

Detecting Machine-translated Subtitles in Large Parallel Corpora

Pierre Lison

Norwegian Computing Center (NR) plison@nr.no

A. Seza Doğruöz

Independent Researcher a.s.dogruoz@gmail.com

11th Workshop on Building and Using Comparable Corpora, Miyazaki

08/05/2018

Introduction

Movie and TV subtitles are a great resource for compiling parallel corpora:

- 1. Wide breadth of *linguistic genres*, from colloquial language to narrative and expository discourse.
- 2. Large databases with millions of subtitles available online, in a wide range of languages

 Tight coupling between subtitles and their "source material" (a movie or TV episode)

Introduction

- However, the quality of the subtitles is uneven
 - Often created by movie and TV fans
 - Problems with linguistic fluency, faithfulness and adherence to formatting guidelines
- Some subtitles not created by humans, but produced by translating subtitles in other languages via MT
 - Often low quality, with frequent translation errors
 - Many generated through older MT engines (e.g. Babelfish)

Research question

Can we automatically detect whether a subtitle has been generated through machine translation?

Caveats:

- We do not know which subtitle might have been the source of the translation
- We do not even know which *language* could be the source
- And we do not know which MT system might have been used to produce the translation

Outline

- Source corpus
- Approach
- Evaluation
- Discussion

OpenSubtitles

- Latest version of OpenSubtitles (2018 release) contains 3.73 million subtitles in 60 languages
 - ► Total of **3.35 billion** sentences (22 billion tokens)
 - Alignment at both document- and sentence-level for all language pairs (1782 bitexts), based on timestamps
- The subtitles may have various origins:
 - Creation from scratch by fans, rips from DVD releases or TV streams, translations from existing subtitles, etc.
 - But this origin is typically unknown

Corpus available on OPUS: <u>http://opus.nlpl.eu/OpenSubtitles2018.php</u>

OpenSubtitles

Translation issues

Wrong lexical choices, grammatical errors:

* Come, you will see well.
(French): Venez, vous verrez bien.
'Come, you'll see.'

* How are you take you?(French): Comment vas-tu t'y prendre?'How will you go about it?'

Literal translations, unknown tokens:

* *Hij is gonna verkopen ons allen langs de rivier.* (English): 'He's gonna sell us all down the river'

Translation issues

- Subtitles are conversational in nature, with many short segments and a tight dependence to context
- This is lost when applying MT engines at sentence level:

* And Michael? It must come back, you hear? (French): Et Michael? Il doit revenir, vous entendez? 'And Michael? He must come back, you understand?'

Translations into pro-drop languages also problematic

Approach

- Machine learning approach using the 4,999 subtitles marked as MT-generated as training set
- Two types of features:
 - ► Monolingual features, extracted from the subtitle itself.
 - Similarity features, extracted by determining the most likely source subtitle and extracting similarity features between the source and target sentences.
- Features must be as language-independent as possible

Monolingual features

- 1. Occurrence of rare or unknown tokens
 - According to statistical language models (bigrams)
 - Thresholds adjusted for every language
- 2. Meta-data: movie genre, release type, original language of the movie or TV episode, etc.
- 3. Surface cues at start or end of the subtitle:
 - ► For instance, the occurrence of the word "Google"

Similarity features

- ► First step: identify a plausible *source* for the translation
- The subtitle that served as source can sometimes be inferred from the **display times**
 - Intuition: if a subtitle is MT-generated, these display times (timestamps in milliseconds) will be left unchanged
 - For each subtitle, we look for subtitles for the same movie but in another language (preferably a pivot language)
 - The subtitle with the most similar timestamps is then considered as the most likely source subtitle

Similarity features

- Surface-level features:
 - Ratios of tokens in the "source" and target sentences (literal translations more likely when MT-generated)
 - (Also adjusted language by language)

Syntactic features:

- Intuition: MT-generated subtitles are more likely to follow the syntactic structure of its "source" subtitle
- Captured by k-gram precision scores on POS sequences and dependent relations

Evaluation

Experimental design:

- Dataset: 4 999 MT-generated subtitles + 50 000 subtitles with high user ratings (assumed to be human-created)
- 10-fold cross validation, with class reweighting
- Baseline 1: Occurrence of the word "Google" (and similar tokens) at the start and end of the subtitle
- Baseline 2: Timestamps that are identical or near-identical (Jaccard coefficient > 0.99) to another subtitle

Results

Model	$ \mathbf{P}$	\mathbf{R}	F_1	Acc
Keyword baseline	1.000	0.017	0.030	0.910
("Google" at start/end of subtitle)				
Jaccard baseline	0.360	0.248	0.294	0.841
(Jaccard coefficient ≥ 0.99)				
Logistic regression $(l_2 \text{ reg.}, C = 1)$	0.266	0.757	0.394	0.787
SVMs (RBF kernel, $C = 1$)	0.372	0.803	0.508	0.858
K-nearest neighbours $(k=1)$	0.610	0.514	0.558	0.925
Decision tree $(1 \text{ sample per leaf})$	0.436	0.431	0.434	0.897
Random Forest $(n=100)$	0.772	0.448	0.567	0.937
Gradient Boosting $(n=100)$	0.762	0.444	0.561	0.936
Neural net (1 hidden layer, $d=10$)	0.377	0.808	0.513	0.860
(1 hidden layer, d=50)	0.506	0.697	0.585	0.909
(1 hidden layer, d=200)	0.622	0.657	0.638	0.932
(2 hidden layers, $d_1=50$, $d_2=10$)	0.504	0.685	0.580	0.909

Discussion

Feature contributions:

- Most discriminative features: Jaccard coefficient between the timings, occurrence of "Google", nb. of unknown tokens
- All feature families are useful for the detection

Error analysis:

- Dataset is not error-free (misclassifications)
- Influence of other types of errors (e.g. OCR errors)
- Some MT-generated subtitles are post edited

Estimates on full corpus

- We can use the detection model to extrapolate the total number of MT-generated (or at least "low quality") subtitles
 - Probability calibration with Platt's sigmoid model
 - Poisson Binomial distribution estimated from the results of the calibrated detection model
 - Results: about 9% of the corpus is classified by the ML model as being MT-generated

Conclusion

- Subtitles are a great resource for corpus building, but they need to be quality checked
 - ► In particular for *low-quality*, *MT-generated* subtitles
- Machine learning approach to detect these subtitles
 - Features extracted from the subtitles itself and from comparisons with its closest subtitle(s)
 - Detection model is language independent
 - Can be used to filter out (or assign a lower weight to) subtitles below a certain quality threshold

