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Introduction

® Statistical models is getting increasingly
popular in spoken dialogue systems

Advantages Challenges

Explicit account of uncertainties, | Good domain data is scarce and
increased robustness to errors expensive to acquire!

Better domain- and user-adaptivity,| Scalability to complex domains
more natural and flexible (state space grows exponentially
conversational behaviours with the problem size)




UiO ¢ University of Oslo

Introduction

e Scalability remains a
challenge for many domains

® Examples: Human-robot
interaction, tutoring systemes,
cognitive assistants & companions

® Must model a rich, dynamic context
(users, tasks, situated environment)

® State more complex than a list of
slots to fill (rich relational structure)

UiO ¢ University of Oslo

Introduction




UiO ¢ University of Oslo

Outline

® (Generalities
® Probabilistic rules
® Parameter learning

® Conclusions

UiO ¢ University of Oslo

Outline

® Generalities



UiO ¢ University of Oslo

General architecture

® [nformation-state based approach to dialogue
management (and dialogue systems):

® The dialogue state represents all the information available to the
agent (and relevant for decision-making)

® Various processes are attached to this state and read/write to it

Speech Dialogue
understanding state

Speech TR
recognition synthesis
7
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General architecture

® How do we represent the dialogue state!

® Requirements:
® Must be able to factor the state into distinct variables
® The content of some variables might be uncertain

® Possible probabilistic dependencies between variables

\ 4

Dialogue state encoded as a Bayesian
Network (i.e.a directed graphical model)
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Research problem

® Dialogue management Complex modelling
is responsible for a problem (many
P ) interacting variables)

wide range of

processing operations: . _
Pervasive uncertainty

® interpretation of the user (ASR errors, ambiguity,
dialogue acts unpredictable user
behaviour)

® selection of the next system
action to perform

‘ Data for parameter

® prediction of the next steps estimation is scarce

in the interaction and domain-specific
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Research goal

® We would like to construct probabilistic
models of dialogue that:

® can operate on rich state representations
® can incorporate prior domain knowledge

® can be estimated from limited amounts of data

® This is basically the central question I'm
trying to address for my PhD
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Research goal

® Many approaches in A.l.and machine learning
have tried to tackle related problems

® Solutions typically involve the use of more
expressive representations (hierarchical or
relational abstractions)

® (Can yield more compact models that generalise better

I’'m developing such a formalism for dialogue
management: probabilistic rules
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Key idea

® Observation: dialogue models exhibit a
fair amount of internal structure:

® Probability and utility distributions can often be
factored

® Even if the full distribution has many dependencies,
the probability (or utility) of a specific outcome often
depends on a much smaller subset

® Finally, the values of the dependent variables can
often be grouped into partitions
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Example of partitioning

® Consider a dlalogug where the user as.ks a 2, location
robot yes/no questions about his location O Q

® The state contains the following variables :
® Last user dialogue act, e.g. a, = AreYouln(corridor) \ / dm
® The robot location, e.g. location = kitchen <>*_

® You want to learn the utility of a,, = SayYes

® The combination of the two variables can take many
values, but they can be partitioned in two sets:

ay = AreYouln(x) A location =x  ——— positive utility
ay = AreYouln(x) A location #x  ——» negative utility
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Outline

® Probabilistic rules
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Probabilistic rules

e Probabilistic rules attempt to capture
such kind of structure

® High-level templates for a classical graphical
model (in our case, a Bayesian Network)

® Advantages:

® (Exponentially) fewer parameters to estimate

® Easier to incorporate prior domain knowledge



UiO ¢ University of Oslo

Probabilistic rules

® The rules take the form of structured
if...then...else cases

® Mapping from conditions to (probabilistic)
effects:

if (condition; holds) then
P(effect:)= 01, P(effectz)= 62, ...

else if (condition2 holds) then
P(effects) = 03,
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Probabilistic rules

® Conditions are (arbitrarily complex) logical
formulae on state variables

® Effects are value assignments on state variables

® Effect probabilities are parameters that can be
estimated from data

Example:  if (am = AskRepeat) then
Pla,’ = ay) = 0.9
P(a,’ # a,) = 0.1
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Utility rules

® The formalism can also describe utility models

® In this case, the rule maps each condition to an
assignment of utility values for particular actions:

if (condition; holds) then
Q(actions1)= 01, Q(actions2)= 0, ...
else if (conditionz holds) then

Q(actionss) = 03,

else
Q(actions,) = 0, ...
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Rule instantiation

® How are the rules applied to the dialogue state!

® The rules are instantiated in the Bayesian Network,
expanding it with new nodes and dependencies

la.

if (X=...vY=..)then @\
PV=..AW=.)=0.6 ®/\@

(The ...dots in r| should be
replaced by concrete values)

20
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Rule instantiation

if (am = Greet A UserFocus = Attentive) then
Example . P(a,” = Greet) = 0.9
else if (an = Greet A UserFocus = Distracted) then
P(a,” = Greet) = 0.4

Greet [P=1.0]

‘

Attentive [P=0.7] —
Distracted [P=0.3] Greet [P=0.75]
None [P=0.25]
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Rule instantiation

® The instantiation procedure is similar for
utility rules, although one must employ
utility and decision nodes:

NN
if (X=..vY#..)then \/
QAI=..AA2=..)=3 @/ — A2

@
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Rule instantiation

if (a, = AreYouln(x) A location = x) then
Example r: {Q(am = SayYes) = 3.0}
else if (a, = AreYouln(x) A location # x) then
{Q(aym = SayNo) = 3.0}

Q(am=SayYes) = 0.105
Q(am=SayNo) = 2.6
office  [P=0.95] <‘> (@n=32yNo) =
3 SayYes
m SayNo

kitchen [P=0.05]
AreYouln(kitchen)  [P=0.7]
AreYouln(corridor) [P=0.2]
None [P=0.1]
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Rule instantiation

Example r3: if (a, # None) then
{Q(am = AskRepeat) = 0.5}

office  [P=0. 95] \ S
kitchen [P=0.05] dm SayNo
AskRepeat

AreYouIn(kltchen) [P=0.7]
AreYouln(corridor) [P=0.2]
None [P=0.1]

Q(am=SayYes) = 0.105
Q(am=SayNo) = 2.6
Q(am=AskRepeat)=0.45

24
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Outline

® Parameter learning
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Parameter learning

® The rule parameters (probabilities or utilities) must be
estimated from empirical data

® We adopted a Bayesian approach, where the parameters
are themselves defined as variables

® The parameter distributions will then be modified given
the evidence from the training data

O~ ™
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® Policy learning task in a human-robot interaction
scenario, based on Wizard-of-Oz training data

® Objective: estimate the utilities of possible system actions

® Baselines: «rolled-out» versions of the model

® «plainy probabilistic models with identical input and output variables, but
without the condition and effect nodes as intermediary structures
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Experimental setup

® |Interaction scenario: users instructed to teach the robot a sequence of
basic movements (e.g. a small dance)

® Dialogue system comprising ASR and TTS modules, shallow components
for understanding and generation, and libraries for robot control

® The Wizard had access to the dialogue state and took decisions based
on it (among a set of 14 alternatives)

® 20 interactions with 7 users, for a total of 1020 turns

Each sample d in the data set is a pair (bg, td):
* bqis a recorded dialogue state

* tq is the «gold standard» system action
selected by the Wizard at the state bq

28
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Empirical results

® Data set split into training (75%) and testing (25%)

® Accuracy measure: percentage of actions
corresponding to the ones selected by the Wizard

® ButWizard sometimes inconsistent / unpredictable

® The rule-structured model outperformed the two
baselines in accuracy and convergence speed

Type of model Accuracy (in %)
Plain model 67.35
Linear model 61.85
Rule-structured model 82.82

29
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Learning curve (linear scale)

100

75

50

25

<= Rule-structured model
< Linear model
0 Plain model

Accuracy on testing set (in %)

0 152 304 456 608 760

Number of training samples

30



UiO ¢ University of Oslo

Learning curve (log-2 scale)

100

<> Rule-structured model
O Linear model
0 Plain model

Accuracy on testing set (in %)

0 2 11 47 190 760

Number of training samples
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Outline

® Conclusions
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Conclusions

e Probabilistic rules used to capture

the underlying structure of dialogue
models

® Allow developers to exploit powerful
generalisations and domain knowledge

® .. without sacrificing the probabilistic
nature of the model

33
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Current & future work

® Model-based reinforcement learning: instead of
relying on annotated data, learn the parameters
from (real or simulated) interactions

® Apply the probability and utility rules to perform
online planning

® Perform joint optimisations of several dialogue
models, all encoded with probabilistic rules

® Development of a software toolkit (openDial) and
evaluation in 2 human-robot interaction domain

34
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Questions, comments?

§ 5
A ® Stj ‘
}f - 3 Still a work in
8 a progress -
& .
P & comments,
/ &L, suggestions are
most welcome!
& )
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