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Introduction

• Dialogue management (DM) as a decision-
theoretic planning problem

• Most approaches perform this planning 
offline (precomputed policies)
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+ -

Offline 
planning 

Action selection is 
straightforward and 
quite efficient 
(direct lookup)

• Must consider all 
possible situations
• Policy must be 
recomputed after every 
model change



Introduction

Alternative: perform planning online, at 
execution time
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+ -

Offline 
planning 

Action selection is 
straightforward 
(and efficient)

• Must consider all 
possible situations
• Policy must be 
recomputed after every 
model change

Online 
planning

• Must only plan for 
current situation
• Easier to adapt to 
runtime changes

• Must meet real-time 
requirements

Approach

• To address these real-time constraints, we 
must ensure the planner concentrates on 
relevant actions and states

• Intuition: we can exploit prior domain 
knowledge to filter the space of possible 
actions and transitions

• We report here on our ongoing work with 
the use of probabilistic rules to encode the 
probability/reward models of our domain
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Approach

• We represent the dialogue state as a 
Bayesian Network

• Probabilistic rules are applied upon this 
dialogue state to update / extend it 

• Advantages:

• (exponentially) fewer parameters to estimate 

• Can incorporate prior domain knowledge
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[Pierre Lison, «Probabilistic Dialogue Models with Prior 
Domain Knowledge», SIGDIAL 2012]

Probabilistic rules

• The rules take the form of structured if...then...else 
cases, mappings from conditions to (probabilistic) effects:

• For action-selection rules, the effect associates rewards 
to particular actions:
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  if (condition1 holds) then
 P(effect1)= θ1,  P(effect2)= θ2

  else if (condition2 holds) then
 P(effect3) = θ3

  

  if (condition1 holds) then
 R(actions)= θ1



Rule examples

• Example r1 (probability rule):

• Example r2 (reward rule):
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 if (am = AskRepeat) then
   P(au’ = au) = 0.9
   P(au’ ≠ au) = 0.1

  

 if (au ≠ None) then
   R(am = AskRepeat) = -0.5
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Approach

• The transition, observation and reward models for 
the domain are all encoded in terms of these 
probability & reward rules

• We devised a simple forward planning algorithm that:

• samples a collection of trajectories (sequence of actions) starting 
from the current state, until a specific horizon is reached

• and records the return obtained for each trajectory

• The algorithm then searches for the action sequence 
with highest average return, and executes the first 
action in this sequence
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Planning algorithm
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Loop (for each trajectory):
Q = 0
Loop (until horizon reached):

Sample system action am

Q = Q + γtR
Predict next state s
Sample next user action au

Do belief update
Record Q for trajectory

∀ trajectory, calculate average Q

Return trajectory with max. Q

Repeat 
until 

enough 
trajectories 

are 
collected
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 until horizon is reached...

s1

Discussion

• What is original in our approach?

• The rules provide high-level constraints on the relevant 
actions (and subsequent future states)

• For instance, if the user intention is Want(Mug), the rules 
will provide utilities for the actions PickUp(Mug) or 
AskRepeat, but will consider PickUp(Box) as irrelevant

• In other words, they enable the algorithm to quickly focus 
the search towards high-utility regions 

• ... and discard irrelevant actions and predictions
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Discussion

• We did some preliminary experiments 
with an implementation of this algorithm

• The rules did make a difference in guiding the search 
for «relevant» trajectories

• But unfortunately, the algorithm doesn’t yet scale to 
real-time performance (sorry)

• Need to find better heuristics to aggressively prune 
the applied rules, improve action sampling and the 
performance of the inference algorithm
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Conclusions

• Online planning can help us build more 
adaptive dialogue systems

• Can be combined with offline planning, using a precomputed 
policy to guide the search of an online planner!

• Using prior domain knowledge (encoded with e.g. probabilistic 
rules) should help the planner focus on relevant actions and 
filter out irrelevant ones

• More work needed to find tractable planning 
techniques, and collect empirical results
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Online reinforcement learning

• Links with the reinforcement learning 
literature:

• Our approach can be seen as a model-based approach 
to reinforcement learning, where a model is learned 
and then used to plan the best actions

• Most other approaches rely on a model-free 
reinforcement learning paradigm, and try to learn the 
optimal action directly from experience, without trying 
to estimate explicit models (and plan over them)
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