
Agile Software Development:
what can we learn as researchers?

Pierre Lison,
Language Technology Group (LTG)

Department of Informatics

LTG Tech Lunch
 October 31 2012

Introduction

As NLP researchers, we spend a lot of our
time dealing with code

(Reading/designing/writing/debugging/testing, etc.)

2

Introduction

• In many ways, the quality of our code has a
decisive impact on the quality of our research

1. Good code → (often) better empirical results

2. Good code often helps us get a better understanding
of our research problem (concepts, limitations, etc.)

3. Good code is easier to extend, reuse and refactor in
several experiments or projects

4. Good code makes it easier for other researchers to
understand our work, and adopt it in their own research

3

Introduction

• ... but strangely enough, we (researchers)
rarely reflect on the adequacy of our
development methods

• Are our development methods optimal?

• Do we focus on the right (=high priority) aspects?

• Do we control the quality of our code?

• How do we deal with unexpected events (e.g.
unforeseen problems, change in approach)?

• Do our methods promote or hinder collaboration?

4

Introduction

• Software engineering changed
a lot in the last 10 years

• Agile development methods
increasingly popular

• I would like to talk about
some of these new ideas

• And most importantly, how they can
help us do better research

5

Waterfall model

Requirements

Design

Implementation

Testing

Maintenance

Traditional
way of
building
software

«Big Design
Up Front»

6

Problems with the waterfall

• Drawbacks of the waterfall model:

• The software requirements often vague & volatile

• Many design issues only become apparent at
implementation time

• Working software only available at the latest stages

• Inability to adapt to unforeseen events

• Typically leads to rigid division of labour

7

Alternative: develop software in a
more incremental & iterative fashion

Incremental development

Requirements

Design

Implementation

Testing

R
equirem

ents

Iteration
1

Iteration
2

Iteration
3

Iteration
4

...

D
esign

Im
plem

entation
Testing

R
equirem

ents
D

esign
Im

plem
entation

Testing

R
equirem

ents
D

esign
Im

plem
entation

Testing

R
equirem

ents
D

esign
Im

plem
entation

Testing

8

Incremental development

• Idea: construct the software via a
sequence of several short iterations

• Iteration purpose is to integrate a new functionality
(the one with the highest priority at the moment)

• Each iteration includes some basic requirements
analysis, design, implementation and testing

• At the end of each iteration, we have a working
system, extended with the given function

9

Incremental development

One particular type of Agile method: Scrum

10

Incremental development

• Advantages of incremental & iterative
development methods:

• Fast delivery of a working system, even though it may
be imperfect or incomplete

• Gradual refinement and extension of the software
requirements and system design

• Greater adaptivity to unforeseen changes
(implementation problems, external events)

11

Incremental development

Waterfall
predictive planning

Agile
adaptive planning

Better when uncertainty is high:
• unclear or changing «requirements»
• technological risks
• social/organisational factors
• may only achieve a subset of goals

High-uncertainty is the norm in academic research
12

Agile: a lightweight methodology

Project plans,

Requirement specs,

Design diagrams,

Progress reports

Gantt charts

etc.

Agile put the emphasis on
working software as the core
development objective

have no values
in themselves

should only be
done if they help
the development
process

13

Agile: a lightweight methodology

• Organisational structure is also lightweight

• No rigid roles or hierarchy, work is largely self-directed

• Users seen as partners directly engaged in the
development process

• Emphasis on direct, face to face collaboration

14

Agile manifesto

[The Agile Manifesto: http://agilemanifesto.org/]
15

Agile methodologies

Scrum

Lean

Extreme Programming (XP)

Crystal

Agile Unified Process

16

Good practices

Four agile engineering practices:

Unit testing
Write systematic test cases for every

unit of code to ensure the
requirements are satisfied. Run the

unit tests after any code change.

Refactoring
Modify the code’s internal structure
(without altering its behaviour) to
follow standard patterns, increase

readability and extensibility

Test-driven
development

Write test cases first, as a way to
define the software requirements.

Then use these tests to control the
development progress

Continuous
Integration

Commit written code to repository
and rebuild system as soon as

possible. Automatically control for
integration problems.

17

Conclusion

• Agile development
methodologies can help
us write better code

• Improved quality, faster
delivery, increased flexibility

• Especially useful for research
systems, which must typically
face high uncertainty

• Lightweight, but highly
disciplined methodology!

18

Conclusion

• Key ideas

• Development as a sequence of
short iterations gradually
extending or improving the
system

• Working code is the primary
focus, not procedures or
hierarchical roles

• Adaptivity: Embrace change
instead of trying to predict it

19

