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Natural language is a very intuitive means of interaction for 
humans.  Can we build computer systems capable of conversing 
with humans using this communication medium?
Key motivation: computers should adapt to their users (and speak 
their language) rather than the other way round!
Such systems are called spoken dialogue systems (SDS for short)
SDS are expected to play an ever-increasing role in our interactions 
with technology.  Possible applications include, inter alia:
•Phone-based information access and service delivery

	    (e.g. travel booking, public transport information);
•Speech-enabled software interfaces;
•Intelligent tutoring systems for education;
•Service robots in homes, schools, offices and hospitals;
•Cognitive assistants and caretakers for the elderly.
We are more specifically interested in dialogue management, which 
is the part of dialogue systems concerned with decision-making
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Role of dialogue management: decide what to do/say at each 
point of the interaction, given a collection of goals and a set of 
observations (interaction history, external context)
Dialogue management is thus responsible for dynamically 
controlling the flow of the interaction.  
It is a hard problem!  SDS must typically operate with:
• multiple, mutually competing objectives (trade-offs);
• numerous social/pragmatic conversational constraints;
• high levels of uncertainty (due to e.g. error-prone speech 

recognition, partial knowledge of the environment, etc.).
SDS should also be able to adapt their conversational behaviour 
depending on user- and context-specific factors
Two main paradigms in the literature on dialogue management:
•design-based approaches rely on handcrafted dialogue policies 
•optimisation-based approaches automatically extract optimal 
policies from experience using reinforcement learning

Dialogue policies are decomposed in two components:
•State update takes as input the current state s and a new 
observation o, and outputs the update state s’

•Action selection takes the updated state s’ as input, 
outputs the optimal action a* to execute (if any)
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Experiment with a small dialogue domain: (simulated) visual learning 
task between a human and a robot in a shared scene 
• The scene includes objects with properties such as color or shape
• The human asks questions related to these properties, and then 

confirms or corrects the robot answers
• Uncertainty in the linguistic inputs and in the visual perception
Domain modelled with 2 interconnected policies: 
• Top policy (finite-state controller) handles the general interaction
• Bottom policy (POMDP) answers the object-related queries
Goal of experiment: compare the performance of Algorithm 1 with a 
hierarchical control mechanism (top policy blocked until bottom releases 
its turn), using a handcrafted user simulator and various levels of noise
Results demonstrate that activation values are beneficial for dialogue 
management with multiple policies, esp. in presence of noise

Depending on the particular problem at hand, different 
types of policies might be appropriate
We developed a dialogue management algorithm 
operating with multiple, interconnected policies
Policies are defined in a modular way, resulting in a 
mixture of different (designed or learned) policies
Policies are combined hierarchically and concurrently:
•Hierarchical combination: one policy is able to call 
another by executing an abstract action

•Concurrent combination: several policies are executed 
in parallel upon receiving a new observation

Comments on Algorithm 1:
•   : set of concurrent processes, with 
each          associated with a policy, a 
state     and activation value
•            : local utility of executing 
action    in state    according to 
•Algorithm 1 searches for the optimal 
action     over the processes in  
•Abstract action = action pointing to a 
policy instead of a concrete action
•For details on the redistribution of the 
activation mass, simply ask me!

Key idea: associate an activation value ϕ to each policy 
The ϕ values indicate the current “focus of attention”(i.e. 
which part of the interaction model is most salient)
The ϕ values are redistributed after each turn
Allows for “soft” control of multi-policy execution

Algorithm 1 Multi-policy execution
let o be a new observation
initialise a∗ with void value and U(a∗) = −∞

for all p ∈ P do
s�p ← updatep(sp, o)
a∗
p ← argmaxap

Qp(s
�
p, ap)

U(a∗
p) ← φp ·Qp(s

�
p, a

∗
p)

if U(a∗
p) > U(a∗) then

if a∗
p is an abstract action then

fork new process q with policy from a∗
p

parents(q) ← {p} ∪ parents(p)
φq ← φp

add q to P
else

a∗ ← a∗
p

trace(a∗) ← {p} ∪ parents(p)
end if

end if
end for

redistribute activation values {φp : φp ∈ P}
prune processes with φp < �min and w/o children
return a∗

P
p ∈ P
sp φp

Qp(s, a)

pa s

a∗ P

We introduced a new approach to dialogue 
management based on multiple, interconnected 
policies weighted by activation values
Activation values are updated after each turn to 
reflect which part of the interaction is in focus
Future work will focus on:

formalising the activation mass redistribution
introducing a shared state for all policies
applying reinforcement learning to learn 
model parameters on multiple policies

top policy (finite-state)

bottom policy (POMDP)

say:"Hi"
say:"Goodbye"

say:"It is blue"

say:"It is red" say:"I don’t know"

say:"Could you repeat?"

say:"Which object?"

say:"Yes"

abstract action
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