
Towards Online Planning for
Dialogue Management with

Rich Domain Knowledge

Pierre Lison
Language Technology Group,

University of Oslo

IWSDS, November 29, 2012

Introduction

• Dialogue management (DM) as a decision-
theoretic planning problem

• Most approaches perform this planning
offline (precomputed policies)

2

+ -

Offline
planning

Action selection is
straightforward and
quite efficient
(direct lookup)

• Must consider all
possible situations
• Policy must be
recomputed after every
model change

Introduction

Alternative: perform planning online, at
execution time

3

+ -

Offline
planning

Action selection is
straightforward
(and efficient)

• Must consider all
possible situations
• Policy must be
recomputed after every
model change

Online
planning

• Must only plan for
current situation
• Easier to adapt to
runtime changes

• Must meet real-time
requirements

Approach

• To address these real-time constraints, we
must ensure the planner concentrates on
relevant actions and states

• Intuition: we can exploit prior domain
knowledge to filter the space of possible
actions and transitions

• We report here on our ongoing work with
the use of probabilistic rules to encode the
probability/reward models of our domain

4

Approach

• We represent the dialogue state as a
Bayesian Network

• Probabilistic rules are applied upon this
dialogue state to update / extend it

• Advantages:

• (exponentially) fewer parameters to estimate

• Can incorporate prior domain knowledge

5

[Pierre Lison, «Probabilistic Dialogue Models with Prior
Domain Knowledge», SIGDIAL 2012]

Probabilistic rules

• The rules take the form of structured if...then...else
cases, mappings from conditions to (probabilistic) effects:

• For action-selection rules, the effect associates rewards
to particular actions:

6

 if (condition1 holds) then
 P(effect1)= θ1, P(effect2)= θ2

 else if (condition2 holds) then
 P(effect3) = θ3

 if (condition1 holds) then
 R(actions)= θ1

Rule examples

• Example r1 (probability rule):

• Example r2 (reward rule):

7

 if (am = AskRepeat) then
 P(au’ = au) = 0.9
 P(au’ ≠ au) = 0.1

 if (au ≠ None) then
 R(am = AskRepeat) = -0.5

am

r2au

’

au

am

r1 au’

am

au

’

Approach

• The transition, observation and reward models for
the domain are all encoded in terms of these
probability & reward rules

• We devised a simple forward planning algorithm that:

• samples a collection of trajectories (sequence of actions) starting
from the current state, until a specific horizon is reached

• and records the return obtained for each trajectory

• The algorithm then searches for the action sequence
with highest average return, and executes the first
action in this sequence

8

Planning algorithm

9

s0

am
0

Loop (for each trajectory):
Q = 0
Loop (until horizon reached):

Sample system action am

Q = Q + γtR
Predict next state s
Sample next user action au

Do belief update
Record Q for trajectory

∀ trajectory, calculate average Q

Return trajectory with max. Q

Repeat
until

enough
trajectories

are
collected

R0

au
1

am
1

R1

 until horizon is reached...

s1

Discussion

• What is original in our approach?

• The rules provide high-level constraints on the relevant
actions (and subsequent future states)

• For instance, if the user intention is Want(Mug), the rules
will provide utilities for the actions PickUp(Mug) or
AskRepeat, but will consider PickUp(Box) as irrelevant

• In other words, they enable the algorithm to quickly focus
the search towards high-utility regions

• ... and discard irrelevant actions and predictions

10

Discussion

• We did some preliminary experiments
with an implementation of this algorithm

• The rules did make a difference in guiding the search
for «relevant» trajectories

• But unfortunately, the algorithm doesn’t yet scale to
real-time performance (sorry)

• Need to find better heuristics to aggressively prune
the applied rules, improve action sampling and the
performance of the inference algorithm

11

Conclusions

• Online planning can help us build more
adaptive dialogue systems

• Can be combined with offline planning, using a precomputed
policy to guide the search of an online planner!

• Using prior domain knowledge (encoded with e.g. probabilistic
rules) should help the planner focus on relevant actions and
filter out irrelevant ones

• More work needed to find tractable planning
techniques, and collect empirical results

12

13

Online reinforcement learning

• Links with the reinforcement learning
literature:

• Our approach can be seen as a model-based approach
to reinforcement learning, where a model is learned
and then used to plan the best actions

• Most other approaches rely on a model-free
reinforcement learning paradigm, and try to learn the
optimal action directly from experience, without trying
to estimate explicit models (and plan over them)

14

