
1 OWL Axiom for Human

Assume an ontology that contains (at least) the class Human and its two sub-
classes Man and Woman. Assume two further properties hasFather and has-
Mother.

1. Define an OWL axiom (p. 39) that fully characterizes Human, viz., that
it has exactly one father of type Man and one mother of type Woman. In
order to achieve this, you need different OWL class constructors (p. 36).

2. Together with the non-unique name assumption (p. 40), functional prop-
erties as those above sometimes lead to surprising inferences. Give a small
example using the above ontology!

Solution 1. Man v Human
Woman v Human
Human ≡ ≤ 1.hasFather u ≥ 1.hasFather u

≤ 1.hasMother u ≥ 1.hasMother u
∃hasFather.Man u ∃hasMother.Woman

Note: it does NOT matter whether we are using universal or existential property
restrictions in the third line.
Solution 2. Assume that the ABox of the above ontology would contain the
two relation instances (functional notation) hasMother(peter, mary) and has-
Mother(peter, marian). Functionality of the hasMother relation then requires
that mary and marian are equal: owl:sameAs(mary, marian).

2 rdfs:subClassOf and owl:intersectionOf

Is the denotation of Z in ontologies O1 and O2 the same for every interpretation,
assuming X and Y have the same denotation in O1 and O2?
O1 = {Z ≡ X u Y}
O2 = {Z v X,Z v Y}

If so, why? If not so, why? Hint: you can use Venn diagrams to explain your
choice.

Solution. There exists an interpretation I, where all individuals of Z in O2

belong to only a subset of XuY, meaning that there exists an exhaustive disjoint
partition p of X u Y, i.e.,

p = ZI ∪WI and ZI ∩WI = ∅

This is not possible in O1, since Z is exactly (≡) defined through X u Y.

1



3 Integrity Constraints

Certain relations (e.g., spatio or temporal topological relations) are often anti-
reflexive. For instance,

partOf(s,t)→ ¬partOf(t, s) e.g., partOf(door, house)
before(s,t)→ ¬before(t, s) e.g., before(5am, 5pm)

1. You can NOT write such a rule in SWRL/OWLIM, since negation is
restricted to OWL class constructors in the TBox. However, you can
rewrite those rules with negation on the RHS such that the new rule
essentially captures the semantics of the old rule. This however requires
querying for individuals of a very special class after the application of the
rewritten rule.

2. Would it be possible to have negation on the LHS of a rule. Would this
lead to problems? Explain!

3. Negation on the LHS and the RHS is allowed in SWRL/OWLIM within
a specific axiom. Which one?

Solution 1. Rewrite α → ¬β as α ∧ β → ⊥ and query the resulting ontology
for individuals of type owl:Nothing:

α→ ¬β ⇐⇒ ¬α ∨ ¬β ⇐⇒ ¬(α ∧ β)⇐⇒ ¬(α ∧ β) ∨ ⊥ ⇐⇒ α ∧ β → ⊥
Solution 2. The order-independence (free choice) of rules from R (p. 52) in the
forward chaining algorithm is no longer guaranteed and will result into different
result sets T .
Consider the two rules (R : ¬α → β) and (R′ : γ → α). β ∈ T if R is applied
before R′. Assuming that only R is able to add β to T and that γ has a
matching, β 6∈ T iff R′ is applied before R.
Solution 3. The axiom uses differentFrom which explicitly states that two
individuals can NEVER be equal.

4 Forward Chaining

Why does the forward chaining algorithm (p. 52) terminate, assuming we are
dealing with safe entailment rules (p. 48) ?

Solution. Neither new URIs nor new XSD literals are introduced during the
matching & instantion phase. Only new triples are constructed during instan-
tiation when variables in the head of a rule are replaced by values from the
binding environment.
Assuming that n = #URIs + #XSD literals, we will have at most n3 triples
at the very end of the closure computation. This is a finite number, hence the
fixpoint will be reached in a finite number of iterations.
The deeper reason for having a finite fixpoint (T = T ′) lies in the nature of
set union: ∪ is a monotonic operation that will not delete information from T .

2



Furthermore and also very important: we normally refer to the Cantor notion
of sets—sets must not contain duplicate elements.

5 Reducibility to Consistency

On page 41, we said that the basic inference problems are all reducible to
(in)consistency. Reformulate subsumption: C v D. You might again use Venn
diagrams to explain your reformulation.

Solution. C v D⇐⇒ C u D ≡ C ⇐⇒ C u D u ¬D ≡ C u ¬D⇐⇒ C u ¬D ≡ ⊥,
i.e., C subsumes D iff C u ¬D is inconsistent.

6 OWL Entailment Rules

Page 56 has presented four OWL entailment rules in OWLIM notation. Now,
properties in OWL can either be (see pp. 34, 36, 37)

• datatype properties of rdf:type owl:DatatypeProperty
example: hasAge(peter, 42)) or

• object properties of rdf:type owl:ObjectProperty
example: hasMother(peter, mary)).

Orthogonal to this, properties in OWL are furthermore classified as being tran-
sitive, symmetric, functional , etc. (p. 35). Write OWL entailment rules that
address functional object as well as functional datatype properties (you will
probably need inequality constraints over variables; see p. 57). Are these rules
different. Why?

Solution.

p <rdf:type> <owl:FunctionalProperty>

p <rdf:type> <owl:DatatypeProperty>

i p j

i p k [Constraint j != k]

-------------------------------------

i <rdf:type> <owl:Nothing>

p <rdf:type> <owl:FunctionalProperty>

p <rdf:type> <owl:ObjectProperty>

i p j

i p k [Constraint j != k]

-------------------------------------

j <owl:sameAs> k

3



Different XSD literals, such as 42 and 2 can NEVER be the same, i.e., values in
the range of a datatype property are only equal if they are literally the same.
However, due to the non-unique name assumption, different URIs might refer
to the same individual in the range of an object property.

4


