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Many dialogue domains are naturally open-ended, and exhibit both 
partial observability and large state spaces

How can we efficiently design or optimise dialogue management 
(DM) policies of high quality for such complex domains?

Most approaches to DM seek to capture the full complexity of the 
interaction in a single dialogue model and control policy

 We present an alternative approach where the dialogue manager 
operates directly with a collection of small, interconnected policies
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Viewing dialogue management as a process operating over 
multiple policies yields several benefits:

• Easier for the application developer to model several small, 
local/partial interactions than a single monolithic one. Each 
local model can be independently modified or extended

• Different frameworks can be combined: the developer is free to 
decide which approach is most appropriate to solve a specific 
problem, without having to commit to a unique framework

• It also becomes possible to integrate both handcrafted and 
learned/optimised policies in the same control algorithm

  We first decompose dialogue policies in 3 distinct functions:

• Observation update (                                      ): given the 
current state s and observation o, update to state s’

• Action selection (               ): takes the updated state s’ as 
input, outputs the optimal action a* to execute (if any)

• Action update (                                             ): re-updates 
the current state s’ given the execution of the action a*
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Experiment with simple, simulated dialogue domain: visual learning task between a 
human and a robot in a scene including objects with various properties (color,shape) 

• The human asks questions about the objects, and replies to the robot’s answer

• Uncertainty in the verbal inputs and in the visual perception

Dialogue domain is modelled with two interconnected policies: 

• Top policy (finite-state controller) handles the general interaction

• Bottom policy (POMDP) answers the object-related queries

  We additionally define two new functions for each policy:

•                                                 returns the likelihood of 
the observation o if policy i is active and in state s 

•                                          computes the probability of 
policy i being active given its current local state, i.e. P(φi|si)

  These functions are implemented via heuristics which 
depend on the policy encoding (FSC, POMDP, etc.)

We introduced a new approach to dialogue 
management based on multiple, interconnected 
policies weighted by activation values

Activation values are updated after each turn to 
reflect which part of the interaction is in focus

Future work will focus on:

enabling the use of shared state variables 
accessible to distinct policies

applying reinforcement learning to learn 
model parameters on multiple policies

“hi!”

Bottom policy (POMDP)

Top policy (finite-state)

“how may I 
help you?”

“goodbye!”

“the object is X”

“I don’t know the 
colour/shape”

“do you mean the 
1st/2nd object?”

“could you 
repeat?”

“which 
object?”

(X=green,red, 
blue,round,

squared,etc.)

... ...

Challenge: At each turn, the dialogue manager must know which 
policy is currently active and is responsible for deciding the next 
action to perform ( = meta-control of the policies) 

In the general case, the “activation status” of a given policy is not 
directly observable and must be indirectly estimated  

We thus need a “soft” control mechanism able to explicitly account 
for the uncertainty about the completion status of each policy

Key idea: provide a probabilistic treatment of this meta-control 
problem by introducing the concept of “activation value” 

The activation value of policy i is defined as the probability P(φi), 
where φi is a random variable denoting the event of policy i being 
currently in focus.  The estimate of the activation value given all 
available information at time t is denoted bt(φi) = P(φi|... )

The values for all policies are grouped in an activation vector bΦ = 
⟨b(φ1)... b(φn)⟩ which is updated before and after each turn.

We describe below how this activation vector is estimated, and how 
it is exploited to control the dialogue management execution

We allow policies to be connected 
with each other in two ways: 

 hierarchically: one policy triggers 
one another via an abstract action 

 concurrently: several policies are 
active and running in parallel

We start with a set of processes   .  Each process has a 
specific policy i, a state si and activation value b(φi)

Hierarchical and concurrent constraints between policies 
are specified in a network of constraints 

Algorithm 1 illustrates the execution process: selection of 
most active process (1-5), extraction of optimal action 
(6), and update of activation vector (7-11)

Algorithm 2 extracts the optimal action given a process.  
If an abstract action is found, a new process is forked.

Goal of experiment: compare the performance of Algorithm 1 with a hierarchical 
control mechanism (top policy blocked until bottom releases its turn), using a 
handcrafted user simulator and various levels of noise

The results (average return) demonstrate that activation values are beneficial for 
multi-policy dialogue management, especially in the presence of noise.

This is due to the soft control behaviour enabled by the use of the activation vector
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