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Motivation

• Hand-crafting dialogue policies is hard!

• Noise & uncertainty (e.g. speech recognition errors)

• Large number of possible trajectories

• Alternative: automatically optimise dialogue 
policies from (real or simulated) experience

• Two types of approaches:

• Model-free reinforcement learning

• Model-based reinforcement learning
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Focus of 
this talk



Motivation

• Model-based reinforcement learning:

• Collect interactions and use them to estimate explicit 
models of the domain

• Use the resulting models to plan the best action

• Key advantage: can exploit prior knowledge 
to structure the domain models

• We present an experiment showing the 
benefits of this approach
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POMDPs with model uncertainty
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Approach

• After each observation, the parameters 
are updated via Bayesian inference

• Parameter distributions gradually narrowed down to 
the values that best fit the observed data

• Forward planning is used to select the 
next action to execute at runtime

• Three source of uncertainty: state uncertainty, 
stochastic action effects, and model uncertainty
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Abstraction 

• Dialogue domains often have large, complex 
state and action spaces

• Need generalisation/abstraction techniques to 
avoid the «curse of dimensionality»

• The framework of probabilistic rules 
offers such abstraction language 

• Capture domain structure through (parametrised) rules 
mapping conditions to probabilistic effects

• Drastic reduction in the number of parameters 
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Probabilistic rules

• Structured if...then...else cases associating 
conditions to distributions over effects:
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  if (condition1 holds) then

 P(effect1)= θ1,
 P(effect2)= θ2,
 ...

  else if (condition2 holds) then

 P(effect3) = θ3,
 ...
  ...

• Probabilistic rules serve as high-level 
templates for a Bayesian network

[P. Lison, «Probabilistic Dialogue Models with Prior Domain Knowledge», SIGDIAL 2012]



Probabilistic rules: example
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r1: ∀ X:
     if (am = AskConfirm(X) ∧ iu ≠ X) then 
       [P(au’ = Disconfirm) = θ1]



Probabilistic rules: example
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r1: ∀ X:
     if (am = AskConfirm(X) ∧ iu ≠ X) then 
       [P(au’ = Disconfirm) = θ1]
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Evaluation

• Evaluation of the learning 
approach in a simulated 
environment:

• Human-robot interaction 
domain (with Nao robot)

• Simulator constructed from 
Wizard-of-Oz data

• Goal: estimate the transition 
model of the domain (reward 
model is given)
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Simulator

• Simulation models:

• User modelling: how the user is expected to react to 
the system actions

• Context modelling: how the system actions change the 
state of the environment

• Error modelling: how understanding errors can occur

• Collected and annotated Wizard-of-Oz 
data to empirically estimate these models
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Experimental setup

• Two alternative formalisations of the 
transition model:
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Baseline: Our approach:
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categorical distributions
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Results: average return
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Conclusion

• Hybrid approach to dialogue policy optimisation:

• Domain models structured with probabilistic rules

• Rule parameters estimated via model-based Bayesian RL

• Experiment shows that the rule-structured 
model outperforms a classical factored model

• Future work:

• Evaluate the approach with real interactions

• Combine offline and online planning
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