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Introduction

!2

► Blacklists and whitelists (= reputation lists) often 
employed to filter network traffic 

► Manually curated by security experts
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► Shortcomings of blacklists and whitelists: 
▪ Slow reaction time 
▪ Maintenance is difficult and time-consuming 
▪ Limited coverage 
▪ Static (can be circumvented through techniques such 

domain flux and fast flux networks)
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Can we use machine learning to automatically 
predict the reputation of end-point hosts?

1. Predictions in real-time, without human intervention

2. Less vulnerable to human errors and omissions

3. Full coverage of end-point hosts
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Can we use machine learning to automatically 
predict the reputation of end-point hosts?

Detecting domain 
names generated by 
malware with RNNs 

Predicting the reputation of 
domains and IP addresses 
from passive DNS data
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Attacker

5.35.225.127
C2 server

Static domains or IP 
addresses can be used…  
… but are easy to block 
(with e.g. blacklists)
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Domain-generating algorithms (DGAs)
► Very popular rendez-vous mechanism 

► First observed in the Kraken botnet (2008)

► DGAs generate a large number of seemingly random 
domain names based on a shared secret (seed) 

► Various generation procedures (hash-based 
techniques, permutations, wordlists, etc.)  

► Static or time-dependent? Deterministic or stochastic?

► Highly asymmetric situation between malicious actors 
and security professionals
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Detection of DGAs
► Recurrent neural network trained on a large dataset of 

benign & malicious domains 
▪ Ability to learn complex sequential patterns 

► Purely data-driven – easy to apply and update
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Domain name is 
fed to the neural 
network character 
by character

First layer encode 
each character as a 
"one-hot" vector

Recurrent layer builds up a 
representation of the character 
sequence as a dense vector

Final vector is 
used to predict 
whether the 
domain is DGA



Data
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► Negative examples (benign domains): 
▪ Snapshots from the Alexa top 1 million domains 
▪ Total: over 4 million domains 

► Positive examples (malware DGAs) 
▪ DGArchive (63 types of malware) 
▪ Feeds from Bambenek Consulting 
▪ Domain generators for 11 DGAs 
▪ Total: 2.9 million domains



Results
► Detection 

► Classification
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[Lison, P., & Mavroeidis, V. (2017). Automatic Detection 
of Malware-Generated Domains with Recurrent Neural 

Models. In Proceedings of NISK 2017.]
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from passive DNS data
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Passive DNS
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► Passive DNS data very useful for threat intelligence: 

► Inter-server DNS messages captured by sensors 

► Less privacy concerns (not tied to personal information) 

► We used a dataset of 720 million 
aggregated DNS queries 

► Covers a period of 4 years 

► Courtesy of Mnemonic AS 
[www.mnemonic.no]

http://www.mnemonic.no


Data
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We enriched the passive DNS data with: 
► Reputation labels from existing blacklists and whitelists 
► IP location(geoname identifiers) and ISP data

Labelled dataset of 720 million records  
(102 M records labelled as benign, 8.2 M records 
as malicious and 614 K records as sinkhole)



Features
► Numerical features derived from the records: 
▪ Lifespan, number of queries (for record, domain or IP), 

number of distinct countries or ISP, TTL values, etc. 

► Categorical features: 
▪ ISP, geolocation, top-level domain, etc. 

► Ranking features from Alexa 

► Features extracted from graph inference 
▪ Number of records at distance n and of reputation X 

► Sequence of characters from the domain
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Neural model
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Benign Malicious

Model   P R P R Accuracy

Results
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ROC curve
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Logistic regression

Neural 
net

[Lison, P. & Mavroeidis, V. (2017), Neural Reputation Models 
learned from Passive DNS Data. In IEEE Big Data 2017]




Conclusion
► Neural networks can be successfully used to predict the 

reputation of end-point hosts 
▪ Detection of DGA from the domain names 
▪ Detection of malicious records from passive DNS
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► Can be integrated in software tools 
for cyber-threat intelligence 

► Future work: 
▪ Integration of unstructured data 

sources (i.e. textual data)?


