UiO **University of Oslo**

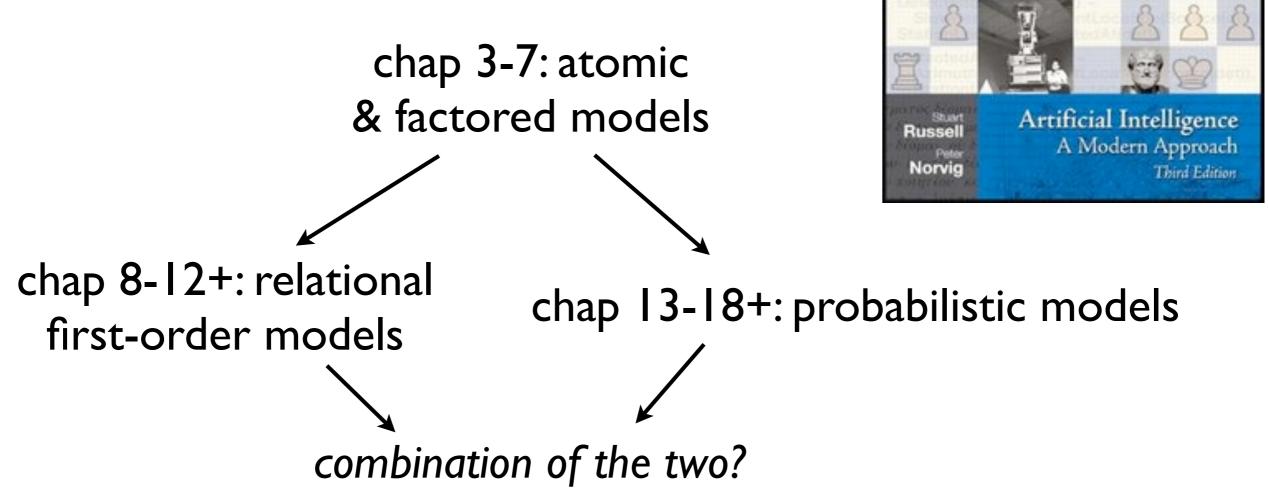
A short introduction to Statistical Relational Learning

Pierre Lison University of Oslo, Dep. of Informatics

INF5830: Natural Language Processing November 30, 2011

Introduction

- My favourite AI textbook: Russell & Norvig's AIMA
- Quick look at table of contents, in terms of representations:



- Machine learning traditionally relies on fixed sets of features
 - Expressive power = propositional logic
- Problems for capturing many real-world domains
 - Need to encode *objects* and *relations* between them
 - Need to express generic facts about these objects
- Can we combine the expressive power of first-order logic with probability theory?

- Assume you have a database of people, where for each person p, you know:
 - whether he/she smokes: smokes(p)
 - his/her group of friends: {q : friends(p,q)}
- You would like to determine for each person p the probability of cancer(p)
- Complex network of dependencies between friends, their smoking habits, and correlated cancer

• Assume we have some prior knowledge about our domain, which we can write as a set of first-order formulae:

$$\begin{aligned} \forall x : smokes(x) &\Rightarrow cancer(x) \\ \forall x, y : friends(x, y) \land smokes(y) \Rightarrow cancer(x) \\ \forall x : \neg(\exists y : friends(x, y)) \Rightarrow smokes(x) \\ \forall x, y : friends(x, y) \Rightarrow (smokes(x) \Leftrightarrow smokes(y)) \\ \forall x, y, z : (friends(x, y) \land friends(y, z) \land x \neq z) \Rightarrow friends(x, z) \end{aligned}$$

Problem: logic can only express hard constraints («all-or-nothing»)

- Alternatively, you could try to define a probabilistic model
- Solves the problem of soft correlations
- But a standard probabilistic model cannot capture generic constraints such as «friends of friends are also friends»
 - set of random variables is fixed and finite, and each variable has a fixed domain of alternative values

Statistical relational learning

- Statistical relational learning (SRL):
 - Research subfield within AI / machine learning
 - deals with domains which exhibit <u>both</u> uncertainty and a complex relational structure
- Other terms: first-order probabilistic models, relational probabilistic models, etc.
- Addresses issues of representation, inference, and learning

- Why is statistical relational learning important for NLP?
 - Because language is full of *relational structures*, and learning algorithms should be able to exploit them
 - Because statistical relational learning allows us to compactly incorporate our prior domain knowledge
 - Because SRL has recently achieved state-of-the-art results in important NLP tasks such as reference resolution, information extraction and semantic parsing

SRL approaches

- Many approaches and frameworks:
 - Bayesian Logic, Markov Logic Networks, Probabilistic Relational Models, Relational Bayesian Networks, etc.
 - Two main «routes»: extensions of first-order logic to handle probabilities, and extensions of probabilistic models to capture relational structures
- I will here focus on a particular model: Markov Logic Networks (MLNs)
 - Following slides based on previous presentations on MLNs by Pedro Domingos and Daniel Lowd

Markov Logic Networks

- Key idea: add weights to first-order formulae!
 - The weight expresses the strength of the formula
 - Infinite weight = hard constraint (cannot be violated)
- A Markov Logic Network is a set of pairs (F_i,w_i)
 - F_i is a first-order formula, and w_i is its weight
- Example:

$$\begin{array}{l} 8.2 & \forall x: smokes(x) \Rightarrow cancer(x) \\ 1.7 & \forall x, y: friends(x, y) \Rightarrow (smokes(x) \Leftrightarrow smokes(y)) \end{array}$$

Reasoning with MLNs

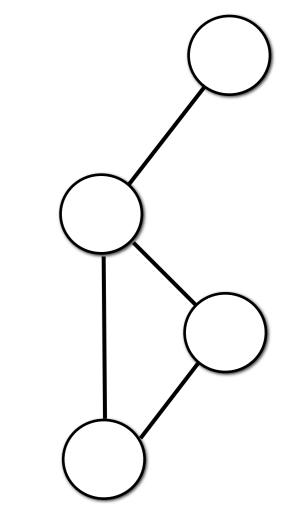
- MLNs are a nice knowledge representation formalism, but how can we use them for practical *inference* tasks?
 - I.e. how do we compute the probability of *cancer(Alice)*?
- A Markov Logic Network can be thought as a template for a (ground) Markov Network
 - Markov Network = undirected graphical model
 - Given a MLN and a set of constants (like Alice or Robert), we can directly generate an equivalent Markov Network
 - ... and use it for inference

Markov Network in a nutshell

- A Markov Network defines a joint probability distribution over a set of variables X₁...X_n
 - Network has a node for each variable
 - The nodes can be grouped into *cliques* (fully connected subgraph)
 - The joint distribution can then be factorised:

$$\Pr(X = x) = \frac{1}{Z} \prod_{k} \phi_k(x_{\{k\}})$$

where k is a clique and ϕ_k its potential function



- Finally, the potential function φ_k is often rewritten as an exponentiated weighted sum over feature functions
- We can then rewrite the distribution as:

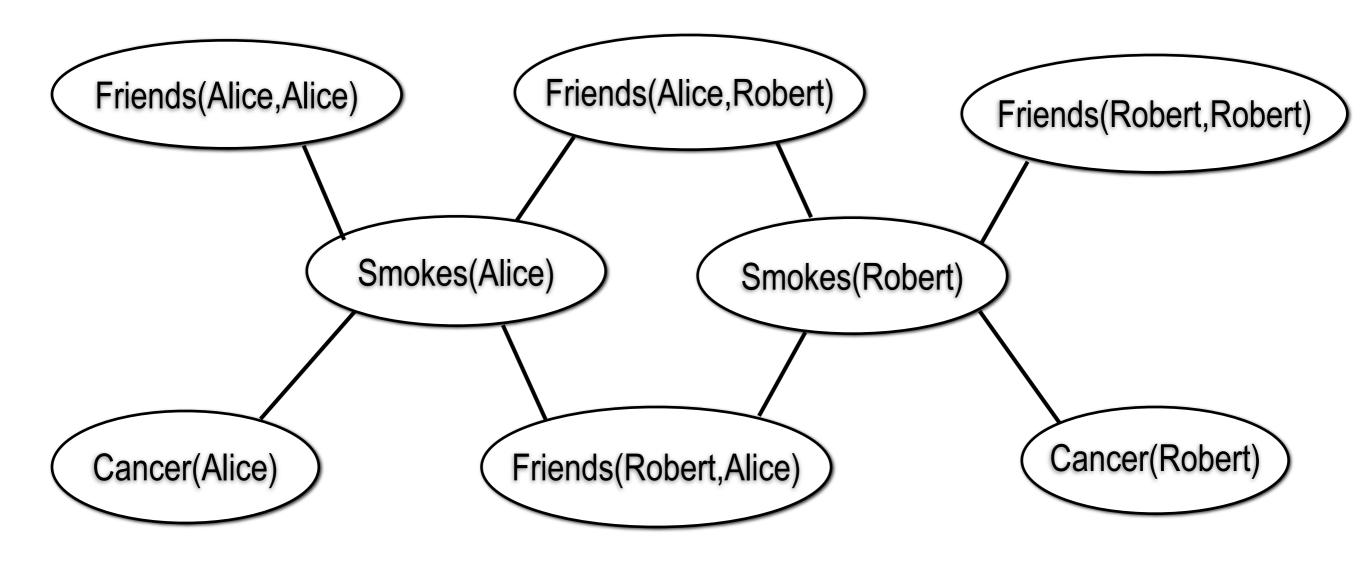
$$\Pr(X = x) = \frac{1}{Z} \exp(\sum_{j} w_j f_j(x))$$

• This is called a log-linear model

- Assume a Markov Logic Network L together with a set of constants C={c1...cn}
- We can then construct the ground Markov network M_{L,C} as follows:
 - For each predicate grounding over C, there is a node in ML,C, with values true/false
 - For each formula F_i, there is a feature f_i(x) for each possible grounding of F_i over C. The value of f_i(x) is I if F_i is true in x, and false otherwise. The weight associated with f_i(x) corresponds to the weight w_i of the formula

Construction example

- Two constants: Alice and Robert
- L = 8.2 | $\forall x : smokes(x) \Rightarrow cancer(x)$
 - 1.7 $\forall x, y : friends(x, y) \Rightarrow (smokes(x) \Leftrightarrow smokes(y))$



- Once the ground Markov Network is constructed, it can be directly used for inference given some evidence
 - But: ground network can grow exponentially in the number of constants!
- Use approximate inference techniques to ensure the problem remains tractable
 - Monte Carlo sampling, (lifted) belief propagation, simulated tempering, weighted MaxSAT etc.

- Can we learn MLNs from data?
 - parameter learning: assume the formulae are given, but not the weights
 - structure learning: try to learn both the formulae and the weights (much harder)
- Several learning algorithms available
 - both generative and discriminative models
 - Usually some variant of gradient descent on the weights

Applications of MLNs

- In Natural Language Processing:
 - Information extraction
 - Semantic parsing
 - Coreference resolution
- Outside NLP:
 - Social network analysis
 - Cognitive robotics
 - Bioinformatics

 Live demonstration of Alchemy, an open source for inference and learning with Markov Logic Networks

- First conclusion: smoking is bad for you!
- We have also seen that Statistical Relational Learning allows us to capture domains which are both *complex* and *uncertain*
- Unification of logic and probability theory
- Various tools for efficient inference & learning
- Important applications for NLP