
Towards Dialogue Management
in Relational Domains

Pierre Lison,
Language Technology Group (LTG)

Department of Informatics

Workshop on Action, Perception & Language (APL)
October 25 2012

Task One single task:
filling the predefined slots

Context None (or very limited):
no external context to capture

User model None (or very limited):
different user for each interaction

Introduction

• Slot-filling applications are still often considered
as «prototypical» domains for dialogue systems

• Their representation of the dialogue state is
based on particular modelling assumptions:

2

Introduction

• But these modelling assumptions do not hold for
many other domains - especially situated domains

• Ex: human-robot interaction, cognitive assistants &
companions, tutoring systems, etc.

3

Task One single task: filling the
predefined slots

Varying number of
interconnected tasks

Context
None (or very limited):
no external context to

capture

Rich, dynamic, often
situated environment

User model
None (or very limited):
different user for each

interaction

longer interactions →
complex user modelling

Introduction

• These situated domains have a rich internal
structure

• This structure is often best described in terms
of entities and relations between entities:

• Physical objects spatially connected in a visual scene

• Indoor environments with places in which to navigate

• Stacks of (interconnected) tasks to complete

4

Dialogue state expressed as a
relational structure

The problem

• Starting point: we wish to encode the
dialogue state as a relational structure

• Problem 1: how to represent this dialogue
state in practice, without giving up the
probabilistic modelling?

• Problem 2: how do we build dialogue models
(for interpretation & action selection) that can
operate on such state representation?

5

Problem 1: dialogue state

• Problem 1: We need a representation of the
dialogue state that is able to:

• capture the domain’s relational structure of the domain

• account for the pervasive uncertainty in spoken dialogue,
especially in situated domains

• We encode our dialogue state as a Bayesian
Network (i.e. a directed graphical model)

• The variables of this network are grounded
predicates and functions

6

Problem 1: dialogue state

7

o1 (the mug)

o2 (the table)

ObjType(o1)

ObjType(o2)

On(o1,o2)Colour(o1)

Colour(o2)

Assume we want to encode
in our dialogue state the
type & colour of these two
objects, as well as their
relative spatial position

• The variable labels are ground
predicates or functions

• Each variable is associated
with a probability distribution
defining its possible values

ObjType(o2)= Prob

Table 0.8

Sofa 0.1

Unknown 0.1

• The variable values might
depend on each other
(conditional dependencies)

Problem 1: dialogue state

• Information-state architecture: the state acts as a blackboard
read and written by the various processing components

8

ASR

NLU
DM

NLG

TTS
Dialogue

state

[S. Larsson and D. R. Traum (2000),
«Information state and dialogue management
in the TRINDI dialogue move engine toolkit»

in Natural Language Engineering]

Extra-linguistic modules

Problem 2: dialogue models

• Problem 2: how do we build practical
dialogue models defined on the dialogue
state representation we just presented?

• For dialogue interpretation, action selection, etc.

• What we want:

• Probabilistic models of dialogue processing

• ... that have parameters that can be estimated from data

• ... and take advantage of the domain’s internal structure

9

Problem 2: our solution

• Proposed solution: encode the dialogue
models via expressive probabilistic rules with
a limited form of quantification

10

Approach grounded in
probabilistic modelling:

• principled account of
uncertainties

• parameters can be
estimated from data

... but also employing expressive
rules that can compactly capture

• high-level generalisations

• prior domain knowledge

... and that can range over
arbitrary sets of entities

Probabilistic rules

• Probabilistic rules take the form of structured
if...then...else cases

• Mapping from conditions to (probabilistic) effects:

11

 if (condition1 holds) then
 P(effect1)= θ1, P(effect2)= θ2, ...
 else if (condition2 holds) then
 P(effect3) = θ3, ...
 ...
 else
 P(effectn) = θn, ...

Probabilistic rules

• Conditions are (arbitrarily complex) logical
formulae on state variables

• Effects are value assignments on state variables

• Effect probabilities are parameters that can be
estimated from data

12

 if (am = AskRepeat) then
 P(au’ = au) = 0.9
 P(au’ ≠ au) = 0.1

Example:

Utility rules

• The formalism can also describe utility models

• In this case, the rule maps each condition to an
assignment of utility values for particular actions:

13

 if (condition1 holds) then
 Q(actions1)= θ1, Q(actions2)= θ2, ...
 else if (condition2 holds) then
 Q(actions3) = θ3, ...
 ...
 else
 Q(actionsn) = θn, ...

Rule instantiation

• How are the rules applied to the dialogue state?

• The rules are instantiated in the Bayesian Network,
expanding it with new nodes and dependencies

14

r1

X

Y

Z

V’

W’

 if (X = ... ∨ Y ≠ ...) then

 P(V = ... ∧ W = ...) = 0.6

r1:

(The ... dots in r1 should be
replaced by concrete values)

Rule instantiation

• The instantiation procedure is similar for
utility rules, although one must employ
utility and decision nodes:

15

X

Y

Z

 if (X = ... ∨ Y ≠ ...) then

 Q(A1 = ... ∧ A2 = ...) = 3

r2:

r2

A1

A2

Quantification mechanism

• If our domain has a relational structure, the rules must
be able to abstract over its entities

• To this end, we propose to extend probabilistic rules
with a limited form of universal quantification:

16

 ∀ x = x1,...xk:
 if (condition1(x) holds) then
 P(effect1(x))= θ1, P(effect2(x))= θ2, ...
 else if (condition2(x) holds) then
 P(effect3(x)) = θ3, ...
 ...

 else
 P(effectn(x) = θn, ...

Quantification mechanism

• The quantification allows certain variables
x1, ...xk to be underspecified.

• The rule will be instantiated for every possible
assignment of the underspecified variables.

17

Example:

The rule will be instantiated for every possible
object o and colour c matching the condition

Quantification mechanism

• Why is this quantification mechanism
useful?

• Because it allows the system designer to exploit high-
level abstractions to encode his domain knowledge

• Because it is a powerful form of parameter sharing,
which reduces the number of parameters to
estimate... and thereby enables learning algorithms to
generalise better and with fewer data

18

Quantification mechanism

• ... but several questions remain to be
addressed (work in progress!)

• Main question: how to keep the
formalism tractable?

• If some variables are underspecified, the algorithm
must instantiate the rules for every assignment

• Need to devise agressive pruning techniques to
quickly discard irrelevant instantiations

19

Future evaluation

• The presented framework is being implemented
in a dialogue system toolkit called openDial

• Evaluation in a human-robot interaction scenario

20

Conclusion & future work

• We have presented here a simple
quantification mechanism to augment the
expressivity of probabilistic rules

• Such mechanism would enable the rules
to directly operate on dialogue states
represented as relational structures

• Ongoing work on implementation and
evaluation

21

