
Introduction to CL – CFG-Parsing

1 Left Corner relation – Transitive Closure

We do a least fixpoint computation to compute the closure. Initialize every set LC(A)
with the one-step left-corner relation items and add those that come in indirectly until no
new candidates are found. This algorithm can be further optimized: In line 7, only those
(non)terminals C should be considered which have been added in the last while round,
or the initialization, if it’s the first.

1 for A → Bβ ∈ P do LC(A) = {B}
2 changed = true

3 while changed do
4 changed = false

5 for A ∈ N do
6 for B ∈ LC(A) ∩ N do
7 for C ∈ LC(B) do
8 if C 6∈ LC(A) then LC(A) = LC(A) ∪ {C}; changed = true

2 Extraction of complete parse trees

extract trees extracts all trees rooted in the nonterminal N reaching from s to e in the
chart. To get all full parse trees, call extract trees(S, 0, n) if S is in C[0, n]. Otherwise,
the input string is not in the language of the grammar.

extract trees(N, s, e)
if e = s + 1 ∧ N → a

e
∈ P return {tree(N)} // preterminal leaf

result trees = {}
for all k ∈ B[s, e] // check all split points

for all A ∈ C[s, k] // check all possible left daughters
for all B ∈ C[k, e] // check all possible right daughters

if N → AB ∈ P // look for appropriate productions
left trees = extract trees(A, s, k)
right trees = extract trees(B, k, e)
for left in left trees

for right in right trees add tree(N, left, right) to result trees
return result trees

3 Parse-tree extraction – run time

Because the number of parse trees may be exponential, this parse tree extraction algorithm
has exponential worst case complexity.

4 Bottom-up vs. Earley/left corner parsing

Bottom-up parsing is advantageous in cases where all sub-constituents derived by a given
grammar are useful, e.g., in robust parsing, where sub-constituents can be used to con-
struct a partial representation of the input string’s content.

Earley or left-corner parsing have a better average case run-time for cases where only
complete parses are of interest and efficiency is important.


