UiO University of Oslo

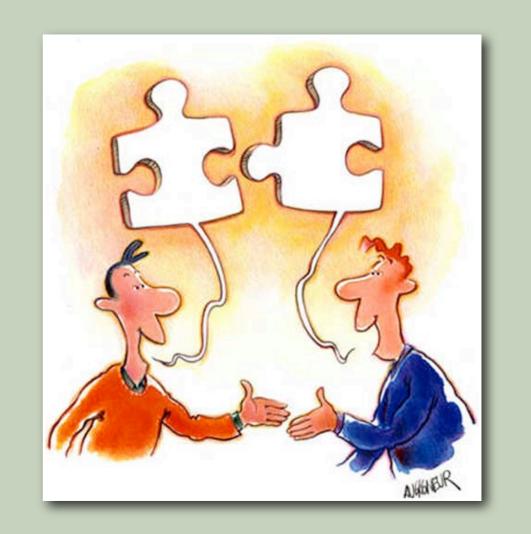
Multi-policy dialogue management

Pierre Lison

Logic & natural language group, Department of Informatics University of Oslo, Norway.

- Many dialogue domains are naturally open-ended, and exhibit both Ģ partial observability and large state spaces
- How can we efficiently design or optimise dialogue management (DM) policies of high quality for such complex domains?
- Most approaches to DM seek to capture the full complexity of the interaction in a single dialogue model and control policy

Introduction



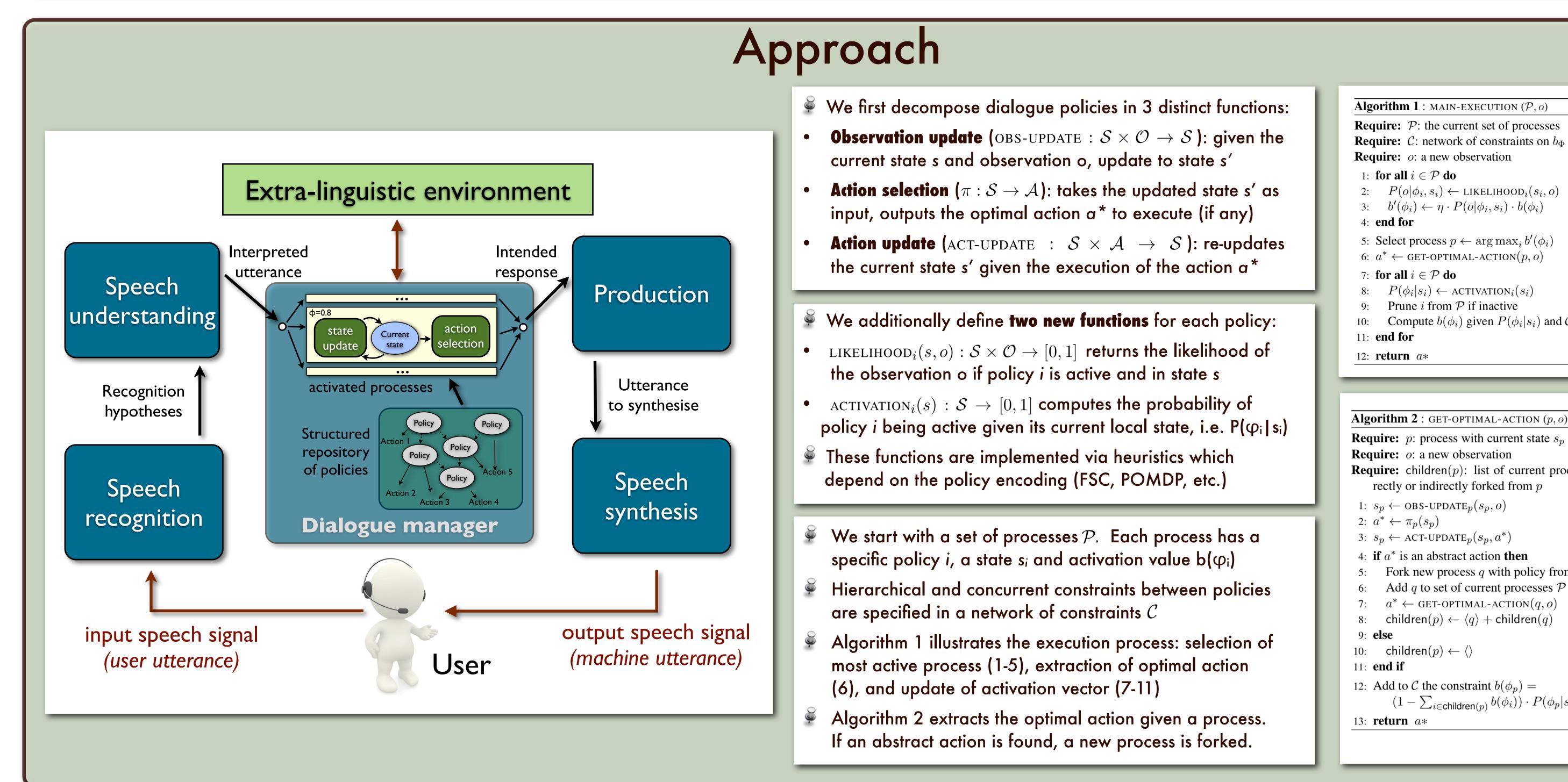
- Solution Challenge: At each turn, the dialogue manager must know which policy is currently active and is responsible for deciding the next action to perform (= meta-control of the policies)
- In the general case, the "activation status" of a given policy is not directly observable and must be indirectly estimated
- We thus need a <u>"soft" control mechanism</u> able to explicitly account

- We present an alternative approach where the dialogue manager operates directly with a collection of small, interconnected policies
- Viewing dialogue management as a process operating over multiple policies yields several benefits:
 - Easier for the application developer to model several small, local/partial interactions than a single monolithic one. Each local model can be independently modified or extended
 - Different frameworks can be combined: the developer is free to decide which approach is most appropriate to solve a specific problem, without having to commit to a unique framework
 - It also becomes possible to integrate both handcrafted and learned/optimised policies in the same control algorithm

We allow policies to be connected with each other in two ways: hierarchically: one policy triggers one another via an abstract action concurrently: several policies are active and running in parallel

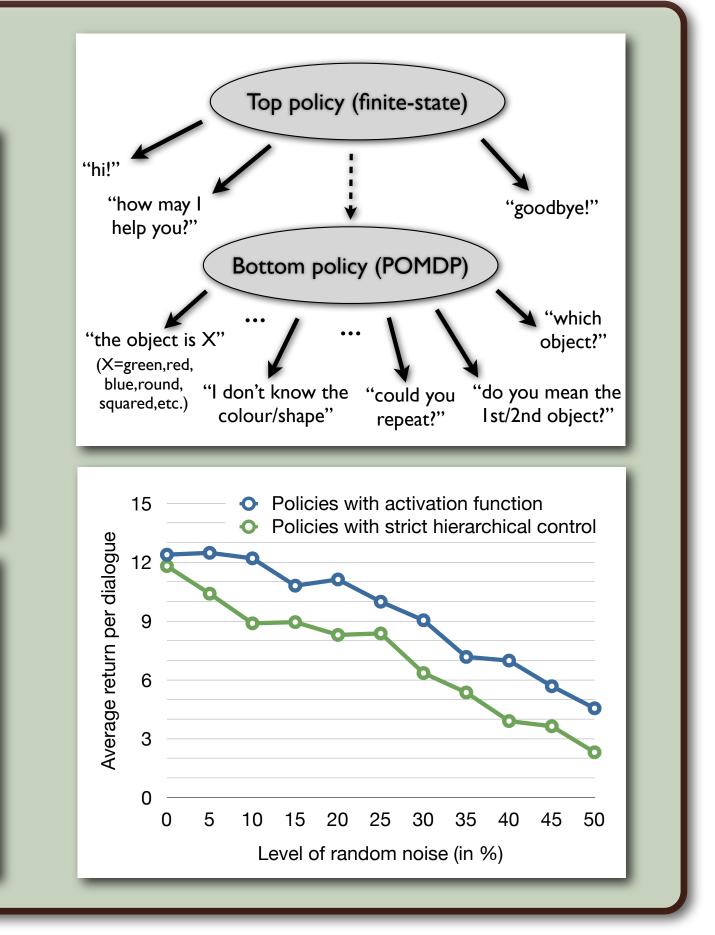
for the uncertainty about the completion status of each policy

- **Key idea:** provide a probabilistic treatment of this meta-control problem by introducing the concept of "activation value"
- where φ_i is a random variable denoting the event of policy *i* being currently in focus. The estimate of the activation value given all available information at time t is denoted $b_t(\varphi_i) = P(\varphi_i | ...)$
- $\overset{\scriptstyle{}}{\scriptstyle{\otimes}}$ The values for all policies are grouped in an activation vector $\mathbf{b}_{\Phi} =$ $\langle b(\varphi_1)... b(\varphi_n) \rangle$ which is updated before and after each turn.
- We describe below how this activation vector is estimated, and how it is exploited to control the dialogue management execution



	elect process $p \leftarrow \arg\max_i o(\phi_i)$
6: a	$p^* \leftarrow \texttt{GET-OPTIMAL-ACTION}(p, o)$
7: f	or all $i \in \mathcal{P}$ do
8:	$P(\phi_i s_i) \leftarrow \text{activation}_i(s_i)$
9:	
10:	Compute $b(\phi_i)$ given $P(\phi_i s_i)$ and C
11: e	nd for
12: r	eturn a*
_	
	Tithm 2 : GET-OPTIMAL-ACTION (p, o)
-	ire: p : process with current state s_p
-	ire: o: a new observation
-	ire: children (p) : list of current processes di-
	ectly or indirectly forked from p
4	$p \leftarrow \text{OBS-UPDATE}_p(s_p, o)$
	$^* \leftarrow \pi_p(s_p)$
3: s_j	$p \leftarrow \text{ACT-UPDATE}_p(s_p, a^*)$
4: if	a^* is an abstract action then
5:	Fork new process q with policy from a^*
6:	Add q to set of current processes \mathcal{P}
7:	$a^* \leftarrow \text{get-optimal-action}(q, o)$
8:	$children(p) \leftarrow \langle q \rangle + children(q)$
9: e l	se
10	$children(p) \leftarrow \langle \rangle$
10:	
10: 11: e i	nd if
11: e i	
11: e i	nd if dd to C the constraint $b(\phi_p) = (1 - \sum_{i \in children(p)} b(\phi_i)) \cdot P(\phi_p s_p)$

Evaluation



- Experiment with simple, simulated dialogue domain: visual learning task between a human and a robot in a scene including objects with various properties (color, shape)
 - The human asks questions about the objects, and replies to the robot's answer
 - Uncertainty in the verbal inputs and in the visual perception
- Dialogue domain is modelled with two interconnected policies:
 - Top policy (finite-state controller) handles the general interaction
 - Bottom policy (POMDP) answers the object-related queries
- Goal of experiment: compare the performance of Algorithm 1 with a hierarchical Ş control mechanism (top policy blocked until bottom releases its turn), using a handcrafted user simulator and various levels of noise
- The results (average return) demonstrate that activation values are beneficial for multi-policy dialogue management, especially in the presence of noise.
- This is due to the soft control behaviour enabled by the use of the activation vector

- We introduced a new approach to dialogue management based on **multiple, interconnected policies** weighted by activation values
- Activation values are updated after each turn to reflect which part of the interaction is in focus
- Future work will focus on:
 - enabling the use of shared state variables Ş accessible to distinct policies
 - applying reinforcement learning to learn Ş model parameters on multiple policies

Want to know more? Check out my papers at: http://folk.uio.no/plison Or email me at: <u>plison@ifi.uio.no</u>