
Introduction to Computational Linguistics

UBG Parsing Exercises

1 Subsumption

As data structure to represent the feature structures, there are two choices:

1. the basic structures are the arcs

2. the basic structures are the nodes

For this purpose, we take the nodes (like in Carpenter 1992), because they make it
easier to deal with reentrancies. Starting from this point, a feature structure can be
defined recursively (similar to other directed graphs, e.g. trees):

A feature structure is (represented by) a node from which labelled edges leave
and lead to other feature structures. The node has a type value.

With this assumption, and the definition of feature structures from the lecture, we
obtain the following recursive function.

Algorithm

A (typed) feature structure F = 〈t, ε〉 subsumes a feature structure G = 〈t′, ε′〉, with
ε, ε′ : Feat→ F .

function subsumes(F, G)
if ¬(t v t′) then

3: return false
end if
for all h ∈ Feat where ε(h) is defined do

6: if ε′(h) is not defined then
return false

else
9: if subsumes(ε(h), ε′(h)) is false then

return false
end if

12: end if
end for
return true

Does this deal with reentrancies correctly? No.



Adding reentrancies and checking for cycles

Let us start from an observation. We are not interested in the reentrancies of the second
feature structure: that one can be more specific without affecting the subsumption rela-
tion. What makes a difference is that the first one has features or reentrancies more. We
need to find out whether there are any features or any reentrancies in the first that are
not in the second.

To do this, we extend the data structure for a node with a pointer field. This pointer
is usually called forward pointer. If this pointer is used in a clever way, it is even enough
to deal with cyclic feature structures, such as 1

[
f : 1

]
. A cyclic feature structure

is a feature structure where there is at least one path that does not terminate, because
it leads to itself. When we enter a node whose forward pointer has already been set, we
only have to do the reentrancy check (why? think about this!! and maybe come up with
an example!) and if this succeeds, we’re done.

function subsumes(F, G)
if forward(F) is not defined then

3: forward(F) := G
else

if forward(F) 6= G then
6: return false

else
return true

9: end if
end if
if ¬(t v t′) then

12: return false
end if
for all h ∈ Feat where ε(h) is defined do

15: if ε′(h) is not defined then
return false

else
18: if subsumes(ε(h), ε′(h)) is false then

return false
end if

21: end if
end for
return true

For every node in the first feature structure, a pointer to the corresponding node in
the second one is added. When a node in F should get such a pointer, but already has a
different one, then the node was already visited, and we can return false. We exploit the
equivalence classes to detect reentrancies.



Unification Algorithm (not on exercise sheet)

For unification, the algorithm is somewhat different, since we cannot completely follow
the mathematical description, and of all feature structures that are subsumed by the
unificands only pick the most general one. We need to construct the unification.

The basic idea of the algorithm: take the second feature structure, and add the infor-
mation of the first one into it. The information means: the more specific types, the extra
features and the extra reentrancies.

Note that the only place where this function can fail is in the type unification.
To treat the reentrancies (and the cycles) correctly, we need a more sophisticated

forward pointer mechanism, called dereference. This term, together with the term repre-
sentative stem from the union-find algorithm (see, e.g.,
http://en.wikipedia.org/wiki/Disjoint-set_data_structure), which is part of this
unification algorithm.

Initially, every node in the feature structures of F and G is its own representative, which
is achieved by letting the forward pointers point to the nodes itself. During unification, a
node is dereferences by following the forward pointers until forward(Q) = Q.

function unify(F, G)
F := dereference(F); G := dereference(G)

3: if F = G then
return G

end if
6: forward(F) := G
t′ := unify(t, t′);
for all h ∈ feature-list(F) do

9: if h ∈ feature-list(G) then
ε′(h) := unify(ε(h), ε′(h))

else
12: ε′(h) := ε(h)

end if
end for

15: return G

The edges to these revisited nodes need to be updated as well. This means that the
nodes whose ε′ leads to ↓ p(F), need to be modified such that it returns G instead of
↓ p(F). That can be solved either by storing ε′−1 information in the nodes (updating then
consists of setting the ε′(h) of ε′−1(h)← G), or by adding another field o : Feat→ F that
indicates that the ε information is out-of-date, and that, in case ε(h) is needed, o(h) is
what shows the correct state.

For non-destructive unification, the feature structure needs to be copied first. That is
a waste of time if the unification turns out to fail (like 95% of the unifications do).



2 Parsing

Modify a chart parsing algorithm to deal with unification-based grammars and discuss
points of inefficiency. Try to present a solution (in pseudo-code or implemented form) for
at least one of them.

As mentioned in the lecture, the algorithm itself does not need to be changed very
much. The only change is that the category comparison in the chart needs to be done
with subsumption checking, the rule application with unification. As an example, the
original CYK algorithm is reproduced here.

for all l = 2 to n do
for all i = 0 to n - l do

3: for all m = 1 to l - 1 do
for all RA → RBRC do

if C(i, i+m, b) and C(i+m, i+ l, c) then
6: C[i, i+ l, A] := true

end if
end for

9: end for
end for

end for

Lines 5 and 6 are affected. Line 5 does a unification of the daughters in line 4 with
chart edges. The (copied) result of that unification (A) is stored by the code in line 6. The
indices are not affected. The third value in C() is a feature structure, which means that
there will be a very large number of entries there. Before that is filled in, a subsumption
test on the possible values in the third dimension of C needs to be done to be sure that
the entry (or a more general form) is not there already. If it is, the new result can be
discarded.

The following is the replacement for the lines 5 and 6:

for all B in C(i, i+m,B) do
for all C in C(i+m, i+ l, C) do

3: unify(RB, B)
unify(RC , C) {Now A is instantiated}
if A 6=⊥ then

6: add new A to C(i, i+ l, A)
end if

end for
9: end for

The function compatible is defined as follows:
compatible(F, G) := (unify(F, G) 6= fail)


