
Dialogue management using a mixture of
designed and learned policies

Pierre Lison
Logic & natural language group, Department of Informatics

University of Oslo, Norway.

Want to know more? Check out my papers at:
http://folk.uio.no/plison

Or email me at: plison@ifi.uio.no

Introduction

Approach

Evaluation Conclusion

Natural language is a very intuitive means of interaction for
humans. Can we build computer systems capable of conversing
with humans using this communication medium?
Key motivation: computers should adapt to their users (and speak
their language) rather than the other way round!
Such systems are called spoken dialogue systems (SDS for short)
SDS are expected to play an ever-increasing role in our interactions
with technology. Possible applications include, inter alia:
•Phone-based information access and service delivery

	 (e.g. travel booking, public transport information);
•Speech-enabled software interfaces;
•Intelligent tutoring systems for education;
•Service robots in homes, schools, offices and hospitals;
•Cognitive assistants and caretakers for the elderly.
We are more specifically interested in dialogue management, which
is the part of dialogue systems concerned with decision-making

Speech
recognition

Speech
understanding

Production

Speech
synthesis

Extra-linguistic environment

User
input speech signal

(user utterance)

Recognition
hypotheses

Dialogue manager

Utterance
to synthesise

output speech signal
(machine utterance)

Interpreted
utterance

Intended
response

Structured
repository
of policies

Action 1

Action 2
Action 3 Action 4

Policy

Action 5
Policy

Policy

Policy

Policy

Current
state

state
update

action
selection

ϕ=0.8

...

...

activated processes

Role of dialogue management: decide what to do/say at each
point of the interaction, given a collection of goals and a set of
observations (interaction history, external context)
Dialogue management is thus responsible for dynamically
controlling the flow of the interaction.
It is a hard problem! SDS must typically operate with:
• multiple, mutually competing objectives (trade-offs);
• numerous social/pragmatic conversational constraints;
• high levels of uncertainty (due to e.g. error-prone speech

recognition, partial knowledge of the environment, etc.).
SDS should also be able to adapt their conversational behaviour
depending on user- and context-specific factors
Two main paradigms in the literature on dialogue management:
•design-based approaches rely on handcrafted dialogue policies
•optimisation-based approaches automatically extract optimal
policies from experience using reinforcement learning

Dialogue policies are decomposed in two components:
•State update takes as input the current state s and a new
observation o, and outputs the update state s’

•Action selection takes the updated state s’ as input,
outputs the optimal action a* to execute (if any)

0

3

6

9

12

15

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
g

e
 r

e
tu

rn
 p

e
r

d
ia

lo
g

u
e

Level of random noise (in %)

Policies with activation function
Policies with strict hierarchical control

Experiment with a small dialogue domain: (simulated) visual learning
task between a human and a robot in a shared scene
• The scene includes objects with properties such as color or shape
• The human asks questions related to these properties, and then

confirms or corrects the robot answers
• Uncertainty in the linguistic inputs and in the visual perception
Domain modelled with 2 interconnected policies:
• Top policy (finite-state controller) handles the general interaction
• Bottom policy (POMDP) answers the object-related queries
Goal of experiment: compare the performance of Algorithm 1 with a
hierarchical control mechanism (top policy blocked until bottom releases
its turn), using a handcrafted user simulator and various levels of noise
Results demonstrate that activation values are beneficial for dialogue
management with multiple policies, esp. in presence of noise

Depending on the particular problem at hand, different
types of policies might be appropriate
We developed a dialogue management algorithm
operating with multiple, interconnected policies
Policies are defined in a modular way, resulting in a
mixture of different (designed or learned) policies
Policies are combined hierarchically and concurrently:
•Hierarchical combination: one policy is able to call
another by executing an abstract action

•Concurrent combination: several policies are executed
in parallel upon receiving a new observation

Comments on Algorithm 1:
• : set of concurrent processes, with
each associated with a policy, a
state and activation value
• : local utility of executing
action in state according to
•Algorithm 1 searches for the optimal
action over the processes in
•Abstract action = action pointing to a
policy instead of a concrete action
•For details on the redistribution of the
activation mass, simply ask me!

Key idea: associate an activation value ϕ to each policy
The ϕ values indicate the current “focus of attention”(i.e.
which part of the interaction model is most salient)
The ϕ values are redistributed after each turn
Allows for “soft” control of multi-policy execution

Algorithm 1 Multi-policy execution
let o be a new observation
initialise a∗ with void value and U(a∗) = −∞

for all p ∈ P do
s�p ← updatep(sp, o)
a∗
p ← argmaxap

Qp(s
�
p, ap)

U(a∗
p) ← φp ·Qp(s

�
p, a

∗
p)

if U(a∗
p) > U(a∗) then

if a∗
p is an abstract action then

fork new process q with policy from a∗
p

parents(q) ← {p} ∪ parents(p)
φq ← φp

add q to P
else

a∗ ← a∗
p

trace(a∗) ← {p} ∪ parents(p)
end if

end if
end for

redistribute activation values {φp : φp ∈ P}
prune processes with φp < �min and w/o children
return a∗

P
p ∈ P
sp φp

Qp(s, a)

pa s

a∗ P

We introduced a new approach to dialogue
management based on multiple, interconnected
policies weighted by activation values
Activation values are updated after each turn to
reflect which part of the interaction is in focus
Future work will focus on:

formalising the activation mass redistribution
introducing a shared state for all policies
applying reinforcement learning to learn
model parameters on multiple policies

top policy (finite-state)

bottom policy (POMDP)

say:"Hi"
say:"Goodbye"

say:"It is blue"

say:"It is red" say:"I don’t know"

say:"Could you repeat?"

say:"Which object?"

say:"Yes"

abstract action

http://nr.no/~plison
http://nr.no/~plison
mailto:plison@ifi.uio.no
mailto:plison@ifi.uio.no

