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Advantages
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Challenges

Good domain data is scarce and  
expensive to acquire!

Scalability to complex domains 
(state space grows exponentially 

with the problem size)



Introduction (2)

• Well-known problem in A.I. and machine learning

• Solutions typically involve the use of more expressive 
representations

• Capturing relevant aspects of the problem structure

• Taking advantage of hierarchical or relational abstractions

• We present here such an abstraction mechanism, 
based on the concept of probabilistic rule

• Goal: leverage our prior domain knowledge to yield 
structured, compact probabilistic models
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Key idea

• Observation: dialogue models exhibit a fair 
amount of internal structure:

• Probability (or utility) distributions can often be factored

• Even if the full distribution has many dependencies, the 
probability (or utility) of a specific outcome often 
depends on only a small subset of variables

• Finally, the values of the dependent variables can often 
be grouped into partitions
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Example of partitioning

• Consider a dialogue where the user asks a 
robot yes/no questions about his location

• The state contains the following variables :

• Last user dialogue act, e.g. 

• The robot location, e.g.

• You want to learn the utility of
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au location

amau = AreYouIn(corridor)

location = kitchen

am = SayYes

positive utility
negative utility

• The combination of the two variables can take many 
values, but they can be partitioned in two sets:

au = AreYouIn(x) ∧ location = x

au = AreYouIn(x) ∧ location �= x



Probabilistic rules

• Probabilistic rules attempt to capture such kind of structure

• They take the form of structured if...then...else cases, 
mappings from conditions to (probabilistic) effects:

• For action-selection rules, the effect associates utilities to 
particular actions:
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  if (condition1 holds) then
 P(effect1)= θ1,  P(effect2)= θ2

  else if (condition2 holds) then
 P(effect3) = θ3

  

  if (condition1 holds) then
 Q(actions)= θ1



Probabilistic rules (2)

• Conditions are arbitrary logical formulae on state variables

• Effects are value assignments on state variables

• Example of rule for action selection:

• Effect probabilities and utilities are parameters which can 
be estimated from data
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if (au = AreYouIn(x) ∧ location = x) then

{Q(am = SayYes) = 3.0}
else if (au = AreYouIn(x) ∧ location �= x) then

{Q(am = SayNo) = 3.0}



Rule-based state update

• How are these rules applied in practice?

• The architecture revolves around a shared 
dialogue state, represented as a Bayesian 
network

• At runtime, the rules are instantiated in the 
network, updating and expanding it with new 
nodes and dependencies

• The rules thus function as high-level templates 
for a classical probabilistic model
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au

location

 AreYouIn(kitchen)     [P=0.7]
 AreYouIn(corridor)   [P=0.2]
 None                       [P=0.1]

 office     [P=0.95]
 kitchen  [P=0.05]

ϕ1 ψ1

ϕ2

am

Q(am=SayYes) = 0.105
Q(am=SayNo) = 2.6
Q(am=AskRepeat)=0.45

ψ2

Rule 2: if (au �= None) then

{Q(am = AskRepeat) = 0.5}



Processing workflow

• The dialogue state, encoded as a Bayesian Network, is 
the central, shared information repository

• Each processing task (understanding, management, 
generation, etc.) read and write to it

• Many of these tasks are expressed in terms of 
collections of probabilistic rules
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Parameter learning

• The rule parameters (probabilities or utilities) must be 
estimated from empirical data

• We adopted a Bayesian approach, where the parameters 
are themselves defined as variables

• The parameter distributions will then be modified given 
the evidence from the training data
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Evaluation

• Policy learning task in a human-robot interaction 
scenario, based on Wizard-of-Oz training data

• Objective: estimate the utilities of possible system actions

• Baselines: «rolled-out» versions of the model

• «plain» probabilistic models with identical input and output variables, but 
without the condition and effect nodes as intermediary structures
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Experimental setup

• Interaction scenario: users instructed to teach the robot a sequence of 
basic movements (e.g. a small dance)

• Dialogue system comprising ASR and TTS modules, shallow components 
for understanding and generation, and libraries for robot control

• The Wizard had access to the dialogue state and took decisions based 
on it (among a set of 14 alternatives)

• 20 interactions with 7 users, for a total of 1020 turns
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Each sample d in the data set is a pair (bd, td): 

• bd is a recorded dialogue state

• td is the «gold standard» system action 
selected by the Wizard at the state bd 



Empirical results

• Data set split into training (75%) and testing (25%)

• Accuracy measure: percentage of actions 
corresponding to the ones selected by the Wizard 

• But Wizard sometimes inconsistent / unpredictable

• The rule-structured model outperformed the two 
baselines in accuracy and convergence speed
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Type of model Accuracy (in %)

Plain model 67.35

Linear model 61.85

Rule-structured model 82.82



Learning curve (linear scale)
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Learning curve (log-2 scale)
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Conclusions

• Probabilistic rules used to capture the 
underlying structure of dialogue models

• Allow developers to exploit powerful 
generalisations and domain knowledge without 
sacrificing the probabilistic nature of the model

• Framework validated on a policy learning task 
based on a Wizard-of-Oz dataset 

• Future work: extend the approach towards 
model-based Bayesian reinforcement learning

18


