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popular in spoken dialogue systems

® But scalability remains a challenge for many domains
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Introduction

® The use of statistical models is getting increasingly
popular in spoken dialogue systems

® But scalability remains a challenge for many domains

Advantages Challenges
Explicit account of uncertainties, Good domain data is scarce and
increased robustness to errors expensive to acquire!
Better domain- and user-adaptivity, Scalability to complex domains
more natural and flexible (state space grows exponentially
conversational behaviours with the problem size)
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Introduction (2)

® Well-known problem in A.l. and machine learning

® Solutions typically involve the use of more expressive
representations

® Capturing relevant aspects of the problem structure

® Taking advantage of hierarchical or relational abstractions

® We present here such an abstraction mechanism,
based on the concept of probabilistic rule

® Goal: leverage our prior domain knowledge to yield
structured, compact probabilistic models
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Key idea

® Observation: dialogue models exhibit a fair
amount of internal structure:

® Probability (or utility) distributions can often be factored

® Even if the full distribution has many dependencies, the
probability (or utility) of a specific outcome often
depends on only a small subset of variables

® Finally, the values of the dependent variables can often
be grouped into partitions
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Example of partitioning

® Consider a dialogue where the user asks a
robot yes/no questions about his location

Au location
® The state contains the following variables :
® Last user dialogue act, e.g. a, = AreYouln(corridor) \ / dm
® The robot location, e.g. location = kitchen

® You want to learn the utility of a,, = SayYes
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Example of partitioning

® Consider a dlalogu.e where the user as.ks a 2. location
robot yes/no questions about his location Q O

® The state contains the following variables : \ /

® Last user dialogue act, e.g. a, = AreYouln(corridor)

® The robot location, e.g. location = kitchen Q ‘

® You want to learn the utility of a,, = SayYes

® The combination of the two variables can take many
values, but they can be partitioned in two sets:

ay = AreYouln(x) A location =x  ——— positive utility

ay = AreYouln(x) A location # x  —— negative utility
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Probabilistic rules

® Probabilistic rules attempt to capture such kind of structure

® They take the form of structured if...then...else cases,
mappings from conditions to (probabilistic) effects:

if (condition; holds) then
P(effect1)= 61, P(effect2)= 02

else if (condition2 holds) then
P(effects) = O3

® [or action-selection rules, the effect associates utilities to
particular actions:

if (condition; holds) then
Q(actions)= 01
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Probabilistic rules (2)

ﬁbccc*

® (onditions are arbitrary logical formulae on state variables

® [ffects are value assighments on state variables

® Example of rule for action selection:

if (a, = AreYouln(x) A location = x) then
{Q(am = SayYes) = 3.0}

else if (a, = AreYouln(x) A location # x) then
{Q(am = SayNo) = 3.0}

e Effect probabilities and utilities are parameters which can
be estimated from data
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Rule-based state update

® How are these rules applied in practice!?

® [he architecture revolves around a shared
dialogue state, represented as a Bayesian
network

® At runtime, the rules are instantiated in the
network, updating and expanding it with new
nodes and dependencies

® The rules thus function as high-level templates
for a classical probabilistic model



UiO ¢ University of Oslo




UiO ¢ University of Oslo

location

O

office  [P=0.95]
kitchen [P=0.05]

du

O

AreYouln(kitchen)  [P=0.7]
AreYouln(corridor) [P=0.2]
None [P=0.1]
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location

O

office  [P=0.95]
kitchen [P=0.05]

du

O

AreYouln(kitchen)  [P=0.7]
AreYouln(corridor) [P=0.2]
None [P=0.1]

if (a, = AreYouln(x) A location = x) then
{Q(ayn = SayYes) = 3.0}

else if (a, = AreYouln(x) A location # x) then
{Q(am = SayNo) = 3.0}
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if (a, = AreYouln(x) A location = x) then
{Q(am = SayYes) = 3.0}

else if (a, = AreYouln(x) A location # x) then

location {Q(am = SayNo) = 3.0}

office  [P=0.95]
kitchen [P=0.05]

cond; [P=0.035]
du cond; [P=0.865]

Q conds [P=0.1]

AreYouln(kitchen)  [P=0.7]
AreYouln(corridor) [P=0.2]
None [P=0.1]
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if (a, = AreYouln(x) A location = x) then
{Q(ayn = SayYes) = 3.0}

else if (a, = AreYouln(x) A location # x) then

location {Q(am = SayNo) = 3.0}

Q T~ Q(am=SayYes) = 0.105

office  [P=0.95] > <|)> Q(am=SayNo) = 2.6
kitchen [P=0.05] \
cond,; [P=0.035]

du cond; [P=0.865]

Q conds [P=0.1]

AreYouln(kitchen)  [P=0.7]
AreYouln(corridor) [P=0.2]
None [P=0.1]

dm
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location

office  [P=0.95] )@
kitchen [P=0.05] \
dy dm

O

AreYouln(kitchen)  [P=0.7]
AreYouln(corridor) [P=0.2]
None [P=0.1]

|0
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Rule 2: if (a, # None) then
{Q(am = AskRepeat) = 0.5}

location

office  [P=0.95] > @
kitchen [P=0.05] \
dy dm

O

AreYouln(kitchen)  [P=0.7]
AreYouln(corridor) [P=0.2]
None [P=0.1]

|0
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Rule 2: if (a, # None) then
{Q(am = AskRepeat) = 0.5}

location

office  [P=0.95] > @
kitchen [P=0.05] \

du
(O—()

AreYouln(kitchen)  [P=0.7]
AreYouln(corridor) [P=0.2]

None [P=0.1] .
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Rule 2: if (a, # None) then
{Q(am = AskRepeat) = 0.5}

location

Q Q(am=SayYes) = 0.105
\

Q(am=SayNo) = 2.6
office  [P=0.95] > @ Q(am=AskRepeat)=0.45
kitchen [P=0.05] \

au / am
O—®—

AreYouln(kitchen)  [P=0.7]
AreYouln(corridor) [P=0.2]
None [P=0.1]

|0
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Processing workflow

® The dialogue state, encoded as a Bayesian Network, is
the central, shared information repository

® FEach processing task (understanding, management,
generation, etc.) read and write to it

® Many of these tasks are expressed in terms of
collections of probabilistic rules

interpretation \ / selection
Speech '
understanding >
Speech R
recognition synthesis
Il

e Generation
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Parameter learning

Occct

® The rule parameters (probabilities or utilities) must be
estimated from empirical data

® Ve adopted a Bayesian approach, where the parameters
are themselves defined as variables

® The parameter distributions will then be modified given
the evidence from the training data

12
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Parameter learning

® The rule parameters (probabilities or utilities) must be
estimated from empirical data

® Ve adopted a Bayesian approach, where the parameters
are themselves defined as variables

® The parameter distributions will then be modified given
the evidence from the training data

12



) Evaluation

Occct

UiO ¢ University of Oslo

® Policy learning task in a human-robot interaction
scenario, based on Wizard-of-Oz training data

® Objective: estimate the utilities of possible system actions

® PBaselines: «rolled-outy versions of the model
[ )

«plain» probabilistic models with identical input and output variables, but
without the condition and effect nodes as intermediary structures

13
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4} Evaluation

ﬁbccc*

® Policy learning task in a human-robot interaction
scenario, based on Wizard-of-Oz training data

® Objective: estimate the utilities of possible system actions

® PBaselines: «rolled-outy versions of the model

® «plain» probabilistic models with identical input and output variables, but
without the condition and effect nodes as intermediary structures

@ 0—>® vs @\
‘\‘_,@ (8)
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Experimental setup

Occct

® |nteraction scenario: users instructed to teach the robot a sequence of
basic movements (e.g.a small dance)

® Dialogue system comprising ASR and TTS modules, shallow components
for understanding and generation, and libraries for robot control

® The Wizard had access to the dialogue state and took decisions based
on it (among a set of |4 alternatives)

® 20 interactions with 7 users, for a total of 1020 turns

Each sample d in the data set is a pair (bg, tq):
* bqis a recorded dialogue state

* tq is the «gold standardy system action
selected by the Wizard at the state bgq

|4
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Empirical results

® Data set split into training (/5%) and testing (25%)

® Accuracy measure: percentage of actions
corresponding to the ones selected by the Wizard

® ButWizard sometimes inconsistent / unpredictable

® The rule-structured model outperformed the two
baselines in accuracy and convergence speed

Type of model Accuracy (in %)
Plain model 67.35
Linear model 61.85
Rule-structured model 82.82

|5
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Learning curve (linear scale)

100
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50

Accuracy on testing set (in %)

25
<>~ Rule-structured model
< Linear model
0 Plain model
0 152 304 456 608 760

Number of training samples
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Learning curve (log-2 scale)
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Conclusions

Probabilistic rules used to capture the
underlying structure of dialogue models

Allow developers to exploit powerful
generalisations and domain knowledge without
sacrificing the probabilistic nature of the model

Framework validated on a policy learning task
based on a Wizard-of-Oz dataset

Future work: extend the approach towards
model-based Bayesian reinforcement learning
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