{i}-1$; i.e just r , I
- If we discover a new Z-box at i, set r to the end of that Z-box, which is the right-most position of any Z-box discovered so far
- Step 0 (initialisation)

Find $Z_{2}(S)$ by comparing left to right $\mathrm{S}[2 . .|\mathrm{S}|]$ and $\mathrm{S}[1 . .|\mathrm{S}|]$ until a mismatch is found; $Z_{2}(S)$ is the length of that string. If $Z_{2}(S)>0$ then set $r=r_{2}$ to $Z_{2}(S)+1$ and $I=I_{2}$, else $r=I=0$

- Induction hypothesis: we have correct $\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$ for i up to $\mathrm{k}-1>1, \mathrm{r}, \mathrm{I}$
- Next, compute $Z_{i}(S)$ from the already computed Z values

Compute $Z_{i}(S)$ from $Z_{i}(S), 2<j<i$

- Simplest case: inclusion
- E.g. for $k=121$, we have $Z_{2}(S) \ldots Z_{120}(S)$, and $r_{120}=130, I_{120}=100$
- Thus: a substring of length 31 starting at position 100, matching S[1..31]
- And: the substring of length 10 starting at 121 must match $\mathrm{S}[22 . .31]$, so Z_{22} could help!
- For example, if Z_{22} is 3 , then Z_{121} must also be 3

- Given $Z_{i}(S)$ for all $1<i \leq k-1$, and the current values of $Z_{k}(S), r$, and I; compute the updated r and I
- Step 1:
- if $k>r$, then find $Z_{k}(S)$ by comparing the characters starting at k to the characters starting at position 1 in S, until a mismatch is found. The length of the match is $Z_{k}(S)$. If $Z_{k}(S)>0$, set $r=k+Z_{k}(S)-1$, and $I=k$.

Compute $\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$ from $\mathrm{Z}_{\mathrm{i}}(\mathrm{S}), 2<\mathrm{j}<\mathrm{i}$

- Step 2
- If $k \leq r$, then position k is contained in a Z-box, and hence $S(k)$ is contained in a substring S[l..r] (call it α) such that I > 1 and α matches a prefix of S.
- Therefore, character $S(k)$ also appears in position $k^{\prime}=k-l+1$ of S.
- By the same reasoning, the substring $S[k . r]$ (call it β) must match substring $S\left[k^{\prime} . . Z_{\mid}(S)\right]$. (Remember the example with $\left.Z_{22}(S), r=121!\right)$
- Hence, the substring at position k must match a prefix of S of length at least the minimum of $Z_{k^{\prime}}(S)$ and $|\beta|$ (which is $r-k+1$).

Two cases given the minimum

- Case 1: If $Z_{k^{\prime}}(S)<|\beta|$
- then position k is a Z -box (call it γ) contained within a larger Z-box
- set $Z_{k}(S)=Z_{k^{\prime}}(S)$ and leave r and I as they are

Two cases given the minimum

- Case 2: If $Z_{k},(S) \geq|\beta|$
- then the entire substring $S[k . . r]$ must be a prefix of S and $Z_{k}(S) \geq|\beta|=r-k+1$
- However, $Z_{k}(S)$ may be strictly larger, so compare characters starting at r +1 of S to the characters starting at $|\beta|+1$ of S until a mismatch occurs (Remember the second smart improvement over the naive method!)
- Say the mismatch is at $q \geq r+1$. Then $Z_{k}(S)=q-k, r=q-1$, and $l=k$

Linear time computation

- "The algorithm computes all the $\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$ values in $\mathrm{O}(|\mathrm{S}|)$ time"

The time is proportional to the number of iterations, $|\mathrm{S}|$, plus the number of character comparisons. Each comparison is either a match or a mismatch. Each iteration that performs any character comparisons at all ends the first time it finds a mismatch; hence there are at most $|S|$ mismatches during the entire algorithm. To bound the number of mismatches, note first that $r_{k} \geq r_{k-1}$ for every iteration k. Now, let k be an iteration where $q>0$ matches occur. Then r_{k} is set to $r_{k}+q$ at least. Finally, $r_{k} \leq|S|$ so the total number of matches that can occur during any execution of the algorithm is at most $|S|$.

- "Computing $\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$ on $\mathrm{S}=\mathrm{P} \$ \mathrm{~T}$ finds matches of P in T in $\mathrm{O}(|\mathrm{T}|)$ "

Outline

1. The naive method for exact string matching

- Method for finding matches of a pattern P in a text T using $\mathrm{O}(|P| \cdot|T|$ comparisons

2. Methods for fundamental preprocessing of a pattern

- Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found

3. The Booyer-Moore algorithm

- Smart shifts in sublinear $O(|P|+|T|)$ time (B-M), thanks to 2 complementary rules: the bad character rule and the good suffix rule

4. Inexact matching

- The edit distance algorithm

The Boyer-Moore algorithm

- Like the naive method
- Align P with T, check whether characters in P and T match
- After the check is complete, P is shifted rightwards relative to T
- Smarter shifting
- For an alignment, check whether P occurs in T scanning right-to-left in P
- The bad character shift: shift right beyond the bad character
- The good suffix shift: shift right using the match of the good suffix of P

Boyer-Moore: right-to-left scan

- For any alignment of P against T, check P right-to-left

$$
\begin{aligned}
& \mathrm{T}=\begin{array}{llllllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
X & \mathrm{P} & \mathrm{~B} & \mathrm{C} & \mathrm{~T} & \mathrm{~B} & \mathrm{X} & \mathrm{~A} & \mathrm{~B} & \mathrm{P} & \mathrm{Q} & \mathrm{X} & \mathrm{C} & \mathrm{~T} & \mathrm{~B} & \mathrm{P} & \mathrm{Q}
\end{array} \\
& P=\quad T P A B X A B \\
& \begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
& & x & \ddots & \ddots & \ddots & \ddots
\end{array}
\end{aligned}
$$

- For example,
- $P(7)=T(9)$... but $P(3) \neq T(5)$
- Upon a mismatch, shift P right relative to T
- The linear nature of the algorithm is in the shifts
- Scanning right-to-left still yields an algorithm running in $\mathrm{O}(\mathrm{nm})$ time

B-M: The bad character shift

- The basic idea
- Suppose the rightmost character in P is y, aligned to x in T with $x \neq y$
- If x is in P, then we can shift P so that the rightmost x is below x in T
- If x is not in P, then we can shift P completely beyond the x in T
- Possibly sublinear matching: not all characters in T may need to be compared
- Very efficient for natural language text, esp. English

B-M: The bad character shift

- Store the right-most position of each character

For each character x in the alphabet, let $R(x)$ be the rightmost position of x in $P . R(x)$ is defined to be 0 if x is not in P.

- The bad character shift rule makes use of R

Suppose for an alignment of P against T, the rightmost n-i characters of P match against T, but the character at $P(i)$ is a mismatch with the character $T(k)$. Now, we can shift P right by $\max [1, \mathrm{i}-\mathrm{R}(\mathrm{T}(\mathrm{k}))]$ places; i.e. if the right-most occurrence in P of the character $T(k)$ is in position $j<i$ (possibly with $j=0$), then shift P so that the character j of P is below character k of T. Else, shift P by 1.

$$
\begin{aligned}
& P=\quad T P A B X A B \quad R(" T ")=I \\
& \begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array} \\
& \text { TPABXAB }
\end{aligned}
$$

$B-M$: the good suffix rule

- The basic idea:
- Given the character $\mathrm{T}(\mathrm{k})$ against which P mismatches,
- Take the good suffix t of P, i.e. the part that matched against T
- Look in P for the right-most copy t' of t , such that the character k' to the immediate left of t ' differs from $\mathrm{T}(\mathrm{k})$; else the shift would yield the same mismatch!
- Then, shift P to the right such that t ' is below the matching t in T.

$$
\begin{aligned}
& \text { Q } \stackrel{x}{C} \text { A }^{\prime} \text { B B A B D A B }
\end{aligned}
$$

$B-M$: the good suffix rule

Suppose for a given alignment of P and T, a substring t of T matches a suffix of P, but a mismatch occurs at the next comparison to the left. Then find, if it exists, the right-most copy t' of t in P such that t ' is not a suffix of P and the character to the left of t ' in P differs from the character to the left of t in P. Shift P to the right so that the substring t^{\prime} in P is below substring t in T . If t^{\prime} does not exist, then shift the left end of P past the left end of t in T by the least amount so that a prefix of the shifted pattern matches a suffix of t in T.

If no such shift is possible, then shift P by n places to the right. If an occurrence of P is found, then shift P by the least amount so that a proper prefix of the shifted P matches a suffix of the occurrence of P in T. If no such shift is possible, then shift P by n places, past t in T .

Preprocessing

- We need some preprocessing for the good suffix rule
- We need to compute the positions of copies of suffixes of P
- whereby a copy differs from the suffix in its immediate left character
- Definition

For each $\mathrm{i}, \mathrm{L}(\mathrm{i})$ is the largest position less than n such that string $\mathrm{P}[\mathrm{i} . . \mathrm{n}]$ matches a suffix of $\mathrm{P}[1$..L(i)]. Let $\mathrm{L}(\mathrm{i})$ be zero if there is no position satisfying the conditions. For each i, $L^{\prime}(i)$ is the largest position less than n such that string $P[i . . n]$ matches a suffix of $P\left[1 . . L^{\prime}(i)\right]$ and such that the character preceding the suffix is not equal to $P(i-1)$. Let $L^{\prime}(i)$ be 0 if there is no position satisfying the conditions.

$$
P=\quad C A B D A B D A B \quad L(8)=6 \quad L^{\prime}(8)=3
$$

Preprocessing

- Computing L'(i)
- For string $P, N_{j}(P)$ is the length of the longest suffix of the substring $P[1 \ldots j]$ that is also a suffix of the full string P.

$$
N_{3}(P)=2 \quad N_{6}(P)=5
$$

- We can compute $\mathrm{N}_{\mathrm{i}}(\mathrm{S})$ from $\mathrm{Z}_{\mathrm{i}}(\mathrm{S})$
- Recall that $Z_{i}(S)$ is the length of the longest substring of S that starts at i and is a prefix of S
- $N_{i}(S)$ is the reverse of Z : if P^{r} is the reverse of P, then $N_{j}(P)=Z_{n-j+1}\left(P^{\prime}\right)$
- Hence we can obtain the values for N using the linear algorithm for Z

Preprocessing: from N to L '

- Z-based Boyer-Moore for obtaining L'(i) from $\mathrm{N}_{\mathrm{i}}(\mathrm{P})$

$$
\begin{aligned}
& \text { for } \mathrm{i}:=1 \text { to } \mathrm{n} \text { do } L^{\prime}(\mathrm{i}):=0 \\
& \text { for } \mathrm{j}:=1 \text { to } \mathrm{n}-1 \text { do } \\
& \quad \text { begin } \\
& \mathrm{i}:=\mathrm{n}-\mathrm{N}_{\mathrm{j}}(\mathrm{P})+1 \\
& L^{\prime}(\mathrm{i}):=\mathrm{j} \\
& \\
& \text { end }
\end{aligned}
$$

- Intuition
- We have computed the lengths of the longest suffixes as $N_{j}(P)$
- Cycle over P right-to-left, looking at where the longest suffixes start
- Assign to L'(i) the largest index j such that $N_{j}(P)=|P[i . . n]|=(n-i+1)$
- Those L'(i) for which there is no such index have been initialized to 0 .

The final preprocessing detail ...

- Let l'(i) denote the longest suffix of $P[i . . n]$ that is also a prefix of P, if one exists. If none exists, let l'(i) be zero.
- Once more, all the preprocessing and rules:
- Bad character rule: given a mismatch on x in T , shift P right to align with an x in P (if any)
- Compute $\mathrm{R}(\mathrm{x})$, the right-most occurrence of x in P
- Good suffix rule: shift P right to a copy of the matching suffix but with a different character to its immediate left
- Use $Z_{j}(P)$ to compute $N_{j}(P)$, the length of the longest suffix of $P[1 . . j]$ that is a suffix of P
- Use $N_{j}(P)$ to compute $L^{\prime}(i)$, the largest position less than n s.t. P[i..n] matches a suffix of $P\left[1 . . L^{\prime}(i)\right]$
- Compute l' (i), to deal with the case when we have $L^{\prime}(i)=0$ or when an occurrence of P is found

The Boyer-Moore algorithm

[Preprocessing stage]

Given the pattern P
Compute $L^{\prime}(i)$ and $l^{\prime}(i)$ for each position i of P
and compute $\mathrm{R}(\mathrm{x})$ for each character $\mathrm{x} \in \Sigma$
[Search stage]

$$
\mathrm{k}:=\mathrm{n}
$$

while $\mathrm{k} \leq \mathrm{m}$ do

$$
\mathrm{i}:=\mathrm{n}
$$

$$
\mathrm{h}:=\mathrm{k}
$$

$$
\text { while } \mathrm{i}>0 \text { and } \mathrm{P}(\mathrm{i})=\mathrm{T}(\mathrm{~h}) \text { do }
$$

$$
i:=i-1
$$

$$
h:=h-1
$$

if $i=0$ then
report an occurrence of P in T ending at position k
$k:=k+n-l \prime(2)$
else
shift P (increase k) by the maximum amount determined by the bad character rule and the good suffix rule

Outline

1. The naive method for exact string matching

- Method for finding matches of a pattern P in a text T using $\mathrm{O}(|\mathrm{P}| \cdot|T|)$ comparisons

2. Methods for fundamental preprocessing of a pattern

- Pre-process the pattern to make smarter shifts (i.e. longer ones) when a mismatch is found

3. The Booyer-Moore algorithm

- Smart shifts in sublinear $O(|P|+|T|)$ time (B-M), thanks to 2 complementary rules: the bad character rule and the good suffix rule

4. Inexact matching

- The edit distance algorithm

Inexact matching

- So far: exact matching problem
- Inexact matching: approximation of pattern in text
- From substring to subsequence matching
- The edit distance between two strings
- Transformation: insertion, deletion, substitution of material

R	I	M	D	M	D	M	M	I
v		i	n	t	n	e	r	
w	r	i		t		e	r	s

- A string over the alphabet I, D, R, M, that describes a transformation of one string to another is called an edit transcript of the two strings

Edit distance

- Edit distance

The edit distance between two strings is defined as the minimum number of edit operations - insert, delete, substitute - needed to transform the first string into the second. (Matches are not counted.)

- The edit distance problem

The edit distance problem is to compute the edit distance between two given strings, along with an optimal edit transcript that describes the transformation.

Dynamic programming

- For strings S 1 and $\mathrm{S} 2, \mathrm{D}(\mathrm{i}, \mathrm{j})$ is the edit distance between $\mathrm{S} 1[1 . . \mathrm{i}]$ and $\mathrm{S} 2[1 . . \mathrm{j}$. Let $\mathrm{n}=|\mathrm{S} 1|$ and $\mathrm{m}=|\mathrm{S} 2|$.
- Dynamic programming:
- Recurrence relation: recursive relationship between i and j in $\mathrm{D}(\mathrm{i}, \mathrm{j})$
- Tabular computation: memoization technique for computing $D(i, j)$
- Traceback: computing the optimal edit transcript from the table

Recurrence relation

- Recursive relationship
- Relate value of $D(i, j)$ for i and j positive, and values of D with index pairs smaller than i, j.
- Base conditions: $D(i, 0)=i$ and $D(0, j)=j$
- Recurrence relation for $D(i, j)$ for $i, j>0$
- $D(i, j)=\min [D(i-1, j)+1, D(i, j-1)+1, D(i-1, j-1)+t(i, j)]$
- where $\mathrm{t}(\mathrm{i}, \mathrm{j})$ is 1 if $\mathrm{S} 1(\mathrm{i}) \neq \mathrm{S} 2(\mathrm{j})$ and 0 if $\mathrm{S} 1(\mathrm{i})=\mathrm{S} 2(\mathrm{j})$
- Complexity issue
- The number of recursive calls grows exponentially with n and m
- But, there are only $(n+1)^{*}(m+1)$ combinations of i and j, hence only $(n+1)$ * $(m+1)$ distinct recursive calls

Bottom-up tabular computation

- $(\mathrm{n}+1)^{*}(\mathrm{~m}+1)$ table
- Base: compute $D(i, j)$ for the smallest possible values of i and j
- Induction: compute $D(i, j)$ for increasing values of i and j, one row at the time

$\mathrm{D}(\mathrm{i}, \mathrm{j}$			w	r	i	t	e	r	s
		0	l	2	3	4	5	6	7
	0	0	l	2	3	4	5	6	7
v	l	l	l	2	3	$*$			
i	2	2							
n	3	3							
t	4	4							
n	5	5							
e	6	6							
r	7	7							

$$
\begin{aligned}
D(I, I) & =\min [D(0, I)+I, D(I, 0)+I, D(0,0)+t(I, I)] \\
& =\min [2,2,0+I]=I \\
D(I, 2) & =\min [D(0,2)+I, D(I, I)+I, D(I, I)+t(I, 2)] \\
& =\min [3,2, I+I]=2 \\
D(I, 3) & =\min [D(0,3)+I, D(I, 2)+I, D(0,2)+t(I, 3)] \\
& =\min [4,3,2+I]=3
\end{aligned}
$$

Base: $D(i, 0)=i, D(0, j)=j$
Step: $D(i, j)=\min [D(i-1, j)+1, D(i, j-1)+1, D(i-1, j-1)+t(i, j)], t(i, j)$ is 1 if $S 1(i) \neq S 2(j)$ and 0 if $S 1(i)=S 2(j)$

Traceback

- Pointer-based approach:
- When computing (i,j), set a pointer to the cell yielding the minimum
- If $(i, j)=D(i, j-1)+1$ set a pointer from (i, j) to $(\mathrm{i}, \mathrm{j}-1): \leftarrow$
- If $(\mathrm{i}, \mathrm{j})=\mathrm{D}(\mathrm{i}-1, \mathrm{j})+1$ set a pointer from (i, j) to $(\mathrm{i}-1, \mathrm{j}): \uparrow$
- If $(\mathrm{i}, \mathrm{j})=\mathrm{D}(\mathrm{i}-1, \mathrm{j}-1)+\mathrm{t}(\mathrm{i}, \mathrm{j})$ set a pointer from (i, j) to $(\mathrm{i}-1, \mathrm{j}-1)$: $\boldsymbol{\nwarrow}$
- There may be several pointers if several predecessors yield the same minimum value
- To retrieve the optimal edit transcripts
- Trace back the path(s) from (n, m) to $(0,0)$
- A horizontal edge (\leftarrow) represents an insertion
- A vertical edge (\uparrow) represents a deletion
- A diagonal edge (\mathbb{N}) represents a match if S1(i)=S2(j), and a substitution if S 1 (i) $=\mathrm{S} 2(\mathrm{j})$

Time-complexity

- Filling the table costs $O(n m)$ time
- To fill one cell takes a constant number of cell examinations, arithmetic operations, and comparisons
- The table consists of n by m cells, hence $O(n m)$ time
- Retrieving the optimal path(s) costs $O(n+m)$ time

Conclusions

- Exact matching problem
- Naive method compares character by character, single shift of P against T
- Optimization through smarter shifting; base information for smarter shifting is provided by Z-boxes, computable in linear time
- Boyer-Moore algorithm can run in sublinear time; thanks to two complementary rules: the bad character rule, and the good suffix rule
- Inexact matching problem
- Looking for subsequences rather than substrings
- Dynamic programming approach to establishing edit distance between two strings, specified as an edit transcript

