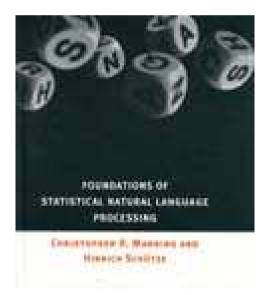


Manning, C. D. and H. Schütze:

Foundations of Statistical Natural Language Processing.

The MIT Press. 1999 ISBN 0-262-13360-1. Chapter 16.2



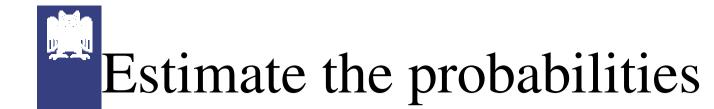
Motivation and Simple Examples

The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only recently however have computers become powerful enough to permit the widescale application of this concept to real world problems in statistical estimation and pattern recognition.

From: "A Maximum Entropy Approach to Natural Language Processing,, by Adam L Berger, Stephen A Della Pietra, Vincent J Della Pietra

Toy example

- Task:
 - Translate German word in to English
 - Possibible alternatives:
 - in, at, within, into, to



Normalisation:

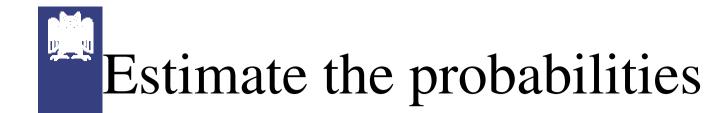
P(in) + P(at) + P(within) + P(into) + P(to) = 1

What is the least biased way of determining the probabilities?

Estimate the probabilities

Uniform Distribution:

$$P(in) = \frac{1}{5}$$
$$P(at) = \frac{1}{5}$$
$$P(within) = \frac{1}{5}$$
$$P(into) = \frac{1}{5}$$
$$P(to) = \frac{1}{5}$$



Normalisation:

P(in) + P(at) + P(within) + P(into) + P(to) = 1

Additional observation

P(in) + P(at) = 3/10

What is the least biased way of determining the probabilities?

Estimate the probabilities

Solution to problem from previous slide:

$$P(in) = \frac{3}{20}$$
$$P(at) = \frac{3}{20}$$
$$P(within) = \frac{7}{30}$$
$$P(into) = \frac{7}{30}$$
$$P(to) = \frac{7}{30}$$

Why "maximum entropy method"?

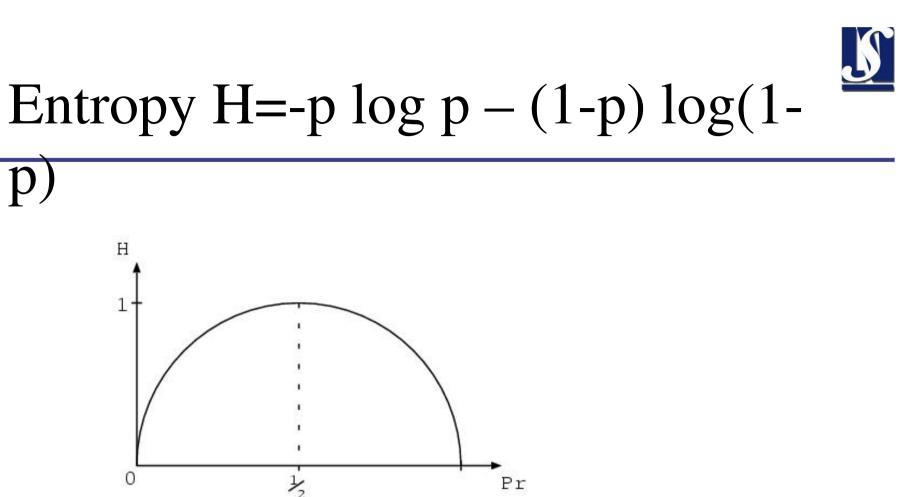
 $H(V) = \mathsf{E}[-\log(p(V))]$

$$= \sum_{w_i \in V} -p(w_i)\log(p(w_i))$$

where V is a set of symbols and is w_i the i - th symbol

V is set of two symbols V={a,b} P(a)=p P(b)=1-p

H=-p log p − (1-p) log(1-p) p=0 \mapsto H=0 p=1 \mapsto H=0



<u>19. – 1</u>1

Maximum if probabilities for the two symbols are identical

Maximize the entropy because it gives the least prejudiced distribution.

While maximizing, take constraints into account.

Linear Constraints

What are linear constraints good for

- Formalizing our requirements about the final probability distribution
- Taking into account our knowledge derived from a corpus
- Linear, because nonlinear models are more complex

Extend the translation example to include context

Notation:

x: word in the source languagey: word in the target language

Example sentence fragment: Source language: "Er geht *in* die Schule." Target language: "He goes *to* school."

Indicator Functions (feature functions)

• Try to capture essential information from context

 $f_1(x, y) = \begin{cases} 1 & \text{if } y = \text{"to" and "geht" preceeds "in"} \\ 0 & \text{otherwise} \end{cases}$

 $f_2(x, y) = \begin{cases} 1 & \text{if } y = \text{"to" and "die Schule" follows "in"} \\ 0 & \text{otherwise} \end{cases}$

Integrate Constraints into Probabilities

• Empirical expectation value of feature

$$\widetilde{p}(f_i) \equiv \sum_{x,y} \widetilde{p}(x,y) f_i(x,y)$$

With $\tilde{p}(x, y)$: empirical distribution on corpus (e.g. relative frequencies)

• Expected value of feature derived from unknown model p(ylx)

$$p(f_i) \equiv \sum_{x,y} \tilde{p}(x) p(y \mid x) f_i(x, y)$$

Integrate Constraints into Probabilities

 \mapsto

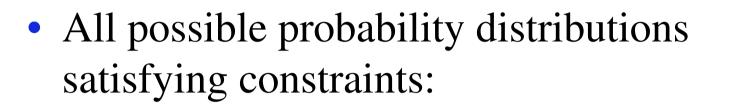
• Requirement: match model to corpus statistics

$$p(f_i) = \tilde{p}(f_i)$$

$$\sum_{x,y} \widetilde{p}(x) p(y \mid x) f_i(x, y) = \sum_{x,y} \widetilde{p}(y, x) f_i(x, y)$$

Linear constraint

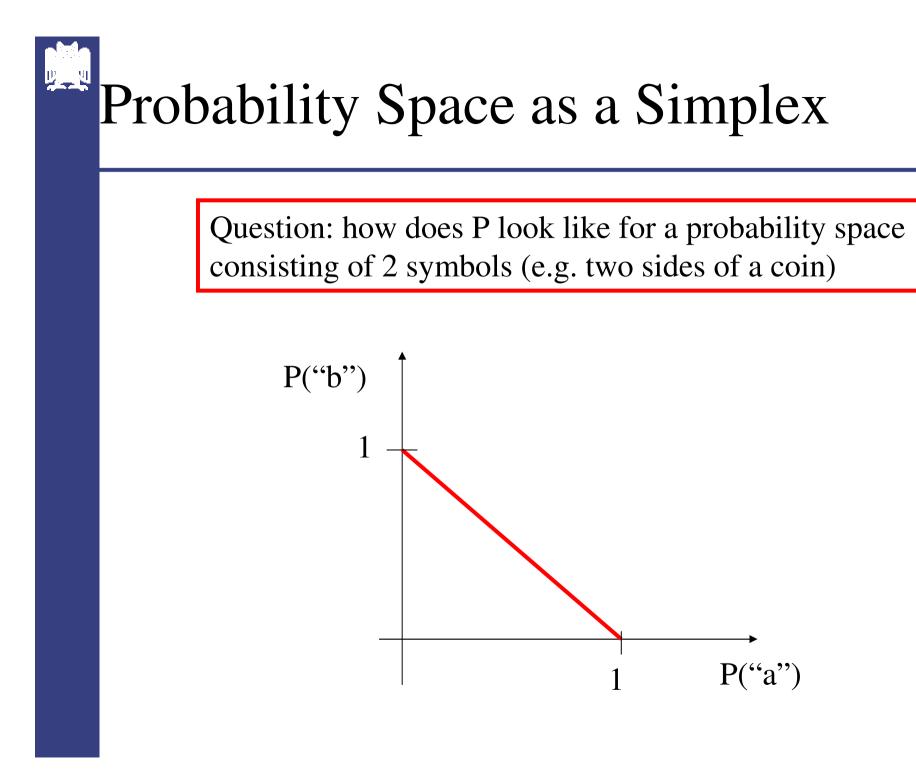
Set of possible probability distributions

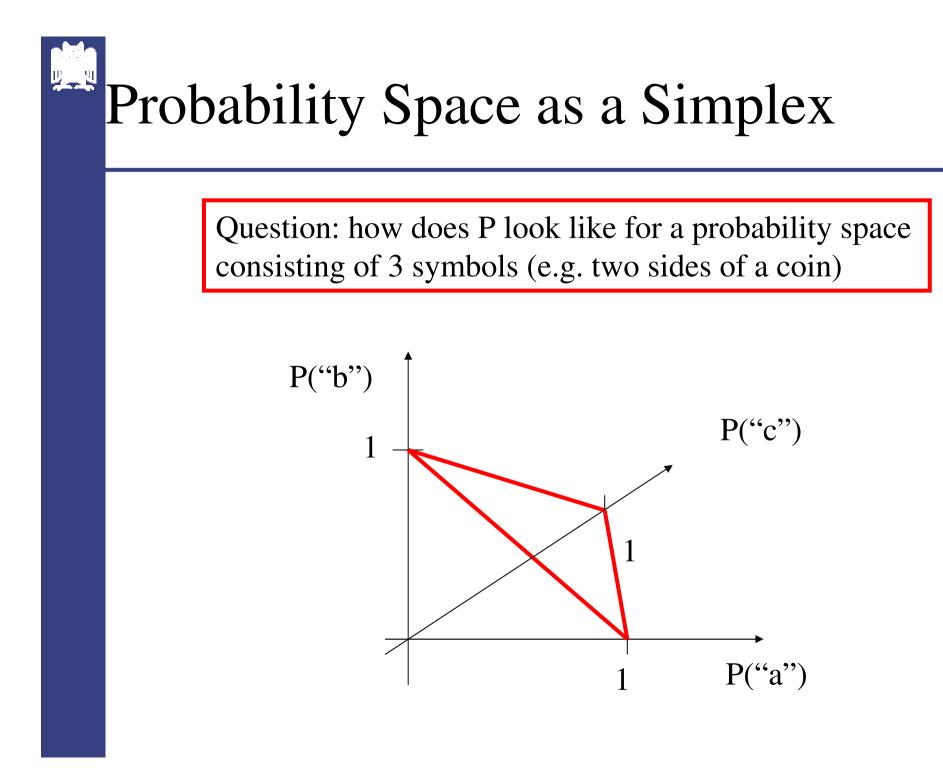


$$C \equiv \{ p \in P \mid p(f_i) = \tilde{p}(f_i) \text{ for } i = 1..n \}$$

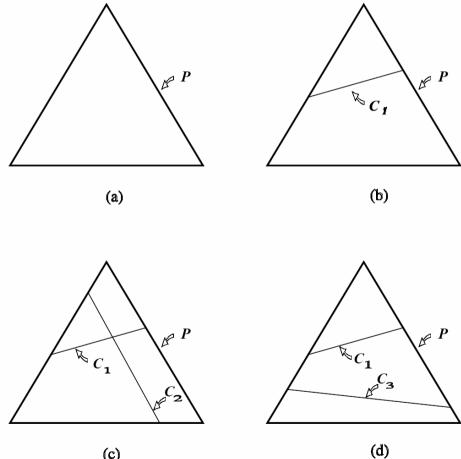
P: space of all probability distributions

Question: how does P look like for a probability space consisting of 2 symbols (e.g. the two sides of a coin)





Examples of Simplex and Constraints



(c)

Least biased solution on C

• Entropy:

<u>19</u>

$$H(p) \equiv -\sum_{x,y} \tilde{p}(x) p(y \mid x) \log p(y \mid x)$$

• Maximize entropy

$$p_* = \underset{p \in C}{\operatorname{arg\,max}} H(p)$$

Example of linear constraints: a trigram language model

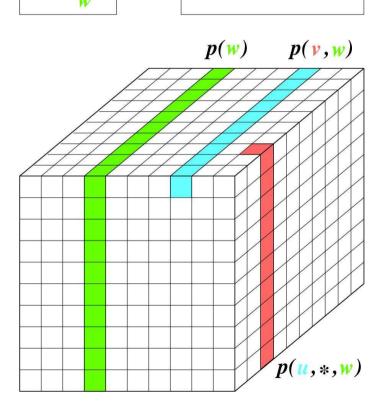
Sequence of words: u,v,w

Desired probability:

p(wlu,v)

or alternativly

p(u,v,w)



p(u, v, w)

w now plays the role of y The pair u,v plays the role of x

Example feature function:

$$f_{w_k}(x, y) = \begin{cases} 1 & \text{if } y = w_k \\ 0 & \text{otherwise} \end{cases}$$

Resulting Constraint Equation

General constraint equation

$$\sum_{x,y} \tilde{p}(x) p(y | x) f_{w_k}(x, y) = \sum_{x,y} \tilde{p}(y, x) f_{w_k}(x, y)$$

Resulting specific constraint equation

$$\sum_{u,v} \widetilde{p}(u,v) p(w_k \mid u,v) = \widetilde{p}(w_k)$$

Similarly for $\tilde{p}(u_l)$ and $\tilde{p}(v_m)$

Feature function

 $f_{u_l w_k}(x, y) = \begin{cases} 1 & \text{if } y = w_k \text{ and } u_1 \text{ is directly preceding } w_k \text{ in } x \\ 0 & \text{otherwise} \end{cases}$

Constraint equation

$$\sum_{v} \widetilde{p}(u_l, v) p(w_k \mid u_l, v) = \widetilde{p}(u_l w_k)$$

Similarly for $\tilde{p}(v_m u_l)$ and $\tilde{p}(v_m * w_k)$

Effective Trigram via Log-Linear Interpolation: Results

Model	PP
Bigram	317.7
Linear combination of bigram constraints	302.1
Maximum entropy model (bigram constraints only)	250.1
Trigram	198.4

Training Maximum Entropy Models

Log linear models

• General solution of ME problem:

$$p_{\lambda}(y \mid x) = \frac{1}{Z_{\lambda}(x)} \exp\left(\sum_{i} \lambda_{i} f_{i}(x, y)\right)$$

with

10 <u>1</u>

 λ : parameters still to be determined $Z_{\lambda}(h)$: normalization (calculation costly!!!)

$$\lambda_i^{j+1} = \lambda_i^j + \log \left(\frac{\sum_{x,y} \widetilde{p}(x,y) f_i(x,y)}{\sum_{x,y} \widetilde{p}(x) p_j(y \mid x) f_i(x,y)} \right)^{e_i}$$

- e_i: scaling of constraint
- A few iterations are sufficient
- Takes quite a lot of CPU time

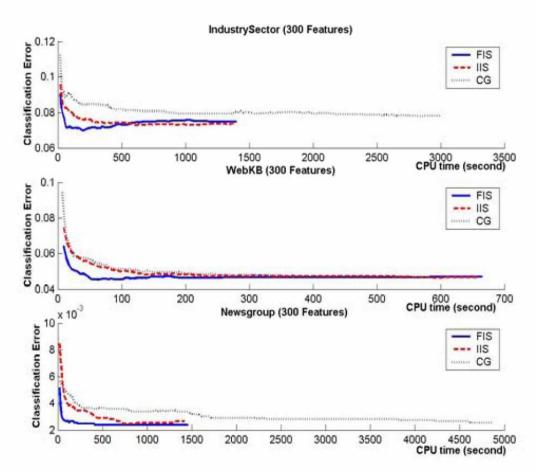
Alternative Training Schemes

- Improved iterative scaling
- Conjugate gradient

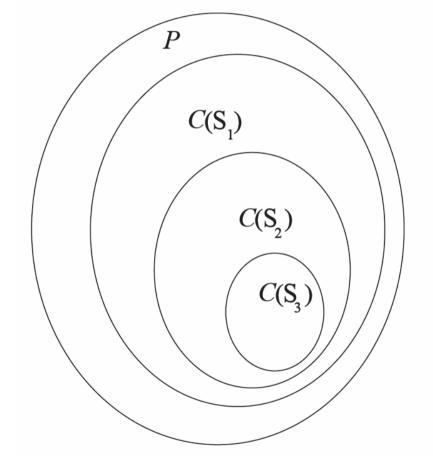
19. - U

• Fast iterative scaling

Convergence in a Text Classification Task



GIS: not shown on this graph because it has been shown in older publications that IIS is faster



•Measure change in likelihood when adding a feature •Slow and expensive process •No standard solution yet

Other Applications of Max.-Ent. Models

<u> 1</u>

Translation from a French sentence F to an English sentence E

$$P(F, A | E) = \prod_{i=1}^{|E|} p(n(e_i) | e_i) \prod_{j=1}^{|F|} p(y_i | e_{a_j}) p(A | E, F)$$

with

p(n | e): number of French words generated from English word e p(f | e): probability that French word f is generated by e p(A | E, F): probability of particular word order

Text-Classification on Reuters Task

Features

Word	Feature weight		
W^{i}	α_i	$\log_e \alpha_i$	
VS	2.696	0.992	
mln	1.079	0.076	
cts	12.303	2.510	
;	0.448	-0.803	
&	0.450	-0.798	
000	0.756	-0.280	
loss	4.032	1.394	
,	0.993	-0.007	
	1.502	0.407	
3	0.435	-0.832	
profit	9.701	2.272	
dlrs	0.678	-0.388	
1	1.193	0.177	
pct	0.590	-0.528	
is	0.418	-0.871	
S	0.359	-1.025	
that	0.703	-0.352	
net	6.155	1.817	
lt	3.566	1.271	
at	0.490	-0.713	
f_{K+1}	0.967	-0.034	

Results

"earnings"	"earnings"	correct?
assigned?	YES	NO
YES	1014	53
NO	73	2159

96,2% accurate

Question Answering

• Features:

...

19. ____U

Question word who \mapsto Answer candidate is person Question word who \mapsto Answer candidate has two words Question word where \mapsto Answer candidate is location

Named Entity Tagging

See:

<u>Maximum Entropy Models for Named Entity</u> <u>Recognition</u>

O. Bender, F.J. Och, H. Ney

Proceedings of CoNLL-2003

Probabilistic Context Free Grammars

See:

A maximum-entropy-inspired parser

E. Charniak –

Proceedings of NAACL, 2000

- General framework to train probabilities
 - Include constraints (i.e. observations from corpus)
 - Find least biased probability distribution satisfying all constraints
- Warning:
 - CPU-time intensive
 - Picking the right features important for success