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Introduction

• Statistical models is getting increasingly 
popular in spoken dialogue systems
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Advantages

Explicit account of uncertainties, 
increased robustness to errors

Better domain- and user-adaptivity,
more natural and flexible 

conversational behaviours

Challenges

Good domain data is scarce and  
expensive to acquire!

Scalability to complex domains 
(state space grows exponentially 

with the problem size)



Introduction

• Scalability remains a 
challenge for many domains

• Examples: Human-robot 
interaction, tutoring systems, 
cognitive assistants & companions

• Must model a rich, dynamic context 
(users, tasks, situated environment)

• State more complex than a list of 
slots to fill (rich relational structure)
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Introduction
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General architecture

• Information-state based approach to dialogue 
management (and dialogue systems):

• The dialogue state represents all the information available to the 
agent (and relevant for decision-making)

• Various processes are attached to this state and read/write to it
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General architecture

• How do we represent the dialogue state?

• Requirements:

• Must be able to factor the state into distinct variables

• The content of some variables might be uncertain

• Possible probabilistic dependencies between variables
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Dialogue state encoded as a Bayesian 
Network (i.e. a directed graphical model)



Dialogue state: example
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Research problem

• Dialogue management 
is responsible for a 
wide range of 
processing operations:

• interpretation of the user 
dialogue acts 

• selection of the next system 
action to perform

• prediction of the next steps 
in the interaction
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Complex modelling 
problem (many 

interacting variables)

Pervasive uncertainty 
(ASR errors, ambiguity, 

unpredictable user 
behaviour)

Data for parameter 
estimation is scarce 
and domain-specific



Research goal

• We would like to construct probabilistic 
models of dialogue that:

• can operate on rich state representations

• can incorporate prior domain knowledge

• can be estimated from limited amounts of data

• This is basically the central question I’m 
trying to address for my PhD
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Research goal

• Many approaches in A.I. and machine learning 
have tried to tackle related problems

• Solutions typically involve the use of more 
expressive representations (hierarchical or 
relational abstractions)

• Can yield more compact models that generalise better
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I’m developing such a formalism for dialogue 
management: probabilistic rules



Key idea

• Observation: dialogue models exhibit a 
fair amount of internal structure:

• Probability and utility distributions can often be 
factored

• Even if the full distribution has many dependencies, 
the probability (or utility) of a specific outcome often 
depends on a much smaller subset

• Finally, the values of the dependent variables can 
often be grouped into partitions
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Example of partitioning

• Consider a dialogue where the user asks a 
robot yes/no questions about his location

• The state contains the following variables :

• Last user dialogue act, e.g. 

• The robot location, e.g.

• You want to learn the utility of
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au location

am
au = AreYouIn(corridor)

location = kitchen

am = SayYes

positive utility
negative utility

• The combination of the two variables can take many 
values, but they can be partitioned in two sets:

au = AreYouIn(x) ^ location = x

au = AreYouIn(x) ^ location 6= x
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Probabilistic rules

• Probabilistic rules attempt to capture 
such kind of structure

• High-level templates for a classical graphical 
model (in our case, a Bayesian Network)

• Advantages:

• (Exponentially) fewer parameters to estimate

• Easier to incorporate prior domain knowledge
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Probabilistic rules

• The rules take the form of structured 
if...then...else cases

• Mapping from conditions to (probabilistic) 
effects:
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  if (condition1 holds) then

 P(effect1)= θ1,
 P(effect2)= θ2,
 ...

  else if (condition2 holds) then

 P(effect3) = θ3,
 ...
  ...

Probabilistic rules

• Conditions are (arbitrarily complex) logical 
formulae on state variables

• Effects are value assignments on state variables

• Effect probabilities are parameters that can be 
estimated from data
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 if (am = AskRepeat) then
   P(au’ = au) = 0.9
   P(au’ ≠ au) = 0.1

Example: 



Utility rules

• The formalism can also describe utility models

• In this case, the rule maps each condition to an 
assignment of utility values for particular actions:
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  if (condition1 holds) then

 Q(actions1)= θ1, 
 Q(actions2)= θ2, 
 ...
  else if (condition2 holds) then

 Q(actions3) = θ3, 
 ...
  ...
 else
    Q(actionsn) = θn, 
 ...

Rule instantiation

• How are the rules applied to the dialogue state?

• The rules are instantiated in the Bayesian Network, 
expanding it with new nodes and dependencies
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ra

X

Y

Z

V’

W’

  

  if (X = ... ∨ Y ≠ ...) then

    P(V = ... ∧ W = ...) = 0.6

ra: 

(The ... dots in r1 should be 
replaced by concrete values)



Rule instantiation
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am

User
Focus

 Greet  [P=1.0]

 Attentive  [P=0.7]
Distracted [P=0.3]

Example r1:

  

 if (am = Greet ⋀ UserFocus = Attentive) then

   P(au’ = Greet) = 0.9
 else if (am = Greet ⋀ UserFocus = Distracted) then
   P(au’ = Greet) = 0.4

r1 au’

Greet  [P=0.75]
None  [P=0.25]

Rule instantiation

• The instantiation procedure is similar for 
utility rules, although one must employ 
utility and decision nodes:
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X

Y

Z

  

  if (X = ... ∨ Y ≠ ...) then

    Q(A1 = ... ∧ A2 = ...) = 3

rb: 

rb

A1

A2



Rule instantiation

23

 office     [P=0.95]
 kitchen  [P=0.05]

au

 AreYouIn(kitchen)     [P=0.7]
 AreYouIn(corridor)   [P=0.2]
 None                       [P=0.1]

location

am

r2

Q(am=SayYes) = 0.105
Q(am=SayNo) = 2.6

SayYes
SayNo

if (au = AreYouIn(x) ⇥ location = x) then

{Q(am = SayYes) = 3.0}
else if (au = AreYouIn(x) ⇥ location �= x) then

{Q(am = SayNo) = 3.0}

Example r2:

Rule instantiation
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if (au �= None) then

{Q(am = AskRepeat) = 0.5}

au

location

 AreYouIn(kitchen)     [P=0.7]
 AreYouIn(corridor)   [P=0.2]
 None                       [P=0.1]

 office     [P=0.95]
 kitchen  [P=0.05] am

r2

Q(am=SayYes) = 0.105
Q(am=SayNo) = 2.6
Q(am=AskRepeat)=0.45

SayYes
SayNo
AskRepeat

r3

Example r3:
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Parameter learning

• The rule parameters (probabilities or utilities) must be 
estimated from empirical data

• We adopted a Bayesian approach, where the parameters 
are themselves defined as variables

• The parameter distributions will then be modified given 
the evidence from the training data
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Evaluation

• Policy learning task in a human-robot interaction 
scenario, based on Wizard-of-Oz training data

• Objective: estimate the utilities of possible system actions

• Baselines: «rolled-out» versions of the model

• «plain» probabilistic models with identical input and output variables, but 
without the condition and effect nodes as intermediary structures
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Experimental setup

• Interaction scenario: users instructed to teach the robot a sequence of 
basic movements (e.g. a small dance)

• Dialogue system comprising ASR and TTS modules, shallow components 
for understanding and generation, and libraries for robot control

• The Wizard had access to the dialogue state and took decisions based 
on it (among a set of 14 alternatives)

• 20 interactions with 7 users, for a total of 1020 turns
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Each sample d in the data set is a pair (bd, td): 

• bd is a recorded dialogue state

• td is the «gold standard» system action 
selected by the Wizard at the state bd 



Empirical results

• Data set split into training (75%) and testing (25%)

• Accuracy measure: percentage of actions 
corresponding to the ones selected by the Wizard 

• But Wizard sometimes inconsistent / unpredictable

• The rule-structured model outperformed the two 
baselines in accuracy and convergence speed
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Type of model Accuracy (in %)

Plain model 67.35

Linear model 61.85

Rule-structured model 82.82

Learning curve (linear scale)
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Learning curve (log-2 scale)
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Conclusions

• Probabilistic rules used to capture 
the underlying structure of dialogue 
models

• Allow developers to exploit powerful 
generalisations and domain knowledge 

• ... without sacrificing the probabilistic 
nature of the model
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Current & future work

• Model-based reinforcement learning: instead of 
relying on annotated data, learn the parameters 
from (real or simulated) interactions

• Apply the probability and utility rules to perform 
online planning

• Perform joint optimisations of several dialogue 
models, all encoded with probabilistic rules

• Development of a software toolkit (openDial) and 
evaluation in a human-robot interaction domain
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Questions, comments?

• Still a work in 
progress - 
comments, 
suggestions are 
most welcome!
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