
Multi-policy dialogue management
Pierre Lison

Logic & natural language group, Department of Informatics
University of Oslo, Norway.

Want to know more? Check out my papers at:
http://folk.uio.no/plison

Or email me at: plison@ifi.uio.no

Introduction

Approach

Evaluation Conclusion

Many dialogue domains are naturally open-ended, and exhibit both
partial observability and large state spaces

How can we efficiently design or optimise dialogue management
(DM) policies of high quality for such complex domains?

Most approaches to DM seek to capture the full complexity of the
interaction in a single dialogue model and control policy

 We present an alternative approach where the dialogue manager
operates directly with a collection of small, interconnected policies

Speech
recognition

Speech
understanding

Production

Speech
synthesis

Extra-linguistic environment

User
input speech signal

(user utterance)

Recognition
hypotheses

Dialogue manager

Utterance
to synthesise

output speech signal
(machine utterance)

Interpreted
utterance

Intended
response

Structured
repository
of policies

Action 1

Action 2
Action 3 Action 4

Policy

Action 5
Policy

Policy

Policy

Policy

Current
state

state
update

action
selection

ϕ=0.8

...

...

activated processes

Viewing dialogue management as a process operating over
multiple policies yields several benefits:

• Easier for the application developer to model several small,
local/partial interactions than a single monolithic one. Each
local model can be independently modified or extended

• Different frameworks can be combined: the developer is free to
decide which approach is most appropriate to solve a specific
problem, without having to commit to a unique framework

• It also becomes possible to integrate both handcrafted and
learned/optimised policies in the same control algorithm

 We first decompose dialogue policies in 3 distinct functions:

• Observation update (): given the
current state s and observation o, update to state s’

• Action selection (): takes the updated state s’ as
input, outputs the optimal action a* to execute (if any)

• Action update (): re-updates
the current state s’ given the execution of the action a*

0

3

6

9

12

15

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
g

e
 r

e
tu

rn
 p

e
r

d
ia

lo
g

u
e

Level of random noise (in %)

Policies with activation function
Policies with strict hierarchical control

Experiment with simple, simulated dialogue domain: visual learning task between a
human and a robot in a scene including objects with various properties (color,shape)

• The human asks questions about the objects, and replies to the robot’s answer

• Uncertainty in the verbal inputs and in the visual perception

Dialogue domain is modelled with two interconnected policies:

• Top policy (finite-state controller) handles the general interaction

• Bottom policy (POMDP) answers the object-related queries

 We additionally define two new functions for each policy:

• returns the likelihood of
the observation o if policy i is active and in state s

• computes the probability of
policy i being active given its current local state, i.e. P(φi|si)

 These functions are implemented via heuristics which
depend on the policy encoding (FSC, POMDP, etc.)

We introduced a new approach to dialogue
management based on multiple, interconnected
policies weighted by activation values

Activation values are updated after each turn to
reflect which part of the interaction is in focus

Future work will focus on:

enabling the use of shared state variables
accessible to distinct policies

applying reinforcement learning to learn
model parameters on multiple policies

“hi!”

Bottom policy (POMDP)

Top policy (finite-state)

“how may I
help you?”

“goodbye!”

“the object is X”

“I don’t know the
colour/shape”

“do you mean the
1st/2nd object?”

“could you
repeat?”

“which
object?”

(X=green,red,
blue,round,

squared,etc.)

... ...

Challenge: At each turn, the dialogue manager must know which
policy is currently active and is responsible for deciding the next
action to perform (= meta-control of the policies)

In the general case, the “activation status” of a given policy is not
directly observable and must be indirectly estimated

We thus need a “soft” control mechanism able to explicitly account
for the uncertainty about the completion status of each policy

Key idea: provide a probabilistic treatment of this meta-control
problem by introducing the concept of “activation value”

The activation value of policy i is defined as the probability P(φi),
where φi is a random variable denoting the event of policy i being
currently in focus. The estimate of the activation value given all
available information at time t is denoted bt(φi) = P(φi|...)

The values for all policies are grouped in an activation vector bΦ =
⟨b(φ1)... b(φn)⟩ which is updated before and after each turn.

We describe below how this activation vector is estimated, and how
it is exploited to control the dialogue management execution

We allow policies to be connected
with each other in two ways:

 hierarchically: one policy triggers
one another via an abstract action

 concurrently: several policies are
active and running in parallel

We start with a set of processes . Each process has a
specific policy i, a state si and activation value b(φi)

Hierarchical and concurrent constraints between policies
are specified in a network of constraints

Algorithm 1 illustrates the execution process: selection of
most active process (1-5), extraction of optimal action
(6), and update of activation vector (7-11)

Algorithm 2 extracts the optimal action given a process.
If an abstract action is found, a new process is forked.

Goal of experiment: compare the performance of Algorithm 1 with a hierarchical
control mechanism (top policy blocked until bottom releases its turn), using a
handcrafted user simulator and various levels of noise

The results (average return) demonstrate that activation values are beneficial for
multi-policy dialogue management, especially in the presence of noise.

This is due to the soft control behaviour enabled by the use of the activation vector

http://nr.no/~plison
http://nr.no/~plison
mailto:plison@ifi.uio.no
mailto:plison@ifi.uio.no

