

#### **OpenSubtitles 2018:** Statistical Rescoring of Sentence Alignments in Large, Noisy Parallel Corpora

Pierre Lison

Norwegian Computing Center (NR) **Jörg Tiedemann** University

Milen Kouylekov University of Oslo

11th International Conference on Language Resources and Evaluation (LREC 2018)

of Helsinki

10/05/2018



#### Introduction

Movie and TV subtitles are a great resource for compiling parallel corpora:

- 1. Wide breadth of *linguistic genres*, from colloquial language to narrative and expository discourse.
- 2. Large databases with millions of subtitles available online, in a wide range of languages



 Tight coupling between subtitles and their "source material" (a movie or TV episode)



#### Introduction

- However, the quality of the subtitles is often uneven
  - Often created by movie and TV fans
  - Problems with linguistic fluency, faithfulness to the dialogues and adherence to formatting standards
  - Sentence alignments from subtitles are also often less literal than alignments from other parallel corpora
    - Not direct translations from one another
    - Larger degree of insertions and deletions



Can we automatically estimate *quality scores* for aligned sentence pairs?

#### Source data



- OpenSubtitles 2018:
  - ► 3.73 million subtitles in 60 languages
  - Total of 3.35 billion sentences (22 billion tokens)
  - Alignment at both document- and sentence-level for all language pairs (1782 bitexts), based on timestamps

#### Preprocessing:

- 1. Conversion to Unicode
- 2. Sentence segmentation
- 3. Tokenisation

- 4. OCR error correction
- 5. Inclusion of meta-data
- 6. Generation of XML files



The processed subtitles are then aligned with one another to create a collection of parallel corpora





= Subtitles for "Love actually" (2003), (using IMDB identifier)

The processed subtitles are then aligned with one another to create a collection of parallel corpora



Handcrafted scoring function to determine the best subtitle pairs (based on subtitle quality measures + time overlap between the two)



= Subtitles for "Love actually" (2003), (using IMDB identifier)

The processed subtitles are then aligned with one another to create a collection of parallel corpora



= Subtitles for "Love actually" (2003), (using IMDB identifier)

The processed subtitles are then aligned with one another to create a collection of parallel corpora



Intra-lingual alignments are also available (useful to search for e.g. paraphrases)



### Scoring model

- Goal: learn a regression model q(s<sub>s</sub>, s<sub>t</sub>) that assigns a numeric quality score to a sentence pair (s<sub>s</sub>, s<sub>t</sub>)
  - Quality score in the [0,1] range
- First step: create a dataset of sentence pairs associated with "gold standard" quality scores
- Second step: devise a set of (language-independent) features to be extracted from the sentence pairs
- Third step: learn a regression model based on these features and the training set



#### Measuring alignment quality

Key idea: use IBM Model 1 translation probabilities as a proxy for the alignment quality

Steps:

Compute lexical translation log-probabilities

$$\log P(s|t) = \alpha \sum_{j=1}^{l_s} \log \left( \sum_{i=0}^{l_t} t(s_j|t_i) \right) \qquad \log P(t|s) = \alpha \sum_{j=1}^{l_t} \log \left( \sum_{i=0}^{l_s} t(t_j|s_i) \right)$$

$$\operatorname{score}_{\operatorname{raw}}(s,t) = \min \left( \frac{\log P(t|s)}{l_s}, \frac{\log P(s|t)}{l_t} \right) \qquad \operatorname{Normalise for sentence length}$$

$$\operatorname{score}_{\operatorname{final}}(s,t) = \operatorname{scale}_{L_s,L_t} \left(\operatorname{score}_{\operatorname{raw}}(s,t)\right) \qquad \operatorname{Rescale per language pair (quantile transform)}$$

#### Features

| Sentence-level<br>features: | Ratio of sentence length (tokens or characters),<br>number of cognates in both source & target, overlap<br>in display times, similar punctuations, etc. |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subtitle-level<br>features: | Number of empty alignments, duration ratio, number of corrected or unknown words, etc.                                                                  |
| Meta-level<br>features:     | Source & target languages, movie or TV genres, MT translation, user ratings, etc.                                                                       |

- The features are rescaled for each language pair
- Surface features, w/o dependencies on specific resources or tools



#### **Regression model**

- 8.3 million sentence pairs extracted from the OpenSubtitles corpus, covering 760 distinct language pairs.
  - ► 0.24 % of the total number of sentences in the corpus.

#### Regression models:

- Lasso and ridge regression
- Gradient boosting trees
- Feedforward neural networks (1 or 2 hidden layers)
- Evaluation metrics: (root) mean-square error, and coefficient of determination R<sup>2</sup>



#### **Evaluation results**

| Model                                          | MSE   | RMSE  | $R^2$ |
|------------------------------------------------|-------|-------|-------|
| Baseline (predict mean)                        | 0.009 | 0.096 | 0.0   |
| Lasso regression ( $\alpha = 0.01$ )           | 0.008 | 0.092 | 0.091 |
| Lasso regression ( $\alpha = 0.001$ )          | 0.006 | 0.081 | 0.303 |
| Ridge regression ( $\alpha = 1$ )              | 0.006 | 0.077 | 0.356 |
| Gradient boosting<br>(10 regression trees)     | 0.007 | 0.085 | 0.224 |
| Feedforward NN<br>(one hidden layer, dim=100)  | 0.005 | 0.071 | 0.457 |
| Feedforward NN<br>(two hidden layers, dim=100) | 0.005 | 0.070 | 0.470 |



#### **Examples of low-quality alignments**

| Afrikaans:<br>Polish: | Kalmeer<br>Dlatego byłem w Wiedniu.        | [Calm down]<br>[That's why I was<br>in Vienna]      |
|-----------------------|--------------------------------------------|-----------------------------------------------------|
| Bosnian:<br>Danish:   | Tačno tako<br>Og du er tidligere straffet? | [Exactly]<br>[And you had previous<br>convictions?] |
| Greek:                | Θεέ μου                                    | [Oh my god]                                         |
| Portuguese:           | Residência Mainwaring.                     | [Mainwaring Residence.]                             |
| German                | (Mystische Musik)                          | [(Mystical music)]                                  |
| Turkish               | Lordum                                     | [My Lord]                                           |



#### **MT** experiments

|        | 2016  |       | 2018  |              | filtered |              |
|--------|-------|-------|-------|--------------|----------|--------------|
| system | subs  | news  | subs  | news         | subs     | news         |
| en-cs  | 28.36 | 12.02 | 28.76 | 12.94        | 28.35    | 12.05        |
| en-fi  | 23.51 | 11.00 | 24.00 | 11.13        | 24.12    | 11.49        |
| en-de  | 28.71 | 14.48 | 28.92 | <b>16.07</b> | 28.92    | 14.71        |
| en-ru  | 23.21 | 14.21 | 23.74 | 15.94        | 23.68    | 15.25        |
| en-tr  | 18.67 | 6.46  | 18.58 | 7.36         | 18.24    | 6.81         |
| cs-en  | 38.14 | 17.18 | 38.34 | 17.26        | 38.37    | 16.90        |
| fi-en  | 26.58 | 13.80 | 26.94 | 10.77        | 27.08    | 15.88        |
| de-en  | 33.02 | 18.88 | 33.40 | 19.16        | 33.01    | 19.24        |
| ru-en  | 30.52 | 18.40 | 30.15 | 17.67        | 30.58    | <b>18.71</b> |
| tr-en  | 25.84 | 10.34 | 25.64 | 10.79        | 25.32    | 10.65        |

- attentional seq2seq model based on Helsinki NMT
- ► BLEU scores on 2017 subtitles and test data from WMT 2017.

## Conclusion

- New major release of the OpenSubtitles corpus of movie and TV subtitles
  - 30% increase compared to previous release
  - ► 3.4 billion sentences, 22.2 billion tokens in 60 languages
- Quality scoring model for aligned sentences
  - Combination of sentence-level and global features
  - Can be used to filter out (or assign a lower weight) to sentence pairs with score below a given threshold

# Corpus available on OPUS: <a href="http://opus.nlpl.eu/OpenSubtitles2018.php">http://opus.nlpl.eu/OpenSubtitles2018.php</a>

