UiO : University of Oslo

Towards Online Planning for Dialogue Management with Rich Domain Knowledge

Pierre Lison Language Technology Group, University of Oslo

IWSDS, November 29, 2012

UiO : University of Oslo

Introduction

- Dialogue management (DM) as a decisiontheoretic planning problem
- Most approaches perform this planning offline (precomputed policies)

	+	-
Offline planning	Action selection is straightforward and quite efficient (direct lookup)	 Must consider all possible situations Policy must be recomputed after every model change

Introduction

Alternative: perform planning *online*, at execution time

		+	-
	Offline planning	Action selection is straightforward (and efficient)	 Must consider all possible situations Policy must be recomputed after every model change
	Online planning	 Must only plan for current situation Easier to adapt to runtime changes 	• Must meet real-time requirements

3

UiO : University of Oslo

Approach

- To address these real-time constraints, we must ensure the planner concentrates on *relevant actions* and states
- Intuition: we can exploit prior domain knowledge to filter the space of possible actions and transitions
- We report here on our ongoing work with the use of *probabilistic rules* to encode the probability/reward models of our domain

Approach

- We represent the dialogue state as a Bayesian Network
- Probabilistic rules are applied upon this dialogue state to update / extend it
- Advantages:
 - (exponentially) fewer parameters to estimate
 - Can incorporate prior domain knowledge

[Pierre Lison, «Probabilistic Dialogue Models with Prior Domain Knowledge», SIGDIAL 2012]

5

UiO : University of Oslo

Probabilistic rules

• The rules take the form of structured if...then...else cases, mappings from *conditions* to (probabilistic) effects:

```
if (condition<sub>1</sub> holds) then

P(effect<sub>1</sub>)= \theta_1, P(effect<sub>2</sub>)= \theta_2

else if (condition<sub>2</sub> holds) then

P(effect<sub>3</sub>) = \theta_3
```

• For action-selection rules, the effect associates *rewards* to particular *actions*:

```
if (condition<sub>1</sub> holds) then
R(actions)= θ<sub>1</sub>
```


- The transition, observation and reward models for the domain are all encoded in terms of these probability & reward rules
- We devised a simple *forward planning* algorithm that:
 - samples a collection of **trajectories** (sequence of actions) starting from the current state, until a specific horizon is reached
 - and records the **return** obtained for each trajectory
- The algorithm then searches for the action sequence with highest average return, and executes the first action in this sequence

Planning algorithm

s^{0} R^{0} s^{1} a^{1}_{u} a^{1}_{m}	Loop (for each trajectory): Q = 0 Loop (until horizon reacher Sample system action $a_m = Q = Q + \gamma^t R$ Predict next state s Sample next user action a Do belief update Record Q for trajectory \forall trajectory, calculate average Return trajectory with max.	d): Q Q
until horizon is r	reached	9
TAS DA	UiO : University c	of Oslo

Discussion

- What is original in our approach?
 - The rules provide high-level constraints on the relevant actions (and subsequent future states)
 - For instance, if the user intention is Want(Mug), the rules will provide utilities for the actions PickUp(Mug) or AskRepeat, but will consider PickUp(Box) as irrelevant
 - In other words, they enable the algorithm to quickly focus the search towards high-utility regions
 - ... and discard irrelevant actions and predictions

- We did some preliminary experiments with an implementation of this algorithm
 - The rules did make a difference in guiding the search for «relevant» trajectories
 - But unfortunately, the algorithm doesn't yet scale to real-time performance (sorry)
 - Need to find better *heuristics* to aggressively *prune* the applied rules, improve action sampling and the performance of the inference algorithm

UiO : University of Oslo

Conclusions

- Online planning can help us build more adaptive dialogue systems
 - Can be combined with offline planning, using a precomputed policy to guide the search of an online planner!
 - Using prior domain knowledge (encoded with e.g. probabilistic rules) should help the planner focus on relevant actions and filter out irrelevant ones
- More work needed to find tractable planning techniques, and collect empirical results

UiO **Conversity of Oslo**

Online reinforcement learning

- Links with the reinforcement learning literature:
 - Our approach can be seen as a *model-based* approach to reinforcement learning, where a model is learned and then used to plan the best actions
 - Most other approaches rely on a *model-free* reinforcement learning paradigm, and try to learn the optimal action directly from experience, without trying to estimate explicit models (and plan over them)