
Computational Linguistics
Question hour

Pierre Lison
Language Technology Lab

DFKI GmbH, Saarbrücken
http://talkingrobots.dfki.de

Mittwoch, 7. Juli 2010

http://talkingrobots.dfki.de
http://talkingrobots.dfki.de

© 2010 Pierre Lison Computational Linguistics: question hour

 Introduction

We‘ll review the questions of the Probeklausur, one by
one

Note that I‘m not a specialist in all of these topics, but I‘ll
do my best to re-explain the main concepts

If you have any questions, please don‘t hesitate!

Thursday, it will be too late :-)

2

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q1: Finite-state algorithms

3

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q1.1: drawing the FSA

4

ε ε

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q1.1: drawing the FSA

4

0

ε ε

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q1.1: drawing the FSA

4

0

1
ε

ε ε

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q1.1: drawing the FSA

4

0

1
ε

2
ε

ε ε

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q1.1: drawing the FSA

4

0

1
ε

3
b

2
ε

ε ε

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q1.1: drawing the FSA

4

0

1
ε

3
b

2
ε

4
a

ε ε

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q1.1: drawing the FSA

4

0

1
ε

3
b

2
ε

4
a

ε ε

ε

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q1.1: drawing the FSA

4

0

1
ε

3
b

2
ε

4
a

ε

ε ε

ε

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q1.1: drawing the FSA

4

0

1
ε

3
b

2
ε

4
a

ε

ε ε

5

ε

ε

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q1.1: drawing the FSA

4

0

1
ε

3
b

2
ε

4
a

ε

ε ε

5

ε

ε

ε

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q1.1: drawing the FSA

4

0

1
ε

3
b

2
ε

4
a

ε

ε ε

5

ε

ε

ε

6
c

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q1.1: drawing the FSA

4

0

1
ε

3
b

2
ε

4
a

ε

ε ε

5

ε

ε

ε

6
c

ε

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q1.1: drawing the FSA

5

ε ε

0

1ε 3
b

2ε 4
a

ε

5

ε

ε

ε

6
c

ε

Which language does this automaton accept?

•The subgraph (0-2-4) accepts a+

•The subgraph (0-1-3) accepts b+

•(0-1-2-3-4-5) is a union of the two => accepts a+|b+

• The full FSA accepts (a+|b+)c+

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

Q1.2 Determinisation

We can start by computing the ε-closures, since we‘ll need
them for the subset construction

Reminder: ε- closure of a state q = q + all states that can be reached from q
through a sequence of e-transitions

ε-closure(0) = {0,1,2}, ε-closure(1) = {1}, ε-closure(2) = {2}, ε-closure(3) =
{1,3,5}, , ε-closure(4) = {2,4,5}, , ε-closure(5) = {5}, , ε-closure(6) = {5,6}

6

0

1ε 3
b

2ε 4
a

ε

5

ε

ε

ε

6
c

ε

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

Q1.2 Determinisation

We then perform the subset construction, starting with the node
“012” (ε-closure of 0)

For each constructed node, we look for all the possible states
which can be reached from it with a particular character

For instance, δ‘(012,b) = {1,3}

7

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

Q1.2 Determinisation

We then perform the subset construction, starting with the node
“012” (ε-closure of 0)

For each constructed node, we look for all the possible states
which can be reached from it with a particular character

For instance, δ‘(012,b) = {1,3}

7

012

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

Q1.2 Determinisation

We then perform the subset construction, starting with the node
“012” (ε-closure of 0)

For each constructed node, we look for all the possible states
which can be reached from it with a particular character

For instance, δ‘(012,b) = {1,3}

7

012

135b

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

Q1.2 Determinisation

We then perform the subset construction, starting with the node
“012” (ε-closure of 0)

For each constructed node, we look for all the possible states
which can be reached from it with a particular character

For instance, δ‘(012,b) = {1,3}

7

012

135b

245a

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

Q1.2 Determinisation

We then perform the subset construction, starting with the node
“012” (ε-closure of 0)

For each constructed node, we look for all the possible states
which can be reached from it with a particular character

For instance, δ‘(012,b) = {1,3}

7

012

135b

245a

b

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

Q1.2 Determinisation

We then perform the subset construction, starting with the node
“012” (ε-closure of 0)

For each constructed node, we look for all the possible states
which can be reached from it with a particular character

For instance, δ‘(012,b) = {1,3}

7

012

135b

245a

b

a

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

Q1.2 Determinisation

We then perform the subset construction, starting with the node
“012” (ε-closure of 0)

For each constructed node, we look for all the possible states
which can be reached from it with a particular character

For instance, δ‘(012,b) = {1,3}

7

012

135b

245a

b

a

56

c

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

Q1.2 Determinisation

We then perform the subset construction, starting with the node
“012” (ε-closure of 0)

For each constructed node, we look for all the possible states
which can be reached from it with a particular character

For instance, δ‘(012,b) = {1,3}

7

012

135b

245a

b

a

56

c

c

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

Q1.2 Determinisation

We then perform the subset construction, starting with the node
“012” (ε-closure of 0)

For each constructed node, we look for all the possible states
which can be reached from it with a particular character

For instance, δ‘(012,b) = {1,3}

7

012

135b

245a

b

a

56

c

c

c

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

Q1.2 Determinisation

As a final step, we can verify that the language recognised by
the FSA is the same as the non-deterministic one

In this case: OK! The language recognised is also (b+|a+) c+

So we‘re done :-)

8

012

135b

245a

b

a

56

c

c

c

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q2: Parsing

Provide a formal definition of a Context-Free Grammar

Explain why the use of a chart can increase parsing
efficiency

What are the advantages and disadvantages of CYK and
Earley parsing? Compare these two algorithms, notably
in terms of worst-case runtime complexity

Whas is the motivation behind the use of unification-
based grammars?

9

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q2.1: definition of a CFG

A Context-free grammar is formally defined as a tuple
<N, Σ, S,P> where:

N is a set of non-terminal symbols

Σ is a set of terminal symbols

S is the start symbol ∈ N

P is a set of production rules of the form A → α, where A is a non-
terminal and α ∈ (Σ ∪ N)*

10

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q2.1: definition of a CFG

A Context-free grammar is formally defined as a tuple
<N, Σ, S,P> where:

N is a set of non-terminal symbols

Σ is a set of terminal symbols

S is the start symbol ∈ N

P is a set of production rules of the form A → α, where A is a non-
terminal and α ∈ (Σ ∪ N)*

10

don‘t forget to mention the form of the production
rules! Without such constraints, the grammar could
be any grammar of the Chomsky hierarchy.

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q2.2 Use of a chart

Q2.2: Why the use of a chart can increase parsing efficiency?

First question to ask yourself: what is a parse chart?

One cell in the chart stores if the substring of the input that is given by the
span (start,end) is derivable by stored nonterminals, but not the derivations
itself, which can be many.

Thus, the subderivations are stored in a compact way and can be used to
compute bigger and bigger derivations

These are two sources of efficiency improvement:

no need to recompute subderivations because they are stored and
accessible in an efficient way

compact storage of subderivations

11

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q2.2 Use of a chart

Q2.2: Why the use of a chart can increase parsing efficiency?

First question to ask yourself: what is a parse chart?

One cell in the chart stores if the substring of the input that is given by the
span (start,end) is derivable by stored nonterminals, but not the derivations
itself, which can be many.

Thus, the subderivations are stored in a compact way and can be used to
compute bigger and bigger derivations

These are two sources of efficiency improvement:

no need to recompute subderivations because they are stored and
accessible in an efficient way

compact storage of subderivations

11

⇒Idea of dynamic programming: solve a large problem by

combining the solutions to various smaller subproblems

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

Q2.3: CYK-Earley comparison

Q2.3: Pros and cons of CYK and Earley parsing

12

CYK Earley

•Bottom-up parser

•Explore all possible derivations

•Good for robust parsing
(extraction of chunks)

•Polynomial complexity: O(|G|2n3)

•(also easier to use when dealing
with lexicalised grammar)

•Top-down parser

•Not all sub-derivations are
computed

•Difficult to apply for robust parsing

•Complexity: O(n3) in general, O(n2)
for unambiguous grammars

•Usually better average runtime

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q2.4 unification-based grammar

Q2.4: Explain the motivation behind the use of
unification-based grammars

Generalizations such as the agreement between subject
and verb can not easily be expressed in CFGs

The number of nonterminals would have to grow massively, as well
as the lexical ambiguity.

Furthermore, such grammars would not be manageable anymore
and very hard to test.

View grammatical categories as objects which can have
complex set of properties attached to them - instead of
simple atomic primitives

More fine-grained way of representing and placing
constraints (in the rules) on the grammatical categories

13

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

Q3: ontologies

Q3: What is meant by the open-world assumption in
description logic/OWL? Provide an example.

Open-world assumption: what can NOT proven to be true
is NOT believed to be false

For instance, not knowing whether a student passed his
exam doesn‘t mean that he didn‘t pass it :-)

Example with an ontology:

{Woman(alice), hasChild(alice, doris), hasChild(alice, boris)}

If we ask the question: {alice} ⊑ ≤ 2 hasChild, we can only answer that
we don‘t know... because she might have more than 2 children!

Whereas if we ask the question {alice} ⊑ ≥ 2 hasChild, the answer is then yes
(if we assume that doris and boris are distinct individuals)

14

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q4: maximum-entropy models

Write down the general solution of the maximum entropy model. Explain
why evaluating a Maximum Entropy Model is computationally expensive.

Assume you want to determine the probability of getting a grade ≤ 2.0
for the Computational Linguistics course. You have the following
information at your disposal:

For each student, you know whether he/she submitted all his/her assignments

You know that 60 % of all students get a grade ≤ 2.0

And you know that 90% of the students who submitted all their assignments get a
grade ≤ 2

You would like to determine the probability P(getting a grade ≤ 2 |
submitted all his/her assignments), using a Maximum Entropy Model.
Write down the set of linear constraints that such model would include.
(note: you don't have to compute the final distribution, just provide the
constraints)

15

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q4.1: solution of the MaxEnt model

Q4.1: Write down the general solution of the MaxEnt model. Explain
why evaluating such model is computationally expensive.

General solution with a log-linear model (see slide 31):

The evaluation of a MaxEnt model is computational expensive
because of the normalisation

i.e. computing the value of the parameter Zλ(x):

16

Zλ(x) =
∑

y

exp

(
∑

i

λifi(x, y)

)

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q4.2: linear constraints

Set y to be the outcome of getting a grade ≤ 2, with the domain y ∈ [T,F]

And set x to be the evidence variable about submitting all the assignments,
with domain x ∈ [T,F]

We are interested in the probability P(y|x)

Intuitively, we would like to express the following constraints:

P(y=T, x=T) + P(y=T, x=F) = 0.6

P(y=T | x=T) = 0.9

P(y=T,x=F) + P(y=T, x=T) + P(y=F, x=T) + P(y=F, x=F) = 1.0

17

You want to determine the probability of getting a grade ≤ 2.0 for the CL course. You have the
following information at your disposal:

For each student, you know whether he/she submitted all his/her assignments

You know that 60 % of all students get a grade ≤ 2.0

And you know that 90% of the students who submitted all their assignments get a grade ≤ 2

You would like to determine the probability P(getting a grade ≤ 2 | submitted all his/her assignments),
using a MaxEnt Model. Write down the set of linear constraints that such model would include.

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q4.2: linear constraints

How do we specify these constraints in a MaxEnt model?

Ganz einfach:

For the constraint P(y=T, x=T) + P(y=T, x=F) = 0.6, we create a feature function f1 defined as

For the constraint P(y=T|x=T) = 0.9, we create a feature function f2 defined as

18

You want to determine the probability of getting a grade ≤ 2.0 for the CL course. You have the
following information at your disposal:

For each student, you know whether he/she submitted all his/her assignments

You know that 60 % of all students get a grade ≤ 2.0

And you know that 90% of the students who submitted all their assignments get a grade ≤ 2

You would like to determine the probability P(getting a grade ≤ 2 | submitted all his/her assignments),
using a MaxEnt Model. Write down the set of linear constraints that such model would include.

f1(x, y) =

{
1 if y=true
0 otherwise

f2(x, y) =

{
1 if y=true and x=true
0 otherwise

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

How do we specify these constraints in a MaxEnt model?

Remember that a constraint is used to match the model to the known
statistics, i.e.

Or in other words, with linear constraints:

19

You want to determine the probability of getting a grade ≤ 2.0 for the CL course. You have the
following information at your disposal:

For each student, you know whether he/she submitted all his/her assignments

You know that 60 % of all students get a grade ≤ 2.0

And you know that 90% of the students who submitted all their assignments get a grade ≤ 2

You would like to determine the probability P(getting a grade ≤ 2 | submitted all his/her assignments),
using a MaxEnt Model. Write down the set of linear constraints that such model would include.

p(fi) = p̃(fi)

∑

x,y

p̃(x)p(y|x)fi(x, y) =
∑

x,y

p̃(x, y)fi(x, y)

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q4.2: linear constraints

How do we specify these constraints in a MaxEnt model?

For the constraint P(y=T,x=F) + P(y=T,x=T) = 0.6, we thus have:

20

You want to determine the probability of getting a grade ≤ 2.0 for the CL course. You have the
following information at your disposal:

For each student, you know whether he/she submitted all his/her assignments

You know that 60 % of all students get a grade ≤ 2.0

And you know that 90% of the students who submitted all their assignments get a grade ≤ 2

You would like to determine the probability P(getting a grade ≤ 2 | submitted all his/her assignments),
using a MaxEnt Model. Write down the set of linear constraints that such model would include.

∑

x,y

p̃(x)p(y|x)f1(x, y) =
∑

x,y

p̃(x, y)f1(x, y)

∑

x,y

p̃(x)p(y|x)f1(x, y) = 0.6

∑

x

p̃(x)p(true|x) = 0.6

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q4.2: linear constraints

How do we specify these constraints in a MaxEnt model?

For the constraint P(y=T|x=T) = 0.6, we thus have:

21

You want to determine the probability of getting a grade ≤ 2.0 for the CL course. You have the
following information at your disposal:

For each student, you know whether he/she submitted all his/her assignments

You know that 60 % of all students get a grade ≤ 2.0

And you know that 90% of the students who submitted all their assignments get a grade ≤ 2

You would like to determine the probability P(getting a grade ≤ 2 | submitted all his/her assignments),
using a MaxEnt Model. Write down the set of linear constraints that such model would include.

∑

x,y

p̃(x)p(y|x)f2(x, y) =
∑

x,y

p̃(x, y)f2(x, y)

∑

x,y

p̃(x)p(y|x)f2(x, y) = p̃(T, T) = p̃(T |T) p̃(T) = 0.9 p̃(T)

p̃(T)p(T |T) = 0.9 p̃(T) ⇔ p(T |T) = 0.9

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q4.2: linear constraints

How do we specify these constraints in a MaxEnt model?

... and we can do the same for the last constraint (for the normalisation)

22

You want to determine the probability of getting a grade ≤ 2.0 for the CL course. You have the
following information at your disposal:

For each student, you know whether he/she submitted all his/her assignments

You know that 60 % of all students get a grade ≤ 2.0

And you know that 90% of the students who submitted all their assignments get a grade ≤ 2

You would like to determine the probability P(getting a grade ≤ 2 | submitted all his/her assignments),
using a MaxEnt Model. Write down the set of linear constraints that such model would include.

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q5: Conditional random fields

Q: Provide a graphical representation of a Conditional
Random Field. Which algorithm is used to find the most
likely hidden sequence, and what is its runtime complexity?

23

Graphical illustration of a CRF:

Each random variable yi is conditioned on the complete input
sequence x1, …xn

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q5: Conditional random fields

Q: Provide a graphical representation of a Conditional
Random Field. Which algorithm is used to find the most
likely hidden sequence, and what is its runtime complexity?

24

The algorithm used to find the most likely hidden sequence
is Viterbi decoding

The matrix M replaces the product of transition and emission
probability

Runtime complexity:

• linear in length of sequence

• quadratic in the number of labels

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

Q6: string matching

Explain why the Boyer-Moore algorithm may yield
sublinear computing time.

Use the Boyer-Moore algorithm to find matches of the
pattern P = ADCDXCD in the text T =
ABDADCDXCDABABBUDCBACDA

25

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

Q6.1: sublinear Boyer-Moore

Q6.1: Explain why the Boyer-Moore algorithm may yield
sublinear computing time.

Boyer-Moore may be sublinear thanks to the bad
character and good suffix rules

For the bad character rule: upon a mismatch in the character
comparisons (with mismatched character in T = x), shift the pattern
to the right-most x in P

In other words, not all characters in T need to be compared!

26

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q6.2: Boyer-Moore matching

Q6.2: Use the Boyer-Moore algorithm to find matches of
the pattern P = ADCDXCD in the text T =
ABDADCDXCDABABBUDCBACDA

We first do the necessary preprocessing on the pattern P,
to compute L‘(i) and l‘(i)

in particular, we have L‘(7) = 2 L‘(6) = 4

l‘(i) = 0 for every i

27

ADCDXCD
1 2 3 4 5 6 7

P=

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q6.2: Boyer-Moore matching

28

A B D A D C D X C D A B A B B U D C B A C D A

A D C D X C D

T=

P=
✔✔✘

→ Use of the good suffix rule

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q6.2: Boyer-Moore matching

29

A B D A D C D X C D A B A B B U D C B A C D A

A D C D X C D

T=

P=
✔✔✔✔✔✔✔

→ woohoo!

l‘(2) = 0, so we completely shift P

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q6.2: Boyer-Moore matching

30

A B D A D C D X C D A B A B B U D C B A C D A

A D C D X C D

T=

P=
✔✘

→ Use of the bad character rule

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Q6.2: Boyer-Moore matching

31

A B D A D C D X C D A B A B B U D C B A C D A

A D C D X C D

T=

P=
✘

→ and we‘re done :-)

Mittwoch, 7. Juli 2010

© 2010 Pierre Lison Computational Linguistics: question hour

 Last points

Don‘t hesitate to contact me for any questions

Needless to say, don‘t assume that material which has
not been covered in the Probeklausur won‘t appear in
the real exam

32

Mittwoch, 7. Juli 2010

