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Abstract

Modern malware families often rely on domain-generation algorithms
(DGAs) to determine rendezvous points to their command-and-control
server. Traditional defence strategies (such as blacklisting domains or IP
addresses) are inadequate against such techniques due to the large and
continuously changing list of domains produced by these algorithms. This
paper demonstrates that a machine learning approach based on recurrent
neural networks is able to detect domain names generated by DGAs with
high precision. The neural models are estimated on a large training set of
domains generated by various malwares. Experimental results show that this
data-driven approach can detect malware-generated domain names with a F;
score of 0.971. To put it differently, the model can automatically detect 93 %
of malware-generated domain names for a false positive rate of 1:100.

1 Introduction

Most malware need to find a way to connect compromised machines with a command-
and-control (C2) server in order to conduct their operations (such as launching denial-
of-service attacks, executing ransomware, stealing user data, etc.). To establish such a
communication channel, older families of malware relied on static lists of domains or IP
addresses that were hardcoded in the malware code running on the infected hosts. Once
a given malware was discovered, it could then be neutralised by blocking the connections
to these network addresses to prevent further communications between the infected hosts
and the C2 server. After cutting this link, infected machines become unable to fetch new
instructions or send user data, rendering the malware effectively harmless.

Starting from the Kraken botnet (released in 2008), newer families of malware started
using domain-generation algorithms (DGAs) to circumvent such takedown attempts.
Instead of relying on a fixed list of domains or IP addresses, the malware executes
an algorithm generating a large number (up to tens-of-thousands per day) of possible
domain names, and attempts to connect to a portion of these generated domains at regular
intervals. The malware controllers then only needs to register one or two of these domains
to establish a communication between the compromised machines and the C2 server.

As described by Plohmann et al. (2016), DGAs create a highly asymmetric situation
between malicious actors and security professionals, as malicious actors only need to




register a single domain to establish a communication channel with their botnets, while
security professionals must control the complete range of domains that can be produced
by the DGA to contain the threat. Common mitigation strategies involve preregistering,
blacklisting or sinkholing potential or confirmed malicious domains (Kiihrer et al., 2014).
Unsurprisingly, these strategies are difficult to deploy in the case of malware DGAs
(particularly when the domains are spread over many top-level domains) and become
increasingly difficult as the number of generated domains increases.

This paper presents a machine-learning approach to the detection of domain names
produced by DGAs. The model is based on a recurrent neural architecture trained on a
large dataset of DGA domain names. It takes a domain name as input and returns the
probability that the domain is generated by a DGA. The advantages of such a data-driven
approach are twofold:

e The model is able to provide predictions on the basis of the domain names only,
without necessitating human intervention or access to external resources (such
HTTP headers or NXDomains). It can therefore be used for real-time threat
intelligence, for instance to analyse DNS requests passing through a network.

e The model can be adapted to respond to new malware threats, as it only requires
examples of malware-generated domains and does not necessitate any feature
engineering. This simplicity also makes it harder for threat agents to circumvent
detection (as there is no handcrafted feature that could be directly exploited).

The rest of this paper is as follows. The next section presents generic background
information on domain-generation algorithms and the defence strategies available to
tackle them. Section 3 describes the neural network models developed to detect malicious
domain names and Section 4 the datasets employed to train these models. Section 5 details
the experimental evaluation of the approach (including the model selection, experimental
design, empirical results and error analysis). Section 6 concludes the paper.

2 Background

The study of Plohmann et al. (2016) detail the prevalence of DGAs in modern botnets.
Their study focused on analysing and evaluating 43 different botnets remarking that
23 out of 43 use DGAs as the only C2 rendezvous mechanism. Domain generation
algorithms are used to automatically generate a large number of seemingly random
domain names in order to secure the command and control communication of botnets.
The domains are computed based on shared secret (seed) between botmasters and the bots
(zombie machines). These seeds may include numerical constants (e.g., pseudo random
generators) and strings (e.g., the alphabet or the set of possible top-level domains).

Barabosch et al. (2012) defined a taxonomy of DGAs based on two properties, namely
time and causality. The time dimension captures whether the seeds are fixed or are
only valid for a specific period of time (by e.g. incorporating a time source in the
calculation). In addition, seeds can be either deterministic (hand-coded or calculated
through a fixed procedure) or non-deterministic (using seeds that cannot be anticipated,
based on e.g. weather forecasts or stock market prices). Plohmann et al. (2016) further
refined this taxonomy in order to take into account the types of seeds used by the
generation algorithm: arithmetic (alphanumeric combinations), hash-based (hex digest
representation of a hash), wordlist-based (combination of words from wordlists), and
permutation-based (permutation of an initial domain name).



Various approaches have been developed for the detection of malicious domain names.
Villamarin-Salomon and Brustoloni (2008) evaluated two approaches to identify botnet
C&C servers based on anomalous dynamic DNS traffic (DDNS). In their first approach,
they identified domains with abnormally high query rates or domains that were temporally
concentrated. Their second, more successful approach searched for abnormally repetitive
DDNS replies indicating that the query points to a non-existent domain. Yadav et al.
(2010; 2011) proposed a method of detecting dynamically generated malicious domains
by modelling their lexical structures (character distribution and n-grams) and using
the number of failed DNS queries (NXDomains) observed in botnets. Antonakakis
et al. (2012) describes a technique to detect DGAs without reverse engineering efforts,
leveraging the idea that bots from the same botnet (same DGA) will generate similar
non-existent domain traffic (“NXDomain”). Using a combination of clustering and
classification algorithms combined with real-word DNS traffic, they were able to discover
twelve DGAs (half were variants of known DGAs and the other half new DGAs that have
never been reported before). Zhou et al. (2013) presented a similar approach for the
detection of DGAs using NXDomain traffic. Their approach is based on the fact that the
domains generated by DGA-based botnets are often used for a short period of time (active
time) and have similar life and query style. Drawing inspiration from all these approaches,
the Phoenix framework presented by Schiavoni et al. (2014) relied on a combination of
linguistic and IP-based features to distinguish malicious domains and identify their DGAs.
Finally, Grill et al. (2015) proposed a statistical approach to detect DGAs using only the
NetFlow/IPFIX statistics collected from the network of interest.

The approach presented in this paper stands closest to Woodbridge et al. (2016), who
also rely on neural models (in their case LSTMs) for detecting malware-generated domain
names. In a follow-up paper (Anderson et al., 2016), the authors also investigate the use
of adversarial learning techniques for the detection of DGAs. The present paper extends
their approach in two directions. First, instead of training the neural models on a relatively
small dataset of malware feeds, we rely on a larger and more varied set of malware
families extracted from multiple sources. In addition, we also compare the empirical
performance of various design choices pertaining to the architecture of the neural network
(use of embeddings, type of recurrent units, etc.).

3 Models

The models we developed to detect and classify malware-generated domains are based on
recurrent neural architectures. Recurrent architectures have the ability to learn sequential
patterns — in this case, the sequences of characters that make up domain names. They are
widely used in machine learning and have recently shown considerable success in areas
such as speech recognition (Graves et al., 2013), machine translation (Bahdanau et al.,
2014) or conversation modelling (Vinyals and Le, 2015).

Core architecture

Recurrent neural networks operate by incrementally update a hidden state based on the
given sequence of inputs. Figure 1 illustrates a recurrent neural network for the detection
of domain names generated by malware DGA. The network first takes a sequence of
characters as inputs and transforms it into a sequence of vectors. The simplest approach
is to adopt a one-hot representation. Assuming a set C of possible characters (in our case,
the 26 letters of the latin alphabet plus numbers and a few special symbols), we can define



amapping M : C — [1,|C|] between characters and integers in the range [1,|C|]. The one-
hot representation of a character c is then a vector of size |C| where all values are set to
zero, except the column M (c) which is set to 1. Once the characters are converted into
vectors, they are fed into a recurrent layer that processes the input vectors one by one
and updates a hidden state vector at each step. A large variety of recurrent layers have
been developed, the most popular ones being the Long Short-Term Memory (LSTM)
units from Hochreiter and Schmidhuber (1997) and the Gated Recurrent Units (GRU)
from Chung et al. (2014). Unlike “plain” recurrent networks, these architectures are able
to efficiently capture long-range dependencies through a system of analog gates. Finally,
the vector produced after the last character is used to compute the final output (in this case
the probability of the domain being generated by a malware). This output is defined as
a linear combination of the final output vector transformed through a sigmoid activation
function (which ensures the final result is a proper probability between 0 and 1).

o JO000000000o
[ TTTITTTITT] g

One-hot layer O (prob'ability
TTTTTTT 1T gemermtea
Input layer O000O0O0OOLOOOO by malware)
(characters)
toyvsgu. com

Figure 1: Simple example of recurrent neural network.

The parameters of the neural network (composed of the weights of the recurrent units
and those of the final output layer) are learned from training data. To this end, the neural
network is provided with a dataset of (input, output) pairs, and an optimisation algorithm
(such as stochastic gradient descent) is then applied to find the parameters that minimise
the empirical loss on this dataset (see Goodfellow et al. (2016) for more details). In this
particular case, the network is trained using both examples of malware-generated domains
(for which the output produced by the network should be as close to 1 as possible) as well
as examples of benign domains (for which the output should be close to 0). Section 4
describes the datasets that have been employed in this work.

Extensions

Starting from the core architecture described above, we can then extend or modify the
neural network in several ways:

Embeddings Instead of adopting a one-hot representation, we can use a learnable
embedding model to convert each character into a dense vector (Goldberg, 2016).
One advantage of embedding models is their ability to express similarities between
characters — for instance, the vector for the character 0’ will be closer in vector
space to the character *3’ than to ’u’, since the distributional properties of "0’ are
more similar to ’3’ than to u’. These embeddings can be learned simultaneously
with the other network parameters.

Bidirectionality The network in Figure 1 operates only in a left to right fashion.
However, recurrent neural networks can be easily extended to work in both
directions (Schuster and Paliwal, 1997), as shown in Figure 2. This allows the
network to capture underlying patterns that might appear in both directions.
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Figure 2: Bidirectional recurrent neural
network.

wworsny (ILTHHIHHHA - -0
TTTTITTITITT |f o

One-hot layer OO (probability
TITTTTTTTTT || mern
generated
Input layer O00000OOOOOO * by malware)
(characters) ;
toyvsgu. com |
Dense layer

(linear combination
+ non-linear activation)

Figure 3: Recurrent neural network with
an additional dense layer.

Additional dense layer Instead of computing the final output directly from the hidden

state of the last recurrent unit, one might first pass it through a dense feed-forward
layer, such as depicted in Figure 3. The dense layer is a linear combination of
the inputs followed by a non-linear activation function. The inclusion of this
additional layer may help improve the model performance by applying a non-linear
transformation to the state vector capturing the sequence of characters making up
the domain name. However, this also increases the size of the parameter space: if
the size of the state vector is K and the size of the dense layer is L, an additional
(L+1) x K parameters will need to be learned.

Multi-task learning Neural models need not be restricted to the mere detection of

malicious domain names, but can also be used predict the type of malware (for
instance, suppobox) it belongs to. In this case, the network must output a
probability distribution over malware classes (augmented with one class for the
“benign” domains). This classification can be achieved in a separate neural network
or be integrated in a single, unified network, as shown in Figures 4 and 5. This
unified network is an instance of multi-task architectures (Ruder, 2017), since the
model is optimised to perform two tasks at once, namely predicting whether the

domain is malicious, and which malware it comes from.
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Figure 4: Recurrent neural network for
predicting the malware classes.
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Figure 5: Recurrent neural network for
simultaneous detection & classification.

The influence of these design choices is evaluated in Section 5.

4 Datasets

Training neural models requires access to large amounts of examples, both positive
(domains known to have been generated by a DGA) and negative (domains known as
benign). The following datasets were used for this purpose:



Benign domains

The benign domains were extracted from domain whitelists. We downloaded eight
snapshots of the Alexa Top 1 million domains (spread from 2010 to 2017), along with
similar whitelists such as the top 1 million from Statvoo and Cisco. In total, over 4 million
benign domains were extracted from these domain lists. One should note that the Alexa
rankings only enumerate popular domains and offers no guarantee that the domains are
malware-free. However, in practice, DGA-generated domains have a very low probability
of appearing on these ranked lists due to their random and transient character.

Malware domains

The malware-generated domains is compiled from three complementary sources. The
most important source is the DGArchive!, which is a web service for malware analysis.
The DGAarchive contains regularly updated datasets and technical details for dozens of
malware families. The administrators of DGArchive kindly provided us with a complete
dump of their malware database, which amounts to an initial set of over 49 million
malware domains spread over 63 distinct types of malware.

The number of examples for each family is, however, heavily skewed. For instance,
the virut malware contains more than 17 million examples (although its algorithm is
relatively straightforward to capture), while a difficult malware such as matsnu only
contains 12.7 thousand examples. To counter this class imbalance, we divided the
malware families in two groups according to their detection difficulty. The maximal
number of examples was capped to 40 000 for “easy” malware families and to 400 000
for difficult ones. In addition to the DGArchive, we also extracted the DGA feeds from
Bambenek Consulting?, containing 39 malware families and used domain generators for
11 DGAs? to produce additional examples of domains.

Due to the lack of authoritative naming conventions for malware, there is some
variation in the DGA names depending on the source (for instance, the emotet malware
is often referred to as geodo). We therefore created a list of equivalent names for each
DGA in order to merge all malware domains into a single list. To reduce the amount of
noise in the dataset, also excluded from the training examples the few domains that were
simultaneously marked as benign and malware. The complete list of malware names
along with their number of examples is provided in Table 1. The combination of all
sources yields a total of 2.9 million malware-generated domains.

5 Evaluation

The models described in Section 3 were trained using the datasets from Section 4 and were
then evaluated on the basis of their ability to distinguish between benign domain names
and domain names generated by malware. This evaluation was performed using 10-fold
stratified cross validation on the full dataset. The neural models were trained on GPU-
accelerated hardware (with a training time of about 3 hours) using a batch size of 256
and two passes on the training set. RMSProp was employed as optimisation algorithm.
The source code for training and evaluating the neural models was written using Keras
(Chollet et al., 2015) and can be provided upon request.

"https://dgarchive.caad.fkie.fraunhofer.de
2 https://osint.bambenekconsulting.com/feeds/dga-feed.txt
3 https://github.com/endgameinc/dga_predict (with some minor code changes).



Malware Frequency

bamital 40 240 gozi 105 631 ramdo 15 984
banjori 89 984 hesperbot 370 ramnit 90 000
bedep 15176 locky 179 204 ranbyu 40 000
beebone 420 madmax 192 ranbyus 12720
blackhole 732 matsnu 12714 rovnix 40 000
bobax 19 288 modpack 52 shifu 4 662
conficker 400 000 murofet 53260 simda 38 421
corebot 50240 murofet,, 40 000 sisron 5936
cryptolocker 55984 necur 40 000 suppobox 41014
cryptowall 94 necurs 36 864 sutra 9 882
dircrypt 11110 nymaim 186 653 symmi 40 064
dnschanger 40 000 oderoor 3833 szribi 16 007
downloader 60 padcrypt 35616 tempedreve 453
dyre 47 998 proslikefan 75270 tinba 80 000
ekforward 1 460 pushdo 176 770 torpig 40 000
emotet 40 576 pushdotid 6 000 tsifiri 59
feodo 192 pykspa 424 215 urlzone 34536
fobber 2 600 pykspa2 24322 vawtrak 1 050
gameover 80 000 qadars 40 400 virut 400 600
gameover_p2p 41 000 gakbot 90 000 volatilecedar 1494

xxhex 4400

Total 2925 168

Table 1: Malwares in the dataset along with their number of example domains. The
dataset is put together from malware feeds, the DGArchive, and generation scripts.

Baseline

Letter combinations are often good indicators of the “naturalness” of a given domain
name. For instance, numbers are rarely followed by letters. Following Woodbridge et al.
(2016), one can build a classifier using as features the occurrences of particular character
bigrams (that is, pairs of consecutive characters) in the domain name. For instance, the
domain toyvsgu. com has a total of 10 non-zero features (to, oy, ...om).

Based on this observation, one can estimate a simple but effective baseline model that
detects and classifies domain names based on the character pairs occurring in it. This
baseline model can be expressed as a logistic regression classifier with a feature space
corresponding to the set of possible character bigrams (1504 in our dataset).

Metrics

One straightforward indicator of the model performance is the confusion matrix, which
can be structured in a simple table, as shown below:

Classified by model as:
Malware Benign
Actual class: Malware | True Positives (TP) False Negatives (FN)
" Benign False Positives (FP)  True Negatives (TN)

The following metrics can be defined based on this confusion matrix:

Accuracy the accuracy is simply the fraction of domains that are correctly classified:

TP+TN
acc = (1
TP+TN+FN+FP

However, the accuracy is not the most useful metric for this task due to its sensitivity
to class imbalance. The number of benign domains in DNS traffic is likely to



be orders of magnitude larger than the number of malware-generated domains.
Achieving high accuracy in such situations is not particularly difficult, as one can
simply create a dummy classifier that classifies all domains as benign.

Precision, Recall, F| score The precision is the fraction of domains classified by the
model as malware that are actually malware, while the recall (also called sensitivity
or true positive rate) is the fraction of malware domains that are classified as
malware by the model. Finally, the F| score is an harmonic mean of the two:

TP #correctly classified malware domains 2
P=Tp +FP  # domains classified as malware by model

TP # correctly classified malware domains 3)

= =

TP +FN # actual known malware domains
pXr

=2 4
=2 “4)

Model selection

Section 3 introduced a number of design choices regarding the architecture of the neural
network. We performed an empirical evaluation of these choices, detailed below.

Inclusion of embedding models: We found that the use of simple one-hot representa-
tions gave better results than learned character embeddings (about 1 % difference
in micro F; score on average).

Type and dimension of recurrent units : The detection and classification performance
of GRU and LSTM units were roughly the same. However, LSTM units are
slower due to their more complex gating mechanism. The output dimension was an
important factor: we experimented with sizes 128, 256, 512 and 1024, and found
that the best results were achieved with 512 dimensions (with a 1 % increase in
micro F| score compared to the lower dimensions).

Bidirectionality : The inclusion of a right-to-left layer did slightly improve the results,
but essentially because it effectively doubles the output vector dimensions. When
compared to unidirectional networks with the same total number of dimensions,
bidirectional networks do not seem to perform better and are slower to run.

Use of additional hidden layer : The inclusion of a dense layer between the last
recurrent unit and the output prediction did not improve the performance.

Multi-task learning The use of the same neural network to both detect whether a domain
name is DGA-generated and which class it belong to gave approximately the same
empirical results on F; and AUC scores as networks optimised for these two tasks
separately. This is an interesting result, as it shows that the two tasks can be
performed on the basis of a shared latent representation.

On the basis of this analysis, we performed the experimental evaluation with a neural
network using a one-hot input representation, 512-dimensional GRU units, no additional
layer and two simultaneous outputs (detection and classification). In terms of running
time, the neural model is able to process tens of thousands of domains per second on a
single GPU. The model can also run on commodity hardware without GPU acceleration
but is then slower, typically around one thousand domains per second.



Results

The empirical results for the detection and classification tasks are respectively shown in
Table 2 and Table 3.

For the detection task, we employ the accuracy, precision, recall and F; score as
metrics, along with the “Area Under the Curve” (AUC) metric. The ROC curse illustrates
the evolution of the true positive and false positive rates at various thresholds, and is
shown in Figure 6. Contrary to the accuracy, the AUC score is well suited to machine
learning tasks where the classes are highly imbalanced. As we can observe from Table 2,
the neural model outperforms the two baseline on all metrics (all results are statistically
significant using a paired z-test, with p < 0.0001). Another way of interpreting the results
is to look at the ROC curve and determine the detection rate that can be achieved for a
given False Positive Rate (FPR). The neural model is able to detect 68 % of malwared-
generated domain names for a FPR of 1:1000 (compared to only 23 % for the bigram
approach), 93 % for a FRP of 1:100, and 99.9 % for a FPR of 1:10.

\ Accuracy | Precision Recall Fj score | ROC AUC
Bigram 0915 | 0.927 0.882  0.904 | 0.970

| |
Neural model 0.973 | 0.972 0.970 0.971 | 0.996

Table 2: Evaluation results (with 10-fold cross validation) on the task of detecting
malware-generated domain names, using the dataset described in Section 4.

Accuracy | Precision Recall F1 score
' Micro Macro | Micro Macro | Micro Macro

Bigram 0.800 | 0.787 0.564 1 0.800 0.513 | 0.787 0.522
Neural model 0.892 10.891 0.713 ' 0.892 0.653 ' 0.887 0.660

Table 3: Evaluation results (with 10-fold cross validation) on the task of classifying
domain names according to the malware family that generated it (including the 63
malware types and a special “benign” family).

L0 Neural GRU, d=512 (AUC=0.996)

Neural GRU, d=128 (AUC=0.994)
Bigram (AUC=0.970)

o
©

o
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10° 107 107 1073 1072 1071
False Positive Rate

Figure 6: ROC curve for the detection task (x-axis is in log-scale).

For the classification task, the employed metrics are the accuracy, precision, recall and
Fj scores. Since the precision, recall and Fj scores are class-specific measures, they must
be averaged to yield a global result. Micro-averages sum up the individual TP, FP and FN



Detection Classification

Bigram , Neural Bigram | Neural
Malware Recall ' Recall | Precision Recall Fj score ! Precision Recall Fj score
bamital 0.991 | 1.000 0.999 0.998 0.998 | 0.999 0.999  0.999
banjori 0.893 1 1.000 0.910 0.928 0919 1+ 0.993 0.999  0.996
bedep 0.985 : 0.991 0.024 0.006  0.010 : 0.798 0.584  0.672
beebone 0.000 |, 0.952 0.467 0.065 0.112 | 0426 0.418 0.421
benign 0942 ' 0.977 0.911 0950 0930 ' 0.971 0979  0.975
blackhole 0.997 | 0995 | 0.000 0000 0000 , 078 0281  0.386
bobax 0.926 1 0.990 0.666 0549  0.601 1 0.906 0.746  0.818
conficker 0.919 : 0.947 0.541 0.453 0.493 : 0.650 0.625 0.636
corebot 0.989 | 1.000 0.996 0.995 0995 1 0.996 0.998  0.997
cryptolocker 0.988 : 0.995 0.447 0.112  0.179 : 0.612 0494  0.536
dircrypt 0.996 | 0.998 0.173 0.327 0226 |, 0.508 0.334  0.389
dnschanger 0961 ' 0.975 0.006 0.000  0.001 ' 0.602 0.960  0.740
dyre 0.993 | 1.000 | 0982  1.000 0991 , 0999 1000  1.000
ekforward 0.492 1 0.989 0.935 0.201 0.323 1 0.995 0.991 0.993
emotet 0.999 : 0.999 0.816 0.991 0.895 : 0.995 0.998  0.996
feodo 1.000 |, 1.000 0.000 0.000  0.000 |, 0.452 0.189  0.262
fobber 0.978 ' 0.989 0.000 0.000  0.000 ' 0.662 0.185 0.276
gameover 0.998 : 1.000 0.958 0.971 0.965 : 0.999 0.998 0.999
gameover_p2p 1.000 1 1.000 0.901 0.915 0.908 1 0.945 0.939  0.942
gozi 0.398 : 0.879 0.816 0.682  0.743 : 0.909 0.874  0.889
hesperbot 0932 | 0.949 0.000 0.000  0.000 | 0.000 0.000  0.000
locky 0.954 : 0.980 0.592 0.535 0.562 : 0.733 0.675 0.699
madmax 0.923 | 0.660 0.000 0.000  0.000 , 0.095 0.035 0.051
matsnu 0.046 ' 0.158 0.036 0.003 0.005 ' 0.683 0.103 0.172
murofet 0.998 : 0.998 0.552 0.528 0.539 : 0.737 0.838  0.784
murofetweekly | 1.000 1 1.000 0.976 1.000 0988 1 0.973 0.998 0.985
necur 0.957 : 0.982 0.397 0.245 0.302 : 0.475 0.490  0.461
necurs 0.962 | 0.982 0.317 0.151 0204 | 0431 0.248 0.278
nymaim 0.924 ' 0.953 0.601 0254 0357 ' 0.613 0.391 0.475
oderoor 0.926 : 0.977 0.000 0.000  0.000 : 0.196 0.034  0.055
padcrypt 0.970 1+ 0.999 0.990 0999 0994 1 0.996 0.998  0.997
proslikefan 0.913 : 0.960 0.501 0.272 0.353 : 0.829 0.385 0.526
pushdo 0.907 | 0.993 0.947 0940 0943 | 0.986 0.993 0.990
pushdotid 0913 : 0.968 0.321 0.102  0.154 : 0.869 0946  0.905
pykspa 0.945 | 0.983 0.507 0.671 0.578 |, 0.683 0.862  0.761
pykspa2 0.902 1 0.992 0.616 0.647 0.631 ' 0.680 0.895 0.772
gadars 0.978 : 0.999 0.997 0.999  0.998 : 0.993 0.995 0.994
gakbot 0.991 1 0.994 0.650 0329 0436 1 0.827 0.481 0.608
ramdo 0.986 : 1.000 0.828 0.878 0.852 : 0.995 0918  0.955
ramnit 0976 | 0.981 0.454 0.539 0493 | 0.557 0.617  0.585
ranbyu 0.997 ' 0.999 0.500 0260 0342 ' 0.643 0.757  0.688
ranbyus 0.997 : 0.997 0.000 0.000  0.000 : 0.268 0.143 0.175
rovnix 0.993 1 0.999 0.873 0.645 0.742 1+ 0.993 0.990 0991
shifu 0.942 : 0.983 0.007 0.003 0.004 : 0.327 0.110  0.137
simda 0.660 | 0.985 0.850 0.852  0.851 | 0.960 0.983 0.971
sisron 1.000 : 1.000 0.998 1.000  0.999 : 1.000 0.999 1.000
suppobox 0.125 |, 0.931 0.666 0.581 0.621 , 0913 0.925 0.917
sutra 0.999 1 0.999 0.888 0906  0.897 1 0.976 0.987 0.981
symmi 0.940 : 0.996 0.989 1.000  0.994 : 0.997 0.997  0.997
szribi 0.891 1 0.991 0.695 0.711 0.703 1+ 0.952 0987  0.969
tempedreve 0.881 : 0.937 0.000 0.000  0.000 : 0.241 0.010  0.019
tinba 0.990 | 0.996 0.599 0.606  0.602 |, 0.816 0926  0.866
torpig 0916 ' 0.997 0.775 0.832 0.802 ' 0.982 0.993 0.988
urlzone 0.951 : 0.991 0.531 0.388 0.448 : 0.982 0.896 0.937
vawtrak 0.862 1 0.906 0.000 0.000  0.000 1 0.743 0.363 0.455
virut 0.666 : 0.942 0.565 0.758 0.647 : 0.882 0.933 0.907
volatilecedar | 0.317 | 0.954 0.982 0.977 0979 | 0.987 0964 0974
xxhex 0.832 ' 0.999 0.983 0.997 0.990 ' 0.999 0.999  0.999

Table 4: Detection and classification results for each malware family (and benign class).
For the detection task, only the recall is provided, since precision is not applicable.



for all classes, while macro-averages take the mean of the individual scores for all classes.
In other words, micro-averages take into account the relative weights (in terms of number
of examples) of all classes, while macro-averages do not. As shown in Table 3, the neural
model also outperforms the two baselines on all metrics.

We can refine the analysis of the empirical results by looking at detection and
classification results for each malware family, as illustrated in Table 4. One interesting
result of this evaluation is the ability of the neural model to detect dictionary-based DGAs
such as suppobox (with a recall of 0.931 for the neural model compared to 0.125 for the
bigram model), provided the number of training examples is sufficient. In other words, the
neural model was capable of “learning” the wordlists employed by the the DGA, which is
something that earlier approaches based on character statistics are unable to do. However,
some domain-generation algorithms remain difficult to detect, such as matsnu (with a
recall of only 0.158). matsnu is a dictionary-based DGA relying on a built-in list of
more than 1 300 verbs and nouns. As the dataset used for the evaluation only contains 12
714 examples of matsnu domains, this was probably insufficient to learn the underlying
regularities produced by this DGA.

6 Conclusion

This paper presented a data-driven approach to the automatic detection of malware-
generated domain names using recurrent neural networks. Although the idea of
using recurrent neural networks for detecting malicious domains is not entirely new
(Woodbridge et al., 2016), the paper is to our knowledge the first one to evaluate it on
a large dataset of several million malware-generated domains (covering a total of 61
malware families). The model does not require any handcrafted feature and can be easily
retrained to respond to new malwares. Furthermore, it can be directly applied on the raw
domain names, without requiring access to additional contextual information.

Future work will investigate the integration of this neural model as part of a larger
machine-learning architecture for the detection of cyber-threats in traffic data.
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