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Task One single task: 
filling the predefined slots

Context None (or very limited): 
no external context to capture

User model None (or very limited): 
different user for each interaction

Introduction

• Slot-filling applications are still often considered 
as «prototypical» domains for dialogue systems

• Their representation of the dialogue state is 
based on particular modelling assumptions:
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Introduction

• But these modelling assumptions do not hold for 
many other domains - especially situated domains

• Ex: human-robot interaction, cognitive assistants & 
companions, tutoring systems, etc.
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Task One single task: filling the 
predefined slots

Varying number of 
interconnected tasks

Context
None (or very limited): 
no external context to 

capture

Rich, dynamic, often   
situated environment

User model
None (or very limited): 
different user for each 

interaction

longer interactions → 
complex user modelling 



Introduction

• These situated domains have a rich internal 
structure

• This structure is often best described in terms 
of entities and relations between entities:

• Physical objects spatially connected in a visual scene

• Indoor environments with places in which to navigate

• Stacks of (interconnected) tasks to complete 
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Dialogue state expressed as a 
relational structure



The problem

• Starting point: we wish to encode the 
dialogue state as a relational structure

• Problem 1: how to represent this dialogue 
state in practice, without giving up the 
probabilistic modelling? 

• Problem 2: how do we build dialogue models 
(for interpretation & action selection) that can 
operate on such state representation?

5



Problem 1: dialogue state

• Problem 1: We need a representation of the 
dialogue state that is able to:

• capture the domain’s relational structure of the domain

• account for the pervasive uncertainty in spoken dialogue, 
especially in situated domains

• We encode our dialogue state as a Bayesian 
Network (i.e. a directed graphical model)

• The variables of this network are grounded 
predicates and functions 
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Problem 1: dialogue state
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o1 (the mug)

o2 (the table)

ObjType(o1)

ObjType(o2)

On(o1,o2)Colour(o1)

Colour(o2)

Assume we want to encode 
in our dialogue state the 
type & colour of these two 
objects, as well as their 
relative spatial position

• The variable labels are ground 
predicates or functions

• Each variable is associated 
with a probability distribution 
defining its possible values

ObjType(o2)= Prob

Table 0.8

Sofa 0.1

Unknown 0.1

• The variable values might 
depend on each other 
(conditional dependencies)



Problem 1: dialogue state

• Information-state architecture: the state acts as a blackboard 
read and written by the various processing components
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ASR

NLU
DM

NLG

TTS
Dialogue 

state

[S. Larsson and D. R. Traum (2000), 
«Information state and dialogue management 
in the TRINDI dialogue move engine toolkit» 

in Natural Language Engineering]

Extra-linguistic modules



Problem 2: dialogue models

• Problem 2: how do we build practical 
dialogue models defined on the dialogue 
state representation we just presented?

• For dialogue interpretation, action selection, etc.

• What we want:

• Probabilistic models of dialogue processing

• ... that have parameters that can be estimated from data

• ... and take advantage of the domain’s internal structure
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Problem 2: our solution

• Proposed solution: encode the dialogue 
models via expressive probabilistic rules with 
a limited form of quantification
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Approach grounded in 
probabilistic modelling:

• principled account of 
uncertainties

• parameters can be 
estimated from data

... but also employing expressive 
rules that can compactly capture 

• high-level generalisations

• prior domain knowledge

... and that can range over 
arbitrary sets of entities



Probabilistic rules

• Probabilistic rules take the form of structured 
if...then...else cases

• Mapping from conditions to (probabilistic) effects:
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  if (condition1 holds) then
 P(effect1)= θ1,  P(effect2)= θ2,  ...
  else if (condition2 holds) then
 P(effect3) = θ3, ...
  ...
 else
    P(effectn) = θn,  ...



Probabilistic rules

• Conditions are (arbitrarily complex) logical 
formulae on state variables

• Effects are value assignments on state variables

• Effect probabilities are parameters that can be 
estimated from data
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 if (am = AskRepeat) then
   P(au’ = au) = 0.9
   P(au’ ≠ au) = 0.1

Example: 



Utility rules

• The formalism can also describe utility models

• In this case, the rule maps each condition to an 
assignment of utility values for particular actions:
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  if (condition1 holds) then
 Q(actions1)= θ1,  Q(actions2)= θ2,  ...
  else if (condition2 holds) then
 Q(actions3) = θ3,  ...
  ...
 else
    Q(actionsn) = θn,  ...



Rule instantiation

• How are the rules applied to the dialogue state?

• The rules are instantiated in the Bayesian Network, 
expanding it with new nodes and dependencies
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r1

X

Y

Z

V’

W’

  

  if (X = ... ∨ Y ≠ ...) then

    P(V = ... ∧ W = ...) = 0.6

r1: 

(The ... dots in r1 should be 
replaced by concrete values)



Rule instantiation

• The instantiation procedure is similar for 
utility rules, although one must employ 
utility and decision nodes:
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X

Y

Z

  

  if (X = ... ∨ Y ≠ ...) then

    Q(A1 = ... ∧ A2 = ...) = 3

r2: 

r2

A1

A2



Quantification mechanism

• If our domain has a relational structure, the rules must 
be able to abstract over its entities

• To this end, we propose to extend probabilistic rules 
with a limited form of universal quantification:
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  ∀ x = x1,...xk:
       if (condition1(x) holds) then
      P(effect1(x))= θ1,  P(effect2(x))= θ2,  ...
       else if (condition2(x) holds) then
      P(effect3(x)) = θ3,  ...
          ...

      else
         P(effectn(x) = θn, ...



Quantification mechanism

• The quantification allows certain variables 
x1, ...xk to be underspecified. 

• The rule will be instantiated for every possible 
assignment of the underspecified variables.
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Example:

The rule will be instantiated for every possible 
object o and colour c matching the condition



Quantification mechanism

• Why is this quantification mechanism 
useful?

• Because it allows the system designer to exploit high-
level abstractions to encode his domain knowledge

• Because it is a powerful form of parameter sharing, 
which reduces the number of parameters to 
estimate... and thereby enables learning algorithms to 
generalise better and with fewer data
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Quantification mechanism

• ... but several questions remain to be 
addressed (work in progress!)

• Main question: how to keep the 
formalism tractable?  

• If some variables are underspecified, the algorithm 
must instantiate the rules for every assignment

• Need to devise agressive pruning techniques to 
quickly discard irrelevant instantiations
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Future evaluation

• The presented framework is being implemented 
in a dialogue system toolkit called openDial

• Evaluation in a human-robot interaction scenario
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Conclusion & future work

• We have presented here a simple 
quantification mechanism to augment the 
expressivity of probabilistic rules

• Such mechanism would enable the rules 
to directly operate on dialogue states 
represented as relational structures

• Ongoing work on implementation and 
evaluation
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