UiO **University of Oslo**

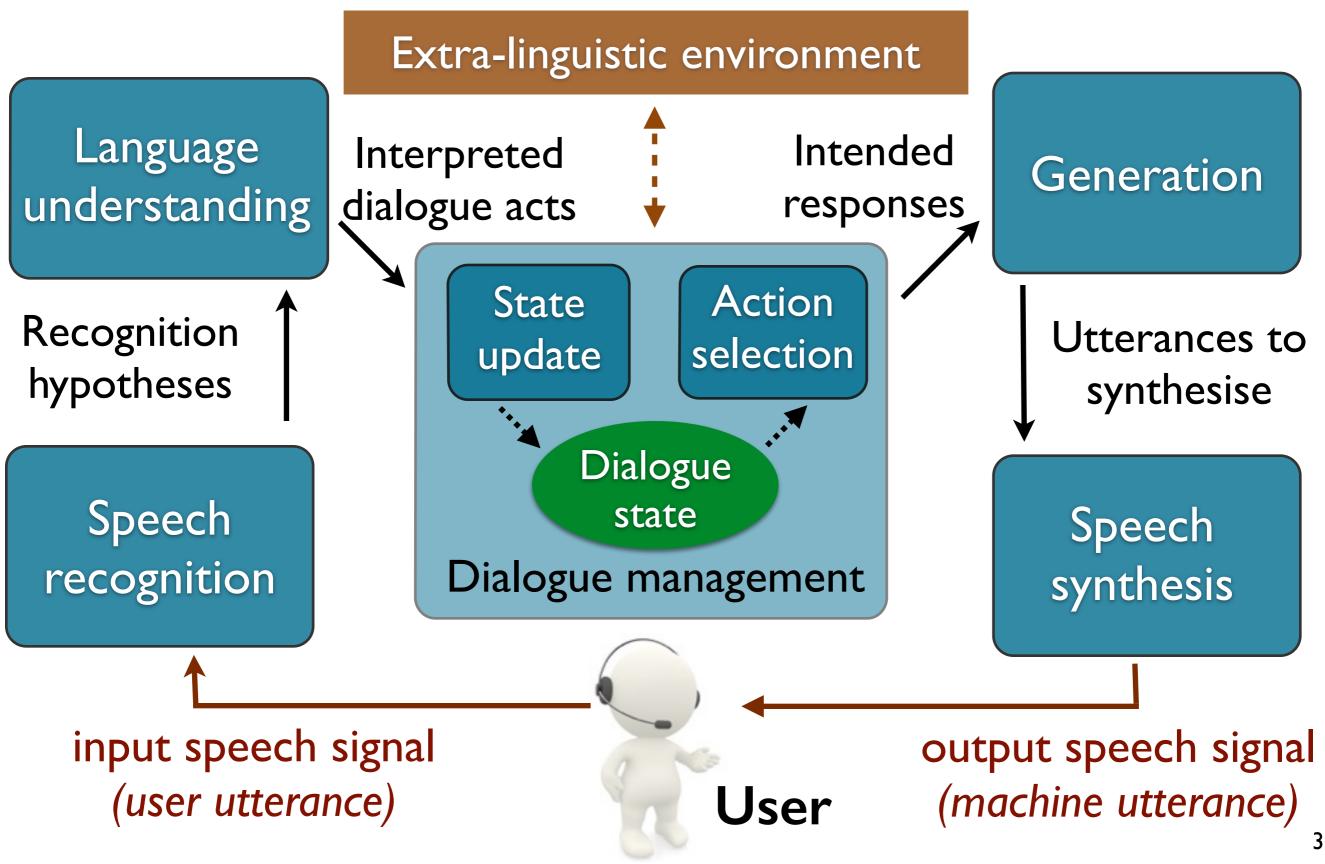
Dialogue Management with Probabilistic Rules

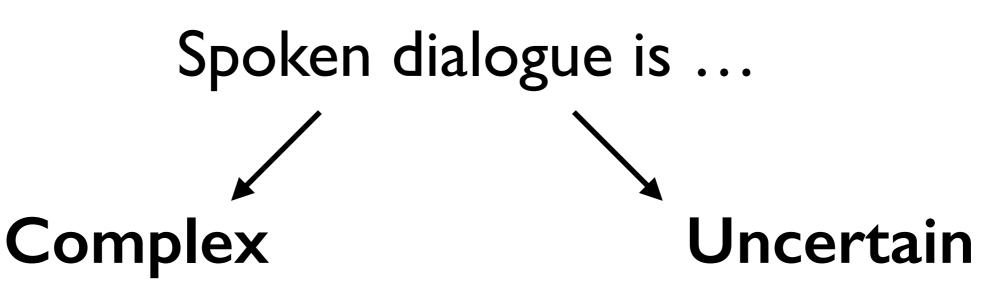
Pierre Lison Language Technology Group University of Oslo

November 10, 2014

- The dialogue management task
- Probabilistic rules
 - General idea
 - Parameter estimation
- Evaluation
- Conclusion

Dialogue architecture





- Context is essential to make sense of most dialogues
- Linguistic and extralinguistic factors

- Pervasiveness of noise, errors and ambiguity
- Numerous sources of variability

Logical
approaches

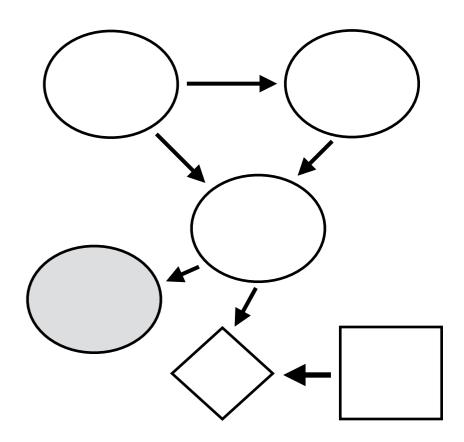
Statistical approaches

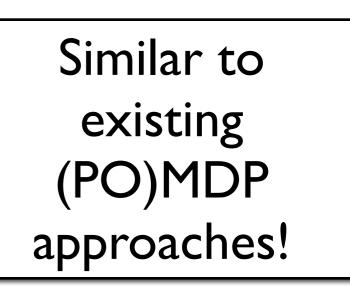
Fine-grained control of conversation	Robust, data-driven models of dialogue
Limited account for uncertainties	Need large quantities of training data

A new, hybrid modelling framework based on *probabilistic rules*

The approach

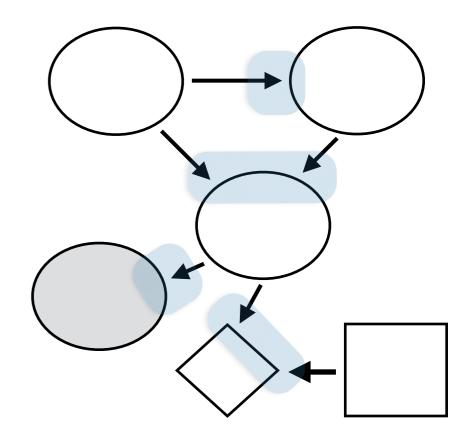
- Dialogue state encoded as a Bayesian network
 - Each state variable captures some relevant aspect of the interaction (dialogue history, user intentions, external environment, etc.)
 - The state is regularly updated upon new system actions and observations
 - ...And used to derive high-utility actions to execute





The approach

- <u>But</u>: instead of expressing the domain models using traditional formats, we adopt a high-level representation based on probabilistic rules
- Two main advantages:
 - Reduce the numbers of unknown parameters → easier to learn from limited amounts of data
 - Easier to integrate expert knowledge (in human-readable form)



. . .

Probability rules

What they encode:

Conditional probability distributions between state variables

Utility rules

Utility functions for system actions given state variables

General skeleton:

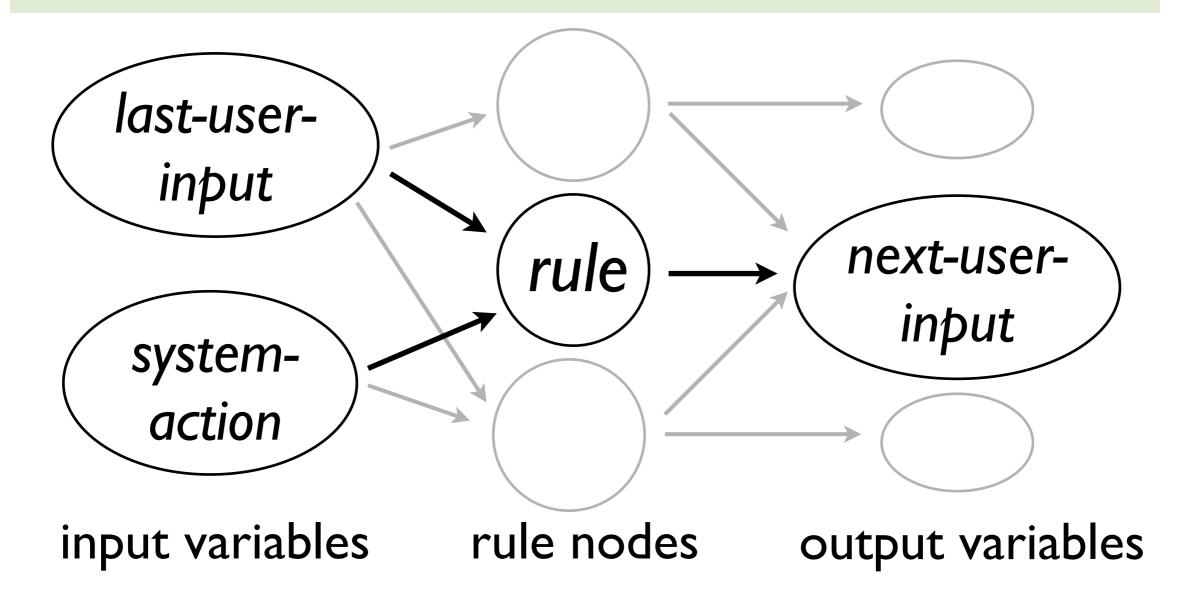
- if (condition₁) then $P(effect_1) = \theta_1,$ $P(effect_2) = \theta_2, \dots$
- else if (condition₂) then P(effect₃) = θ_3 , ...

if (condition₁) then $U(action_1) = \theta_1,$ $U(action_2) = \theta_2, ...$

else if (condition₂) then U(action₃) = θ_{3} ,...

Example of probability rule

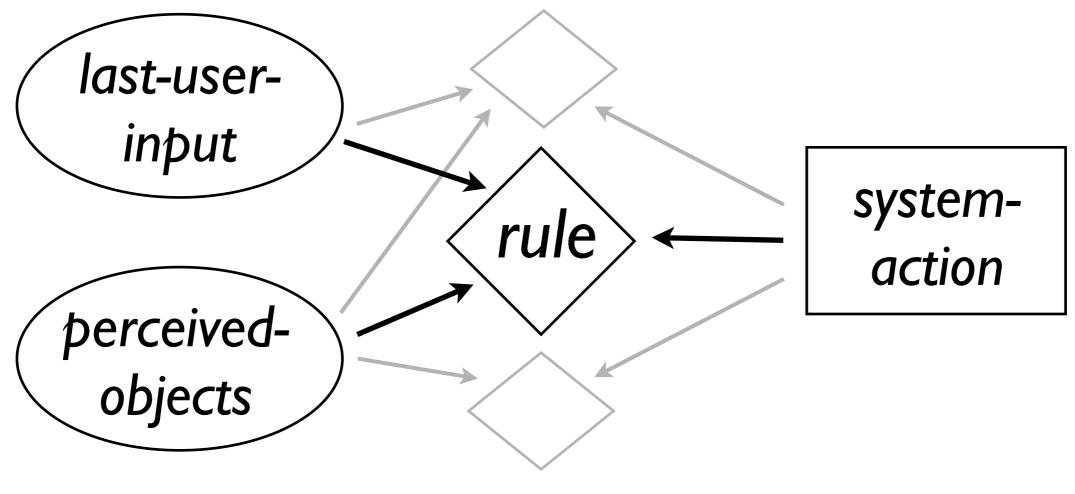
∀ x, if (last-user-input = x ∧ system-action = AskRepeat) then P(next-user-input = x) = 0.9



Example of utility rule

∀ **x**,

if (last-user-input=Request(x) ∧ x ∈ perceived-objects) then U(system-action=PickUp(x)) = +5



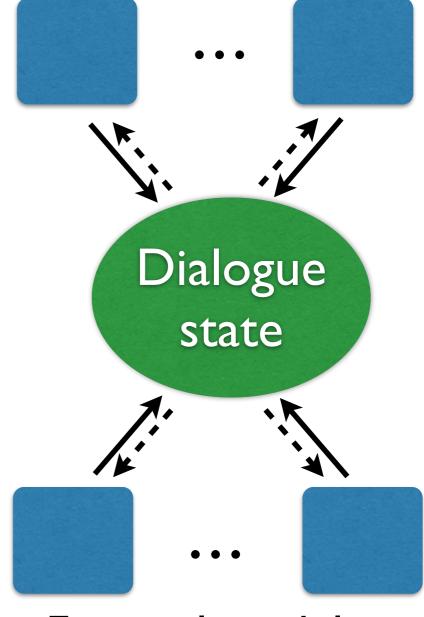
input variables rule nodes

decision variables

Processing workflow

- Dialogue state expressed as a Bayesian network
- External modules add new observations
- Probability rules used to update the dialogue state
- Utility rules used to select the system actions
- Implementation in the OpenDial toolkit [http://opendial.googlecode.com]

Probabilistic rules

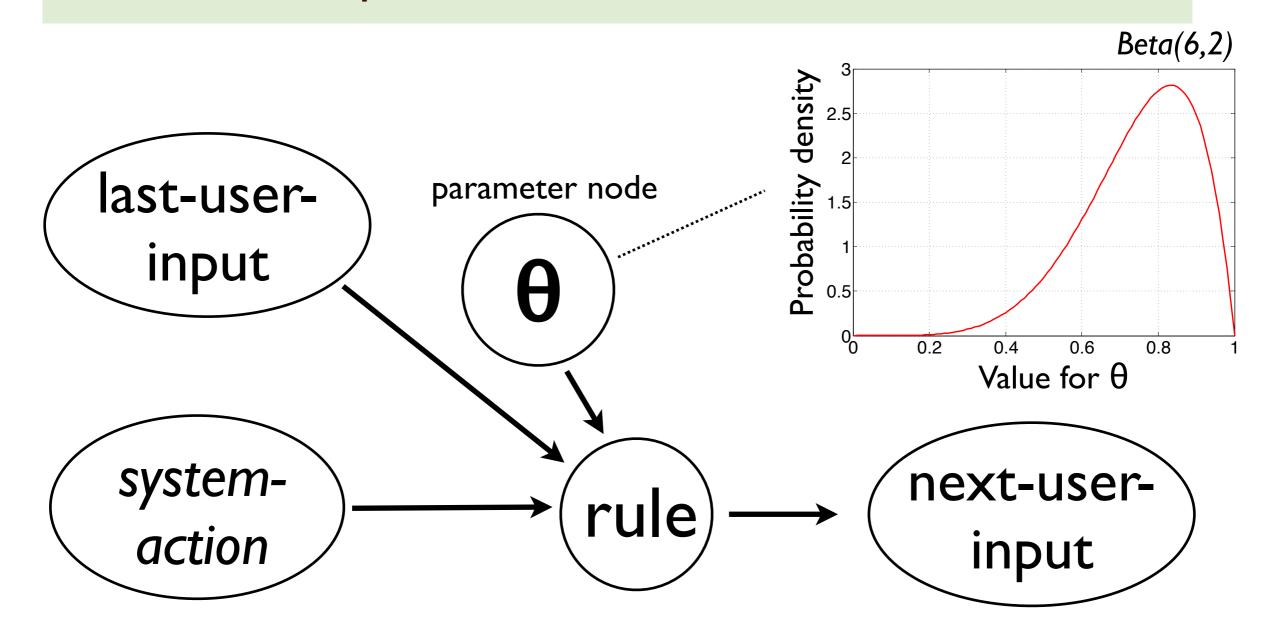


External modules

- Probabilistic rules may include parameters (unknown probabilities or utilities)
- Bayesian learning approach:
 - Start with initial prior over possible parameter values
 - \bullet Refine the distribution given the observed data ${\mathcal D}$

$$P(\theta \mid D) = \eta P(D; \theta) P(\theta)$$
Posterior Normalisation Likelihood of Prior distribution factor the data distribution

 $\forall x,$ if (last-user-input = $x \land$ system-action = AskRepeat) then P(next-user-input = x) = θ



- Different types of training data:
 - Supervised learning: Wizard-of-Oz interactions

Goal: find the parameter values that best "imitate" the Wizard's conversational behaviour

• Reinforcement learning: real or simulated interactions

Goal: find the parameter values that provide the best fit for the collected observations

[P. Lison. Probabilistic Dialogue Models with Prior Domain Knowledge (SIGDIAL 2012)] [P. Lison. Model-based Bayesian Reinforcement Learning for Dialogue Management (Interspeech 2013)]

User evaluation

 Task: instruct the robot to move across the table, pick one cylinder and release it on the landmark



- Comparison of three modelling approaches:
 - I. A handcrafted finite-state automaton
 - 2. A factored statistical model
 - 3. A model structured with probabilistic rules

Experimental procedure

- Step I: collect Wizard-of-Oz interaction data
- Step 2: Estimate the internal parameters for the 3 models with the collected data
- Step 3: Conduct user trials for the 3 approaches
- Step 4: Compare them on dialogue quality metrics

Dialogue domain:

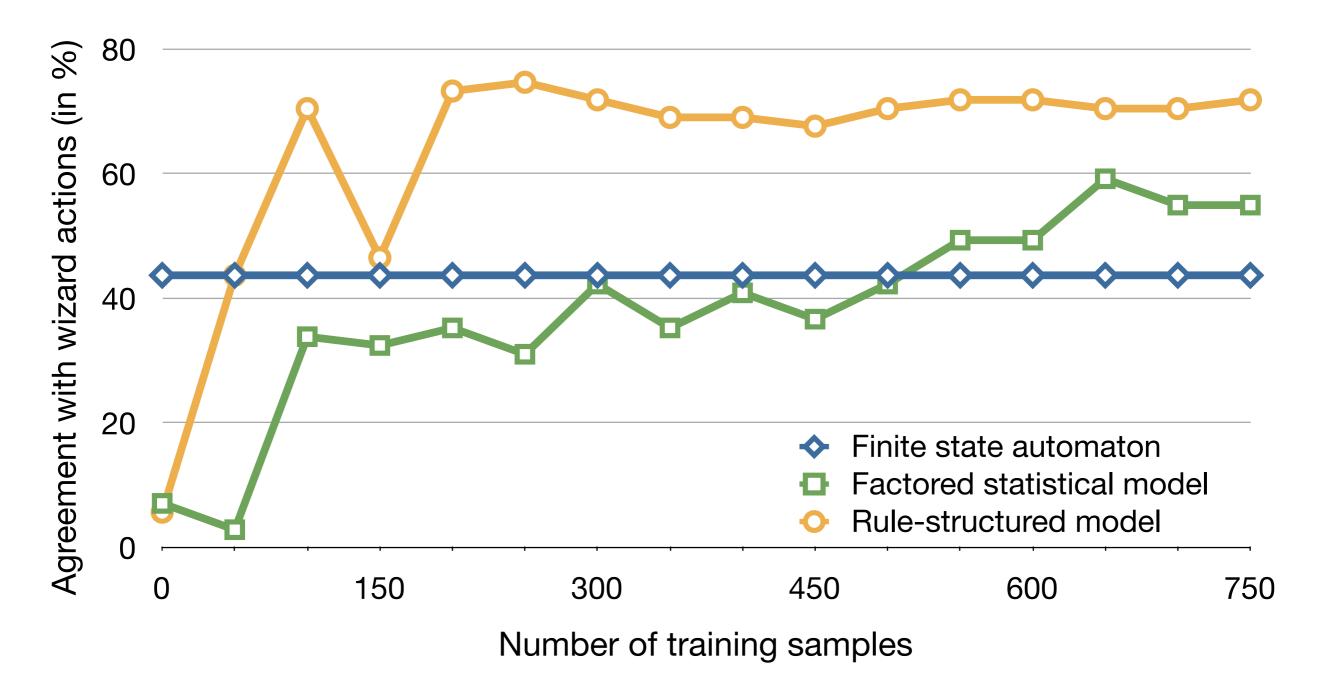
- 26 user actions
- 41 system actions
- State size: 35 x 10⁶ (10 variables)

Parameter estimation:

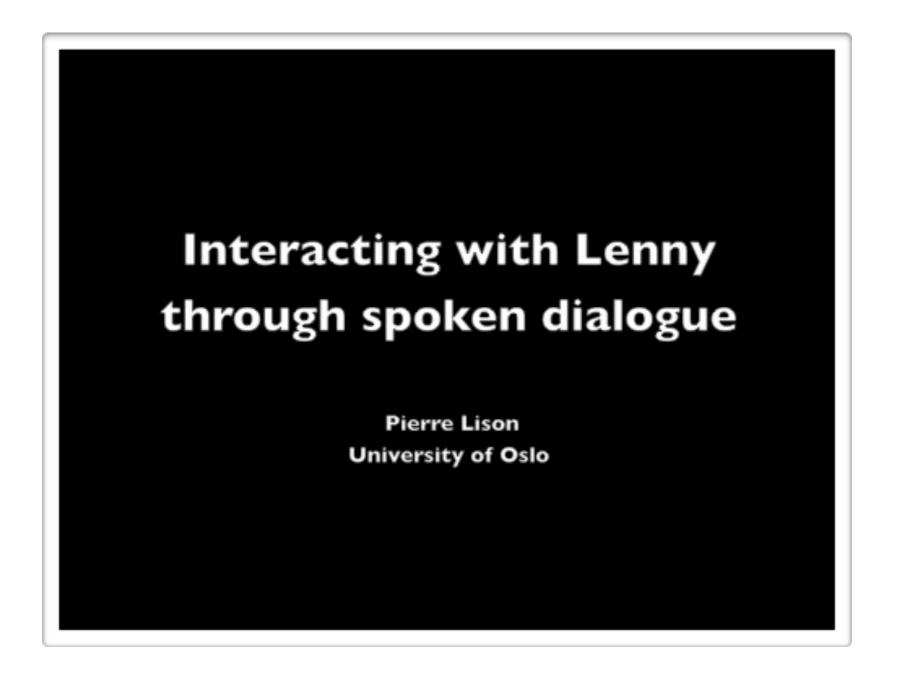
- 10 recorded WoZ interactions
- 3 parameters in handcrafted automaton (thresholds)
- 433 parameters in factored statistical model
- 28 parameters in model encoded with probabilistic rules

Learning curve

Training: 9 Wizard-of-Oz interactions (770 system turns) Testing: I Wizard-of-Oz interaction (71 system turns)



User trials



- 37 participants (16 M / 21 F)
- Average age : 30.6

- Average duration: 5:06 mins
- All captured on videos

User trials

- Each participant in the trial repeated the task three times
 - One interaction for each modelling approach (in randomised order)
- Evaluation metrics:
 - Objective metrics: list of 9 measures extracted from the interaction logs
 - Subjective metrics : survey of 6 questions filled by the participants after each interaction

Empirical results

	Metrics	Finite-state automaton	Factored statistical model	Rule- structured model
	Average number of repetition requests	18.68	12.24	0*
	Average number of confirmation requests	9.16	10.32	5.78*
	Average number of repeated instructions	3.73	7.97	2.78
	Average number of user rejections	2.16	2.59	2.59
	Average number of physical movements	26.6 8	29.89	27.08
	Average number of turns between moves	3.63	3.1	2.54*
	Average number of user turns	78.95	77.3	69.14
	Average number of system turns	57.27	54.59	35.11*
	Average duration (in minutes)	6:18	7:13	5:24*
6	Did you feel that			
	the robot correctly understood what you said?"	3.32	2.92	3.68
	the robot reacted appropriately to your instructions?"	3.70	3.32	3.86
	the robot asked you to repeat/confirm your instructions?"	2.16	2.19	3.3*
	the robot sometimes ignored when you were speaking?"	3.24	2.76	3.43
	the robot thought you were talking when you were not?"	3.43	3.14	4.41*
	the interaction flowed in a pleasant and natural manner?"	2.97	2.46	3.32

Scale from I (worse) to 5 (best)

Conclusion

- Development of a new modelling framework for dialogue management, based on probabilistic rules
 - Hybrid approach at the crossroads between logical and statistical methods
 - Rule parameters can be learned from data
- Experimental studies demonstrate the benefits of the approach
- Concrete implementation in the OpenDial software toolkit

