

Automatic turn segmentation for movie & TV subtitles

Pierre Lison (plison@nr.no), Norwegian Computing Center (NR), Oslo **Raveesh Meena** (raveesh@kth.se), KTH Royal Institute of Technology, Stockholm

Motivation

Subtitles are a very useful resource for dialogue processing tasks :

- Wide range of linguistic genres (incl. colloquial language), multiple speaker styles, complex conversational structures, etc.
- Large amounts of training data available online (*OpenSubtitles 2016*: 17.2 billion tokens covering no less than 60 languages!)
- **Use cases**: language modelling, machine translation, neural conversation modelling, dialogue systems, etc.

But:

- They lack an important piece of information: the *turn structure*!
- Can we automatically segment subtitles into dialogue turns? (without requiring access to the original audio material)

Alignment with movie & TV scripts

• We crawled various websites with movie and TV scripts and extracted 7,467 dialogue transcripts (1,069 movies and 6,398 TV episodes).

- We then applied two sentence aligners (hunalign and bleualign) on each pair <subtitle,script>:
- Based on these alignments, the speaker labels from the scripts were then *projected* onto the sentences from the subtitles.

A PORTAL opens. The GU a SUIT (BALA-TIK), and UNIFORMS with ROUND-FA at one end of the corr away in the middle of
BALA-T Han Solo. You are a de Han smiles innocently, and forth at the gang,
HAN Bala-Tik. What's the BALA-T The problem is we load thousand for this job
INTERCU INT. CARGO SHIP - BELO
They look up, trying to REY
Can you see them?

- 5,413 English-language subtitles were labelled in this manner, covering on average 34% of the sentences in movies and 60% for TV episodes.
- We also used existing cross-lingual alignments to project speaker labels on 6 other languages (see Table 1).

Language	Nb. of subtitles	Nb. of sentences
Arabic	1,340	1,413,326
Chinese	591	805,191
Czech	1,874	1,835,896
English	5,413	3,864,058
French	1,872	1,894,925
German	766	911,609
Turkish	1,863	1,953,208
	1	I

 Table 1. Number of subtitles and sentences per language
automatically annotated with speaker labels.

Key idea

ive SECURITY SOLDIERS in badass Chewie and BB-8 forty feet ead man. friendly. BB-8 nervously looks back ed you fifty WITH: FLOOR GRATING - DAY get a view.

Subtitles do not contain speaker information... but movie and TV scripts (screenplays, transcripts) do!

Approach:

- 1. Crawl the web for movie and TV scripts
- 2. Align (at sentence-level) these scripts with the subtitles
- 3. Project speaker labels on the subtitles based on the alignment
- 4. Use the resulting data to create a dataset of *turn boundaries*
- 5. Learn a predictor of turn boundaries from this training data
- 6. Apply the estimated model to segment subtitles into turns!

Learning task: given two consecutive sentences, predict whether a turn boundary exists between the two:

- *Dataset*: about 1.5M consecutive sentence pairs with projected speaker labels extracted from the subtitles.
- *Binary output*: "same turn" if the two sentences *i* and *i*+1 were part of the same turn in the aligned script, else "new turn" (balanced dataset: 52.3 % of "new turn" pairs)
- Discriminative linear classifier with Vowpal Wabbit (with the features on the right + feature interactions)

Baseline:

- If sentence 2 starts with dash \rightarrow new turn.
- 2. Else, if the 2 sentences belong to same "block" \rightarrow same turn.
- . Else, \rightarrow new turn (majority class in this context).

Approach Tur Baseline San Classifier (basic) San Nev Classifier (multiling) San Diarization only San Classifier+Diarization San Nev

Turn-taking example

ID	Utterance	Start time	End time
1	If we wanted to kill you, Mr Holmes, we would have done it by now.	01:17:34.76	01:17:37.75
2	We just wanted to make you inquisitive.	01:17:37.80	01:17:40.59
3	Do you have it?	01:17:42.40	01:17:43.91
4	Do I have what?	01:17:43.91	01:17:45.43
5	The treasure.	01:17:45.48	01:17:46.43
6	I don't know what you're talking about.	01:17:46.43	01:17:48.91
7	I would prefer to make certain.	01:17:48.96	01:17:52.03
8	Everything in the West has its price.	01:17:57.00	01:17:59.63
9	And the price for her life - information.	01:17:59.68	01:18:04.55

Prediction model

Feature types:						
Timing	Time gaps and sentence durations					
Length	Nb. of characters/tokens in each sentence					
Lexical	BoW, bigrams, negation/question words, pror					
POS	Part-of-speech tags & sequences, imperative i					
Punctuation	Marks at start/end of each sentence					
Edit distance	Token-level distance between the two sentenc					
Adjacency	Specific patterns, such as likely polar answer, l clarification request, pronoun inversion, etc.					
Global	Character names, movie genre, sentence dens					
Alignment	Proportion of intra/inter-lingual alignments					
Visual	Start/end of subtitle block					

													F v
		Γ) EV			Т	EST			TRE	e Hili	~ ~	
n	Р	R	F_1	ACC	P	R	F_1	ACC	P	R	F_1	ACC	
ne	0.48	0.36	0.41	0.604	0.43	0.32	0.37	0.660	0.32	0.22	0.26	0.505	L Results
w	0.81	0.98	0.89	0.094	0.80	0.98	0.88	0.009	0.75	1.00	0.85	0.393	datase
ne	0.80	0.74	0.76	0 780	0.79	0.71	0.75	0 775	0.85	0.68	0.76	0 774	seasor
w	0.78	0.84	0.81	0.769	0.77	0.83	0.80	0.775	0.72	0.87	0.79	0.774	of ~ 40
ne	0.80	0.74	0.77	0 70/*	0.79	0.72	0.75	0 7 81*	/	/	/	/	
w	0.79	0.84	0.81	0.794	0.77	0.84	0.80	0.781	/	/	/	/	ofthe
ne	/	/	/	1	/	/	/	1	0.75	0.39	0.51	0.617	TV seri
w	/	/	/	/	/	/	/	/	0.57	0.86	0.69	0.017	LIUM t
ne	/	/	/	1	/	/	/	1	0.85	0.68	0.76	0 775*	speake
W	/	/	/	/	/	/	/	/	0.72	0.87	0.79	0.//3	
-													

Precision, recall, F1 and accuracy on the dev set (197K sentence pairs), test set (200K pairs), and the small Tree Hill data. The best results are in bold (p-values = 0.013 for Tree Hill and < 0.0001 for dev and test sets).

Extensions

- **1.** Multilingual classifier: if sentence pair is aligned to sentence pairs in other languages, combine the outputs of all per-language classifiers in weighted sum.
- 2. with speaker diarization: if audio is available, perform speaker diarization and add a new feature encoding whether the two sentences belong to the same cluster.

perimental results

- ts on a small et with one n (21 episodes 0 minutes each) "One Tree Hill" ries, using the toolkit for er diarization.

	Baseline	Classifier (basic)
Arabic	0.588	0.716
French	0.663	0.743
German	0.656	0.741
Czech	0.668	0.756
Turkish	0.662	0.758
Chinese	0.569	0.670

Compared accuracies for the baseline and classifier for the 6 languages other than English (on test set).