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Introduction

• Spoken dialogue systems typically rely on pipeline 
architectures with «black-box» components 
developed separately

• Each component employs ad-hoc encoding formats 
for their inputs/outputs and internal parameters

• Formats rarely compatible with one another!

• Difficult to derive a semantic interpretation as a whole

• Difficult to perform joint optimisations

• Domain- or task-specific knowledge often «hardwired»
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Introduction

• We adopt an alternative approach:

• Declarative specification of all domain- & task-specific 
knowledge via a common representation formalism

• System architecture «stripped down» to a core set of 
algorithms for probabilistic inference

• Advantages:

• Domain portability

• More transparent semantics

• More flexible workflow
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General architecture

• Blackboard architecture revolving around a 
shared dialogue state

• Dialogue models are attached to this dialogue state, and 
listen for relevant changes appearing on it

• When triggered, they read/write to this state, creating and 
updating the state variables

• Dialogue state encoded as a Bayesian Network

• Each network node represents a distinct state variable, 
possibly connected to other variables
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General architecture
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Dialogue models

• The dialogue models are all expressed in 
terms of probabilistic rules

• Probabilistic rules are high-level templates for 
constructing probabilistic models

• Why use this representation formalism?

• Take advantage of the internal structure of the problem 
while retaining the stochastic modelling

• Abstraction mechanism (reduced set of parameters)
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Probabilistic rules

• Probabilistic rules take the form of structured 
if...then...else cases

• Mapping from conditions to (probabilistic) effects:
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  if (condition1 holds) then

 P(effect1)= θ1, 
 P(effect2)= θ2, 
 ...
  else if (condition2 holds) then

 P(effect3) = θ3,
 ...
  ...
 else
    P(effectn) = θn, 
 ...



Probabilistic rules

• Conditions are (arbitrarily complex) logical 
formulae on state variables

• Effects are value assignments on state variables

• Effect probabilities are parameters that can be 
estimated from data
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 if (am = AskRepeat) then
   P(au’ = au) = 0.9
   P(au’ ≠ au) = 0.1

Example: 



Utility rules

• The formalism can also describe utility models

• In this case, the rule maps each condition to an 
assignment of utility values for particular actions:
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  if (condition1 holds) then

 Q(actions1)= θ1, 
 Q(actions2)= θ2, 
 ...
  else if (condition2 holds) then

 Q(actions3) = θ3, 
 ...
  ...
 else
    Q(actionsn) = θn, 
 ...



Rule instantiation

• How are the rules applied to the dialogue state?

• The rules are instantiated in the Bayesian Network, 
expanding it with new nodes and dependencies
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  if (X = ... ∨ Y ≠ ...) then

    P(V = ... ∧ W = ...) = 0.6

r1: 

(The ... dots in r1 should be 
replaced by concrete values)
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Rule instantiation

• The instantiation procedure is similar for 
utility rules, although one must employ 
utility and decision nodes:
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r2: 



Rule instantiation

• The instantiation procedure is similar for 
utility rules, although one must employ 
utility and decision nodes:

11

X

Y

Z

  

  if (X = ... ∨ Y ≠ ...) then

    Q(A1 = ... ∧ A2 = ...) = 3

r2: 



Rule instantiation

• The instantiation procedure is similar for 
utility rules, although one must employ 
utility and decision nodes:

11

X

Y

Z

  

  if (X = ... ∨ Y ≠ ...) then

    Q(A1 = ... ∧ A2 = ...) = 3

r2: 

r2



Rule instantiation

• The instantiation procedure is similar for 
utility rules, although one must employ 
utility and decision nodes:

11

X

Y

Z

  

  if (X = ... ∨ Y ≠ ...) then

    Q(A1 = ... ∧ A2 = ...) = 3

r2: 

r2

A1

A2



Rule instantiation

• If the rule parameters (probabilities or 
utilities) are uncertain, we add other 
nodes expressing their distribution
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Processing workflow

• To ease the domain design, the rules are 
grouped into models

• Each model is associated with a trigger variable 
causing its activation

• When a model is activated:

• A rule node is created for each rule, conditionally dependent 
on the variables used in the conditions

• Nodes corresponding to the output variables of the rule are 
also created/updated, and connected to the rule node
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Processing workflow (example)
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Processing workflow

• Additional details

• No pipeline restriction: processing flow is possible

• Decision nodes require a decision to be made, by 
selecting the value with maximum utility

• Once the dialogue state is «stable» (no more model 
can be triggered), it is pruned to reduce it to a 
minimal size, retaining only the necessary nodes

• The rules update existing variables or create new ones
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Experiments

• The described formalism was implemented and 
tested in a simple human-robot interaction scenario

• The models for NLU, DM and NLG were encoded 
as probabilistic rules (total of 68 rules)
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Experiments

• The utilities for the action selection rules 
were learned from Wizard-of-Oz data

• The other rules (NLU and NLG) were 
deterministic

• System also included a speech recogniser, 
TTS, and libraries for controlling the 
physical actions of the robot
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[Pierre Lison, «Probabilistic Dialogue Models with Prior 
Domain Knowledge», SIGDIAL 2012]



Examples

• Dialogue act recognition rule:

• Prediction of next user action:
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Examples

• Action selection rules:

• Natural language generation rule:
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Conclusions

• Dialogue system design based on the 
specification of probabilistic rules

• «Hybrid» approach combining domain 
knowledge and stochastic modelling

• Step towards a cleaner separation 
between system architecture and domain- 
and task-specific knowledge?
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Future work

• Online estimation of the rule parameters 
(e.g. model-based Bayesian reinforcement 
learning)

• Joint optimisations of the parameters for 
NLU, DM and NLG models

• Incremental processing
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Next interaction domain
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Next interaction domain
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