

Data-driven models of reputation in cyber-security

Pierre Lison Norwegian Computing Center (NR)

Tekna seminar, *Digital trussel-etterretning med AI*

05/02/2019

- Blacklists and whitelists (= reputation lists) often employed to filter network traffic
- Manually curated by security experts

Shortcomings of blacklists and whitelists:

- Slow reaction time
- Maintenance is difficult and time-consuming
- Limited coverage
- Static (can be circumvented through techniques such domain flux and fast flux networks)

Can we use **machine learning** to automatically predict the reputation of end-point hosts?

Can we use **machine learning** to automatically predict the reputation of end-point hosts?

Predictions in real-time, without human intervention
Less vulnerable to human errors and omissions
Full coverage of end-point hosts

Can we use **machine learning** to automatically predict the reputation of end-point hosts?

Detecting domain names generated by malware with RNNs

Predicting the reputation of domains and IP addresses from passive DNS data

Part 1: Detecting domain names generated by malware

Most malware must connect compromised machines with a command and control (C2) server for their operations

Most malware must connect compromised machines with a command and control (C2) server for their operations

With domain-generation algorithms (DGA), compromised machines will attempt to connect to a large number of pseudo-random domain names...

With domain-generation algorithms (DGA), compromised machines will attempt to connect to a large number of pseudo-random domain names...

- With domain-generation algorithms (DGA), compromised machines will attempt to connect to a large number of pseudo-random domain names...
- The attacker can then simply register a few of these artificial domains to establish a rendez-vous point

• • •

- With domain-generation algorithms (DGA), compromised machines will attempt to connect to a large number of pseudo-random domain names...
- The attacker can then simply register a few of these artificial domains to establish a rendez-vous point

...

Domain-generating algorithms (DGAs)

- Very popular rendez-vous mechanism
 - ► First observed in the Kraken botnet (2008)

Domain-generating algorithms (DGAs)

- Very popular rendez-vous mechanism
 - ► First observed in the Kraken botnet (2008)
- DGAs generate a large number of seemingly random domain names based on a shared secret (seed)
 - Various generation procedures (hash-based techniques, permutations, wordlists, etc.)
 - Static or time-dependent? Deterministic or stochastic?

Domain-generating algorithms (DGAs)

- Very popular rendez-vous mechanism
 - ► First observed in the Kraken botnet (2008)
- DGAs generate a large number of seemingly random domain names based on a shared secret (seed)
 - Various generation procedures (hash-based techniques, permutations, wordlists, etc.)
 - Static or time-dependent? Deterministic or stochastic?
- Highly asymmetric situation between malicious actors and security professionals

Detection of DGAs

- Recurrent neural network trained on a large dataset of benign & malicious domains
 - Ability to learn complex sequential patterns
- Purely data-driven easy to apply and update

network character

by character

Recurrent layer builds up a representation of the character sequence as a dense vector

С

0

m

Recurrent layer (LSTM or GRU)

One-hot layer

Input layer (characters)

t

0

First layer encode each character as a "one-hot" vector Domain name is fed to the neural network character by character

g

U

S

Output (probability of being generated by malware)

Recurrent layer builds up a representation of the character sequence as a dense vector

Recurrent layer (LSTM or GRU)

One-hot layer

Input layer (characters)

First layer encode each character as a "one-hot" vector

t o y v s g u . c o m

Domain name is fed to the neural network character by character

Final vector is used to predict whether the domain is DGA

Output

of being

generated

by malware)

(probability

Data

- Negative examples (benign domains):
 - Snapshots from the Alexa top 1 million domains
 - Total: over 4 million domains
- Positive examples (malware DGAs)
 - DGArchive (63 types of malware)
 - Feeds from Bambenek Consulting
 - Domain generators for 11 DGAs
 - Total: 2.9 million domains

Results

[Lison, P., & Mavroeidis, V. (2017). Automatic Detection of Malware-Generated Domains with Recurrent Neural Models. In *Proceedings of NISK 2017*.]

Detection

	Accuracy	Precision	Recall
Bigram	0.915	0.927	0.882
Neural model	0.973	0.972	0.970

Classification

	Accuracy	Precision	Recall
Bigram	0.800	0.787	0.800
Neural model	0.892	0.891	0.892

Part 2: Predicting the reputation from passive DNS data

Passive DNS

- Passive DNS data very useful for threat intelligence:
 - Inter-server DNS messages captured by sensors
 - Less privacy concerns (not tied to personal information)
- We used a dataset of 720 million aggregated DNS queries
 - Covers a period of 4 years
 - Courtesy of Mnemonic AS [www.mnemonic.no]

Labelled dataset of **720 million** records (**102 M** records labelled as benign, **8.2 M** records as malicious and **614 K** records as sinkhole)

Data

We enriched the passive DNS data with:

- Reputation labels from existing blacklists and whitelists
- IP location(geoname identifiers) and ISP data

Features

- Numerical features derived from the records:
 - Lifespan, number of queries (for record, domain or IP), number of distinct countries or ISP, TTL values, etc.
- Categorical features:
 - ISP, geolocation, top-level domain, etc.
- Ranking features from Alexa
- Features extracted from graph inference
 - Number of records at distance n and of reputation X
- Sequence of characters from the domain

Neural model

Results	Benign		Malicious		
Model	Р	R	Р	R	Accuracy
nb_domain_queries < 10	0.98	0.44	0.10	0.87	0.54
Logistic regression	0.97	0.97	0.60	0.65	0.944
Neural net (with 1 hidden layer)	0.99	0.99	0.93	0.93	0.990
Neural net (with 2 hidden layers)	1.00	0.99	0.92	0.95	0.990
Neural net (with 3 hidden layers and two passes)	1.00	1.00	0.97	0.96	0.995

ROC curve

[Lison, P. & Mavroeidis, V. (2017), Neural Reputation Models learned from Passive DNS Data. In *IEEE Big Data 2017*]

Conclusion

- Neural networks can be successfully used to predict the reputation of end-point hosts
 - Detection of DGA from the domain names
 - Detection of malicious records from passive DNS
- Can be integrated in software tools for cyber-threat intelligence
- Future work:
 - Integration of unstructured data sources (i.e. textual data)?

