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Abstract

A set of forecasts of historical 3-month Treasury bill rates are composed and evaluated
using standard performance measures and so-called profit rules. An investigation of
the correlation between the two types of scoring functions reveal a stronger relationship
than was suggested by previous studies. In addition, a type of probabilistic forecasts are
introduced which are derived from given point forecasts. While the general benefits of
such density forecasts are explained, results in this paper reveal only partial improvement
of the probabilistic forecasts over their counterpart point forecasts.
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1. List of symbols and abbreviations

1{. . . } Indicator function with condition {. . . }

nk Number of predictions by a forecast with horizon k

xt Spot rate of a T-Bill at time t

x̂tt+k Prediction issued at time t for the spot rate of a T-Bill at time t+ k

x̂t Set of predictions issued at time t: x̂t = (x̂tt+1, . . . , x̂
t
t+9 )

ytt+k Futures rate for a T-Bill at time t with settlement at t+ k

ŷt Set of futures rates at time t: ŷt = (ŷtt+1, . . . , ŷ
t
t+9 )

ARn(r) Autoregressive forecast with a lag of r and a rolling training period n

DA Directional accuracy

Ecp Error-corrected probabilistic [forecast]

MAE Mean absolute error

Profit A Profit rule A

RMSE Root-mean-squared error

T-Bill 3-month U.S. Treasury bill
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2. Introduction

The forecasting of government bonds, let alone tradable securities, is a substantially
studied subject with promises of profitable ventures where predictions can be successfully
made. While the study of forecasts is not new, relatively little attention has been paid to
the considerations of scoring functions in use to express the merits of a forecast. Diebold
and Li (2006) give an extensive overview of existing methods for predictions of the term
structure of interest rates. On one hand, there exist traditional scoring functions that are
widely used such as the root-mean-squared error which provide an admissible accuracy
measure of a forecast. On the other hand, in the context of economic variables such as
the price of U.S. Treasury bills, a conceivable performance measure is the gathering of
potential profit that could be garnered from a forecast. The best performance measure
to use depends on the aim and the context of any forecast. However, regardless of the
choice, this paper aims to compare and evaluate both traditional scoring functions and
ones that measure hypothetical profits for a set of forecasts of historical U.S. Treasury
bill rates.

The focus of this paper is not to devise methods that produce the most accurate of
forecasts. Rather, a set of forecasts is taken as given, making use of relatively naive
forecasting methods that are easily reproduced and put into practice. Nevertheless, the
comparison of performances thereof should provide insights into the nature of scoring
functions.

Additionally, this paper seeks to introduce probabilistic forecasts as a feasible alternative
to mere point forecasts. The limitations are none because a point forecast can still
be derived from any probabilistic forecast although care has to be practiced to use
a correct functional. Additionally, probabilistic forecasts provide information about
the spread of the predicted quantity. This paradigm seems to be unevenly distributed
among the sciences, with meteorology relying heavily on probabilistic forecasts while
they are relatively rare in economic forecasting. In part, this may be explained by the
need of point forecasts to aid in the decision-making process that is underlying many
economic problems. In the end, forecasts are supposed to aid in making decisions and
should therefore be evaluated in the decision making context in which they are used
(Pesaran & Skouras, 2002; Granger & Pesaran, 2000). Instances where probabilistic
forecasting is found in the economic sciences is e.g. Abramson and Finizza (1995) who
utilize probabilistic forecasts for predictions in the market for crude oil. Similarly, Önkal
and Muradoglu (1994) make use of probabilistic forecasting for predictions in the stock
market. Lastly, Britton et al. (1998) describe the Bank of England’s approach in using
probabilistic forecasts for its inflation rate predictions.
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CHAPTER 2. INTRODUCTION

While the study by Diebold and Li (2006) is comprehensive in examining forecasting
techniques of interest rates, evaluation thereof is without the context of potential profits.
Such an attempt was made by Leitch and Tanner (1991). In their study, Leitch and
Tanner gathered historical rates of 3-month U.S. Treasury bills from 1982 up to 1988
and subjected them to various forecasting techniques. At the same time, they compared
forecasts to prevailing futures rates of 3-month U.S. Treasury bills. According to every
prediction, a futures contract can hypothetically be bought or sold, resulting in profits
or losses depending on realizations of rates. Having established such profit rules, Leitch
and Tanner then go on to compare those results with those of traditional performance
measures.

This paper widely follows the approach by Leitch and Tanner: monthly forecasts of
historical 3-month U.S. Treasury bill rates are conducted for the period from 1982 until
end of 1996 which includes the period studied by Leitch and Tanner. Whenever possible,
similar forecasting techniques are employed. Forecasts are evaluated using the same
scoring functions and the correlations between performance measures are studied as
well.

Chapter 3 introduces U.S. Treasury bills and futures contracts to the unfamiliar reader.
It provides an overview of the studied data and establishes notation used throughout the
paper. Chapter 4 explains the forecasting methods employed and introduces probabilistic
forecasts in the context of given point forecasts. Chapter 5 displays the overview of the
main results. In the appendices A to D, detailed description of results are provided as
well as the R code used in obtaining the results.
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3. U.S. Treasury bills

3.1. About Treasury bills

A 3-month U.S. Treasury bill (T-Bill) is a type of financial instrument which represents
a legal promise by the U.S. Treasury Department to make a payment at a specified date
in the future. The amount of the payment is called the face value. The time until the
payment is to be made is called the maturity of a T-Bill, hence 3-month U.S. Treasury
bills have a maturity of 3 months. They provide a risk-free investment opportunity for
buyers while providing the U.S. government a means for borrowing money. They are
sold at weekly held auctions, referred to as the primary market, and are up for free trade
thereafter on exchanges, known as the secondary market.

Treasury bills are thought of as being the least risky form of investment available given
that the full faith and credit of the U.S. government backs these securities. Since the
U.S. government relies on its ability to borrow money, paying its obligations has high-
est priority to maintain its top credit rating. Furthermore, default can theoretically
always be avoided by the administration’s ability to print money, albeit at the cost of
devaluating the currency.

Investor can either hold the Treasury bill until maturity, at which time the face value
becomes due; or the T-Bill may be sold in the secondary markets prior to maturity. In
the latter case, the investor recovers the market value of the T-Bill.

Treasury bills emerged in the wake of World War I, when the U.S. government faced
difficulties in borrowing money from other countries to finance the war. The intention
was to transfer debt to citizens willing to lend money and repay them during time of
economic recovery (Garbade, 2008).

The daily rate of each month’s last trading day was gathered, beginning on December 31,
1981 and ending on December 31, 1996. The rates are freely available at the website of
the U.S. Federal Reserve Statistical Release which includes quotations of 3-month U.S.
Treasury bill rates on the auction high market and secondary market (FRB, 2010). The
auction high market corresponds to the emission of Treasury securities directly from the
Treasury Department to buyers in auctions held every Monday. The secondary market
corresponds to all open trade among investors after the security has been emitted. Since
the latter trades every weekday, rates from the secondary market were chosen for this
study as they seemed more feasible for a simulation of trading.
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3.2. PRICING TREASURY BILLS CHAPTER 3. U.S. TREASURY BILLS

Figure 3.1.: End-of-month rates of 13-week T-Bills from 1982 to 1996

3.2. Pricing Treasury bills

The value of a Treasury bill is usually quoted by its yield or rate. The rate of an
investment is the profit of an investment, meaning the sum of all future cash flows minus
its price, expressed as a percentage of the face value. For example, a $100 investment
resulting in a repayment of $102 has a rate of 2%. When scaled to 360 days it becomes
an annualized rate (Mankiw, 1997): 1

Rate(%) =
Face Value - Price

Face Value
∗ 360

Time to Maturity (days)
∗ 100.

The terms ”price” and ”rate” of a T-Bill can therefore be used interchangeably as one
can be derived from the other.

As with any freely traded good, the price of a T-Bill is determined by the equilibrium
of supply and demand forces (Hull, 2006). In the case of a financial instrument, the
equilibrium price is determined by the buy and sell orders on the exchange. All other
things being equal, prices rise as supply decreases or demand increases, and fall as supply
increases or demand decreases.

Factors affecting the supply of T-bills include (Cecchetti, 2006)

1The purpose of an annualized rate is to allow for comparison of rates between investments of different
maturities. This is done by multiplying the rate by a factor 360

Time to Maturity (days) . Though not being
precise because it neglects compound interest, this is common practice as the difference is negligible.
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3.2. PRICING TREASURY BILLS CHAPTER 3. U.S. TREASURY BILLS

• Changes in government borrowing: The government’s need for borrowing
money determines how many new T-Bills will be issued, changing the supply of
T-Bills on the market.

• Expected inflation: Issuers of T-Bills care about the real cost of borrowing, that
is, taking inflation into account. The cost of borrowing is the difference between
the present value of the T-Bill and its price. Inflation lowers the present value of
a future payment, thus for the issuer of a T-Bill, an inflation lowers the cost of
borrowing, hence encouraging borrowing.

Demand factors include

• Wealth: An increase in wealth increases demand for investment, in turn increasing
demand for T-Bills.

• Alternative investments: Changes in investment alternatives such as stocks will
affect attractiveness of T-Bills to investors.

• Taxes: Interest earned from T-Bills is subject to federal income tax, thus change
in legislation affects demand.

• Expected inflation: As inflation reduces the cost of borrowing, it follows that it
increases the cost of lending as real value of earned interest is diminished.

• Expected future interest rates:2 Investors care about future interest rates
because through the concept of arbitrage, interest rates determine the current
worth of a future payment. Assuming there is no risk involved, the price P of a
security that entitles to a payment of $X at maturity could alternatively be invested
at the risk-free interest rate i. 3 Through the alternative one would receive P (1+i)
at maturity. Since neither option should have any advantage over the other, it is
a necessary condition for price P to be such that the resulting revenue from both
options be the same. Hence an inverse relationship between prices and interest
rates exists:

P (1 + i) > $X ⇒ investor has no incentive to buy the security,
P (1 + i) < $X ⇒ borrower has no incentive to sell the security,

⇒ P (1 + i) = $X.

The last factor will be the focus of this study as it has both a large influence on price
movements of T-Bills and is very fluctuating.

2Note that what matters is expected inflation and expected future interest rates. Thus if one wishes
to predict movements, one need not predict nominal changes of inflation or interest rates but rather
the change of people’s expectations about them.

3This interest rate is the theoretical interest rate at which money can be borrowed or loaned without
risk.
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3.3. FUTURES CONTRACTS CHAPTER 3. U.S. TREASURY BILLS

Figure 3.2.: End-of-month futures rates of T-Bill contracts with a settlement in 3 and 9
months, 1982 to 1996

Realized T-Bill rates are denoted by xt where the lower index denotes the time from
which the rate was taken. The data set thus takes the form x1, x2, . . . , x180 where x1 is
the rate observed on December 31, 1981, and x180 the rate from the last trading day of
December 31, 1996. The data are visualized in Figure 3.1.

3.3. Futures contracts

A futures contract is an agreement between two parties to exchange an asset at a spe-
cific future date at a predetermined price. Futures contracts are standardized, allowing
them to be traded at futures exchanges (Labuszewski & Sturm, n.d.). They are a type
of financial derivative because their value is determined by price movements of the un-
derlying asset. Using common terminology, the party agreeing to buy the asset at the
settlement date is said to assume a ”long position” while the party agreeing to sell the
asset is assuming a ”short position” (Hull, 2006). Futures rates will be of interest in this
study because they allow for profit making with the speculation of price movements of
T-Bills.

The data for the tradable futures contracts on T-Bills was purchased from the Chicago
Mercantile Exchange (CME, 2010). It includes complete daily end-of-day closing prices
of T-Bill contracts with a settlement within 9 months from 1982 up to year-end 1996.
The last closing prices of the last trading day of every month was used. Futures rates
with settlements in 3 months and 9 months are visualized in Figure 3.2 along with the
spot rate, that is, the current rate, of the T-Bills.
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3.3. FUTURES CONTRACTS CHAPTER 3. U.S. TREASURY BILLS

A futures contract is denoted by ytt+k where the upper index indicates the month during
which the futures contract is traded and the lower index indicates the month during
which the futures contract is settled. Future contracts are settled only in the months
of March, June, September, and December. If t represents the last trading day of the
month and t = 0 corresponds to December 1981, t = 1 to January 1982 and so on,
month-end’s futures rates can be expressed in vector form as

y1 = (y13, y
1
6, y

1
9)′

y2 = (y23, y
2
6, y

2
9)′

y3 = (y36, y
3
9, y

3
12)
′

y4 = (y46, y
4
9, y

4
12)
′

... (3.1)
y177 = (y177180)

y178 = (y178180)

y179 = (y179180).

In order to evaluate forecasts, hypothetical futures rates that lie in between settlement
dates are necessary. Leitch and Tanner (1991, p. 584) did this as follows:

”The futures rate forecasts were derived from the historical prices of the four
nearest Treasury-bill future contracts. For forecasts nearer than the nearest
contract, we interpolated between the current spot rate and the rate im-
plied by the nearest contract. For forecast dates between contract dates, we
interpolated between the implied forecasts of the adjoining contract dates.”

Following this method, interpolations are made as follows: if e.g. t+ k is such that t+ k
is 2 month from the next settlement of a futures contract, then

ytt+k = ytt+k−1 +
1

3
(ytt+k+2 − ytt+k−1).

Similarly, if t+ k is such that it is 1 month away from the settlement, then

ytt+k = ytt+k−2 +
2

3
(ytt+k+1 − ytt+k−2).

With this assumption, the data set of futures prices is expanded to
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3.3. FUTURES CONTRACTS CHAPTER 3. U.S. TREASURY BILLS

y1 = (y12, y
1
3, . . . , y

1
10)
′

y2 = (y23, y
2
4, . . . , y

2
11)
′

y3 = (y34, y
3
5, . . . , y

3
12)
′

y4 = (y45, y
4
6, . . . , y

4
13)
′

...
y177 = (y177178, y

177
179, y

177
180)′

y178 = (y178179, y
178
180)′

y179 = (y179180),

so that every forecast can be matched with a futures contract yt to allow for a decision
every month whether to buy or sell such a contract.
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4. Forecasts

4.1. Point forecasts

For every last trading day of the month, starting on December 31, 1981, forecasts of
the T-Bill rates are made for the last trading day for each of the subsequent 9 months.
The last forecast is made on November 27, 1996 which only requires one prediction for
December 31, 1996. Thus every forecast makes a total of 1584 predictions: 108 for every
year except the last where only 72 predictions are required. However, three predictions
had to be discarded because there was no available futures rate to match, as is necessary
for calculating the later mentioned profit rules. The predictions in question without a
matching futures rate were made on December 31, 1981 for January 29, April 30 and
July 30, 1982, lowering the total number of predictions to 1581.

Single predictions of the T-Bill rates are denoted by x̂tt+k where the upper index denotes
the time when the forecast is made and the lower index the time for which the rate is
to be predicted.

If t represents the last trading day of the month and t = 0 corresponds to December
1981, t = 1 to January 1982 and so on, a forecast’s monthly predictions can be expressed
in vector form as x̂t = (x̂tt+1, x̂

t
t+2, . . . , x̂

t
t+9)

′. The entire set of predictions thus takes
the form of

x̂0 = (x̂01, x̂
0
2, . . . , x̂

0
9)
′

x̂1 = (x̂12, x̂
1
3, . . . , x̂

1
10)
′

x̂2 = (x̂23, x̂
2
4, . . . , x̂

2
11)
′

...
x̂177 = (x̂177178, x̂

177
179, x̂

177
180)

′

x̂178 = (x̂178179, x̂
178
180)

′

x̂179 = (x̂179180).

The following subsections introduce the four forecasting methods employed in this study.
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4.1. POINT FORECASTS CHAPTER 4. FORECASTS

4.1.1. Naive no-change forecast

The naive no-change forecast is made by setting

x̂t = (xt, xt, . . . , xt)
′,

i.e. by predicting that the T-Bill rate for the following nine months will be the same as
the current month’s.

4.1.2. Constant rate of change forecast

The constant rate of change forecast is done by setting

x̂t = (xt + (xt − xt−1), xt + (xt − xt−2), . . . , xt + (xt − xt−9))′,

i.e. by predicting that the difference to the current spot rate since k months ago will be
the same difference from the spot rate to the forecast horizon k. A conceivable alternative
version where changes from the month previous to the current month are observed and
the difference is linearly extrapolated for each forecast horizon was also considered.
However, this method produces largely exaggerated forecasts for long horizon predictions
and thus was not employed.

4.1.3. Autoregressive forecast

The autoregressive forecast is done by continuously fitting either an AR(1) or
ARIMA(1, 1, 0) model to a rolling training period of the data and then make predictions
based on the models. This method follows the general approach put forth by Brockwell
and Davis (2006, p. 273):

”If the data (a) exhibits no apparent deviations from stationarity and (b)
has a rapidly decreasing autocorrelation function, we shall seek a suitable
ARMA process to represent the mean-corrected data. If not, then we shall
first look for a transformation of the data which generates a new series with
the properties (a) and (b). This can frequently be achieved by differencing,
[...]”

Introducing notation, anARMA(p, q) process is a stochastic process {Xt|t = 0,±1,±2, . . . }
where {Xt} is stationary and for every t,

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q,

15



4.1. POINT FORECASTS CHAPTER 4. FORECASTS

(a) End-of-month rates of T-Bills (b) Sample autocorrelation function

Figure 4.1.: Undifferenced data of the training period, 1975 through 1981

where {Zt}
iid∼ N(0, σ2), φ1, . . . , φp, θ1, . . . , θq ∈ R. {Xt|t = 0,±1,±2, . . . } is an ARMA(p,q)

process with mean µ if {Xt − µ|t = 0,±1,±2, . . . } is an ARMA(p,q) process.

It is common to define a backward shift operator B such that BXt = Xt−1. If φ(z) =
1− φ1z − · · · − φpzp and θ(z) = 1 + θ1z + . . . θqz

q, then an ARMA(p,q) process can be
rewritten as

φ(B)Xt = θ(B)Zt.

Depending on the stationarity of the period for each modeling, either an AR(1) or
ARIMA(1, 1, 0) model is fitted. If d is a non-negative integer, then Xt is said to be an
ARIMA(p, d, q) process if

Yt := (1−B)dXt

is an ARMA(p, q) process. The added factor (1− B) is a form of differencing to elimi-
nate a trend component from the data. Differencing is effective for eliminating a trend
component mt if it is assumed that the data fits a process of the form

Xt = mt + Yt,

where Yt is a stationary process and mt =
∑k

j=0 ajt
j a polynomial of some unknown

degree k. If a difference operator ∇ is defined as ∇ ≡ 1 − B it follows that if mt is a
polynomial of degree k, then ∇mt is of degree k − 1. Thus by applying the difference
operator k times to the model Xt = mt + Yt, a stationary process with mean k!ak is
obtained:

∇kXt = k!ak +∇kYt.

The initial training period from 1975 to 1982 appear to have a trend component as can
be inferred from Figure 4.1. Applying the difference operator once generates a process
much more indicative of stationarity as seen in Figure 4.2. Note the changing volatility
of the process which is characteristic for a heteroskedastic processes.
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4.1. POINT FORECASTS CHAPTER 4. FORECASTS

Table 4.1.: Critical values of the KPSS test

Level 0.10 0.05 0.025 0.01
Critical value 0.119 0.146 0.176 0.216

To automate the decision process of whether or not the data from each training pe-
riod should be differenced before modeling, the Kwiatkowski-Phillips-Schmidt-Shin test
(KPSS) is used. The KPSS tests for the null hypothesis that a time series is stationary
(Kwiatkowski et al., 1992). The assumption is that the series can be decomposed into a
deterministic trend, a random walk, and a stationary error:

yt = ξt+ rt + εt.

Here, rt is the random walk with rt = rt−1 + ut where ut
iid∼ N(0, σ2), and εt

iid∼ N(0, σ2
ε ).

Under the null hypothesis σ2 = 0, yt is trend stationary.

The test statistic is a one-sided statistic of the form

∑T
t=1 S

2
t

σ̂2
ε

=

∑T
t=1

(∑t
i=1 ei

)2
1
T

∑T
i=1 e

2
i

,

where et = xt − (r0 + ξt) are the residuals of regressing the data on an intercept and
time trend, and σ2

ε is the estimate of the error variance from this regression.

The critical values of the distribution of the statistic are displayed in Table 4.1. It is
taken directly as presented by Kwiatkowski et al. (1992).

The test for stationarity for each training period is done at the 5% confidence level.

Being able to judge whether to fit an AR(1) or ARIMA(1, 1, 0) model it follows that the
parameters must be estimated. A prominent selection criteria is Akaike’s information
criterion corrected (AICc). It chooses parameter values that maximize a likelihood
function while also assigning a cost to the introduction of each additional parameter.
Although the model estimation performed here is simplified because only two parameters
φ1 and σ2 are needed, the AICc is generally advocated by Brockwell and Davis (2006)
as the ”prime criterion for model selection”. As a result, φ1 and σ2 are to be chosen such
that the likelihood function

L
(
φ1, σ

2
)

= (2πσ2)−
n
2

(
n−1∏
i=0

ri

)− 1
2

exp

[
−1

2
σ−2

n∑
j=1

(xj − φ1xj−1)
2

rj−1

]
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4.1. POINT FORECASTS CHAPTER 4. FORECASTS

(a) Differenced, end-of-month rates (b) Sample autocorrelation function

Figure 4.2.: Once differenced data of the training period, 1975 through 1981

is minimized, where ri = (xi+1−φ1xi)2
σ2 .1

Having estimated φ1 and σ2 the next step is to find a best linear predictor for xt+k. ”Best”
refers to a predictor that minimizes E[|xt+k− x̂tt+k|2]. Such a predictor is determined by
a projection of xt+k onto x̂tt+k ∈ span(x1, . . . , xt), which requires that

E[(xn+k − x̂tt+k)xh] = 0, h = 1, . . . , n.

Finding φn,1, . . . , φn,n such that x̂tt+k =
∑n

j=1 φn,jxn+1−j is again equivalent to solving

n∑
i=1

φn,iγ(i− j) = γ(j), j = 1, . . . , n,

or in short
Γnφn = γn,

where Γn = [γ(i − j)]i,j=1,...,n , γ(n) = (γ(1), . . . , γ(n)) with γ(·) the autocorrelation
function of the model and φn = (φn,1, . . . , φn,n)

1The AICc in its general form states that for θ = (θ1, . . . , θp) and φ = (φ1, . . . , φq),

AICc(θ,φ) = −2lnL
(
θ,φ,

S(θ,φ, σ2)

n

)
+

2(p+ q + 1)n

n− p− q − 2
,

where

L
(
θ,φ, σ2

)
= (2πσ2)−

n
2 (r0 · · · rn−1)

− 1
2 exp

−1

2
σ−2

n∑
j=1

(xj − x̂j)2

rj−1


is the likelihood of the data under the Gaussian ARMA model with parameters

(
θ,φ, σ2

)
and

S(θ,φ, σ2) =
∑n
j=1

(xj−x̂j)
2

rj−1
is the residual sum of squares, ri =

E(xi+1−x̂i+1)
2

σ2 .
The model to be selected is the model with parameters (p, q,θ,φ) which minimize the AICc.

18



4.1. POINT FORECASTS CHAPTER 4. FORECASTS

Instead of solving for φn = Γ−1
n γn by inversion of the matrix Γn the coefficients can

be solved using the Innovations Algorithm2. In the case of an AR(1) model it simplifies
drastically so that the prediction x̂tt+k becomes

x̂tt+k = (φ1)
kxt.

In the case of an ARIMA(1, 1, 0) model, the Innovations Algorithm produces

x̂tt+k = (φ1)
k(xt − xt−1) + (φ1)

k−1(xt − xt−1) + · · ·+ (φ1)(xt − xt−1) + xt.

Lastly, to determine the optimal length of the rolling training period, models with train-
ing periods of 12, 24, 36 and 48 months were fitted to the T-Bill rates from 1975 to
year-end 1981. Forecasts were then compared using the root-mean-squared error. The
autoregressive model performed best with a training period of 36 months and conse-
quently this was the chosen length for the entire forecasting period from 1982 to 1996.
This forecast was denoted by AR36(1). The R code used for fitting the autoregressive
model, testing the best length for the training period and make predictions is printed in
section D.1 (R Development Core Team, 2010).

4.1.4. Forward rate forecast

The forward rate forecast uses a forward rate for its predictions. A forward rate is an
interest rate implied by the yield curve. The interest rates for all government securities
with different maturities3 are summarized by the yield curve. The yield curve displays

2The Innovations Algorithm for an ARIMA(p, d, q) process solves the projection Pn of xt+k onto
x̂tt+k ∈ span(x1, . . . , xn) via

Ptx
t
t+k =

p+d∑
j=1

φ∗jPtxt+k−j +

q∑
j=k

θt+k−1,j(xt+k−j − x̂tt+k−j),

where φ∗j are the coefficients of φ∗(z) = (1 − z)dφ(z) = 1 − φ∗1z − · · · − φ∗p+dz
p+d, and

θt+k−1,k, . . . θn+k−1,q can be computed recursively from the equations

ν0 = κ(1, 1),

θt+k−1,n+k−1−i = ν−1
i

κ(t+ k, i+ 1)−
k−1∑
j=0

θi,i−jθt+k−1,t+k−1−iνj

 , 0 ≤ i ≤ t+ k − 1,

and

νt+k−1 = κ(t+ k, t+ k)−
n−1∑
j=0

θ2t+k−1,t+k−1−jνj ,

where κ(i, j) = E[xixj ].
3Maturities include 1-month, 3-month, 6-month, 1-year, 2-year, 3-year, 5-year, 7-year, 10-year, 20-year
and 30-year government securities.
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Figure 4.3.: Sample of a yield curve curve taken from February 9, 2005 (Treasury, 2010a)

the relationship between interest rates and time to maturity of Treasury bills as displayed
in Figure 4.3.4

A forward rate then is an interest rate that is implied by the interest rates of two T-Bills
of different maturities. If the interest rate of a bill with maturity m is known as well as
the interest rate of a bill with maturity m+ n then this implies an interest rate of a bill
issued at time m with maturity n (Gurkaynak et al., 2007). The underlying assumption
is again that of arbitrage-free pricing which assumes that equivalent investments over
the same time period are perfect substitutes regardless of their underlying maturities
(Hull, 2006). Consequently, arbitrage opportunities should not exist. The return of an
investment on a bill with an annualized interest rate of i0m+n must be the same as the
return of an investment in a bill with interest rate i0m followed by an investment in a bill
issued at time m with interest rate imm+n, that is,

(1 + itm+n)m+n = (1 + itm)m(1 + it+mm+n)n.

The forward rate can thus be obtained by solving for it+mm+n (Fabozzi, 2005):5

it+mm+n =
1

n

(
1 + (m+ n)itm+n

1 +mitm
− 1

)
.

4The upward slope can be explained by the demand for compensation by investors for longer exposure
to risk and uncertainty, as is proposed by the Liquidity Premium Theory. However, this need not
always be the case (Hull, 2006).

5The equation makes use of a very common approximation when calculating interest rates: (1+ i)n ≈
1 + ni for small i.
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In order to obtain forward rates of 3-month Treasury bills up to 9 months into the future
it was necessary to reconstruct a yield curve that displays interest rates of maturities up
to 12 months ahead. For the time period from 1982 to 1996, the Federal Reserve provides
complete data for the 3-month, 6-month and 12-month interest rates of Treasury bills.
The U.S. Treasury’s yield curve is derived using a quasi-cubic Hermite spline function
(Treasury, 2010b). Although, as noted on their website,

”Treasury does not provide the computer formulation of our quasi-cubic her-
mite spline yield curve derivation program. However, we have found that
most researchers have been able to reasonably match our results using alter-
native cubic spline formulas.”

Indeed, several researchers use cubic spline interpolation for constructing the yield curve,
as was done by Waggoner (1997), Fisher et al. (1995) and McCulloch (1975).

A cubic spline of a data set {i1, . . . , in} is a piecewise cubic polynomial real function
p : [a, b]→ R

p(z) =


p1(z) , z1 ≤ z ≤ z2

p2(z) , z2 ≤ z ≤ z3
...

pn−1(z) , zn−1 ≤ x ≤ zn

on an interval [a, b] and subintervals [zj, zj+1], j = 1, . . . , n − 1, a = z1 < z2 < · · · <
zn−1 < zn = b, satisfying

1. each pj is a cubic polynomial passing through its respective end points,

pj(zj) = ij

pj(zj+1) = ij+1 , j = 1, . . . , n− 1

2. the first and second derivatives of adjoining polynomials pj and pj+1 match at their
shared end points,

d

dz
pj(z)|z=zj+1

=
d

dz
pj+1(z)|z=zj+1

d2

dz2
pj(z)|z=zj+1

=
d2

dz2
pj+1(z)|z=zj+1

, j = 1, . . . , n− 2

3. the second derivatives are equal to zero at the end points of the interval,

d2

dz2
p1(z)|z=z1 = 0 =

d2

dz2
pn−1(z)|z=zn
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A cubic spline then is derived from a system of 4(n − 1) linear equations in 4(n − 1)
unknown variables. The set of 3-month, 6-month and 12-month T-Bills can then be used
to calculate the forward rates it+kt+k+3, k = 1, . . . 9 for every t = 0, . . . 179.

The forward rate forecast then issues the forecast

x̂t = (it+1
t+4, i

t+2
t+5, . . . , i

t+9
t+12)

′.

The underlying rationale of the forward rate forecast is that all risk-free rates must match
those implied by the yield curve in order to disallow arbitrage opportunities. Using a
forward rate as a prediction for T-Bill rates therefore assumes no change in the current
yield curve structure. Inaccuracies of the forecast are therefore due to changes of the
yield curve.

4.1.5. Other forecasts

Leitch and Tanner (1991) use two additional forecasts for comparison. First, they have
access to a ”Professional forecast” which was published monthly by an institution called
Commonwealth Research Group, starting in December 1981. Unfortunately, the author
of this paper does not have access to those forecasts. Second, Leitch and Tanner use a
survey forecast which was published together with the previously mentioned Professional
forecast. It consists of consensus predictions by various experts from the financial sector.
Although this data is unavailable as well, a very similar publication exists called the ”Sur-
vey of Professional Forecasters” provided by the Federal Reserve Bank of Philadelphia
(FRBP, 2010). It is freely available and also includes forecasts of T-Bill rates dating as
far back as 1981. However, forecasts are done only quarterly and therefore do not allow
for full comparison between all the aforementioned forecasts. For these reasons, this
paper only makes use of the naive no-change, constant rate, autoregressive and forward
rate forecasts.

4.2. Probabilistic forecasts

If X is a random variable on a probability space (Ω,Σ, P ), a probabilistic forecast for
X is a probability distribution F on Ω. A probabilistic forecast can be derived from a
set of point forecasts by looking at the errors of the past m predictions by the point
forecast. This probabilistic forecast shall be called the error-corrected probabilistic (ecp)
forecast.

If a prediction with a k-month horizon is desired, the set of the previous m point predic-
tions made with a k-month horizon is required. Let Errtk,m be the set of the m preceding
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k-month prediction errors of the point forecast x̂t:

Errtk,m := {xt−i+1 − x̂t−i−k+1
t−i+1 |i = 1, . . . ,m}.

Then define PErrtk,m by adding the prediction x̂tt+k to each point in Errx̂t−m
t+k−m

:

PErrtk,m := {x̂tt+k + (xt−i+1 − x̂t−i−k+1
t−i+1 )|i = 1, . . . ,m}.

A probabilistic forecast x̂t is then obtained via probability mass functions P
x̂
t
t+k

(x) which
assign a mass of 1

m
to the points x̂tt+k + (xt−i+1 − x̂t−i−k+1

t−i+1 ) that lie scattered around
the predicted value of the point forecast x̂tt+k. The probability mass function of x̂tt+k
associated with prediction x̂tt+k for every forecast horizon k is

P
x̂
t
t+k

(x = x) =

{
1
m

if x ∈ PErrtk,m
0 otherwise

Essentially the error-corrected probabilistic forecast ”learns” from past prediction errors
and ”corrects” its predictions by subtracting each error from the point forecast. Every
such ”corrected” point forecast is then assigned an equal probability mass to obtain a
discrete probability forecast.

Creating the ecp forecasts is done using R and the code is printed in section D.2.
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5. Evaluation

5.1. Scoring functions

To evaluate the performance of a point forecast for a real-valued random variable, a
scoring function can be put into practice. A scoring function is a mapping S : D×D →
[0,∞) where D ⊆ Rn is the domain of both the predictions and the realized observations
of the random variable in question. It allows a comparison of forecasts for a given set
of predictions and observations. It is said to be negatively oriented if a forecast with a
small score S(x, y) is to be preferred over one with a larger score, and positively oriented
otherwise. To evaluate a set of n point forecasts a summary measure is used by averaging
the score function of each prediction x̂ and respective observation x: 1

n

∑n
i=1 S(x̂i, xi).

The following statistical summary measures are used in this study.

The average directional accuracy (ADA) is a summary measure that rewards a correct
prediction of the direction of the movement of the futures prices from one month to
the following month. The indicator function 1{yt+1

t+k ≥ ytt+k} is used to indicate a rise in
futures prices. If the forecaster simultaneously predicts a rise in futures prices, expressed
through 1{x̂tt+k ≥ ytt+k}, then he will receive a score of 1 and 0 otherwise. Together with
an analogous scheme for predicting a fall in futures prices yields the summary measure

ADA(x̂,y) =
1

9

9∑
k=1

1

nk

nk−1∑
t=0

(
1{yt+1

t+k ≥ ytt+k}1{x̂tt+k ≥ ytt+k}+ 1{yt+1
t+k < ytt+k}1{x̂tt+k < ytt+k}

)
,

where nk is the number of months for which predictions exist with a horizon of k
months,

nk = 181− k for k = 1, . . . , 9.

The mean absolute error (MAE) is a summary measure which may be defined as

MAE(x̂,y) =
1

9

9∑
k=1

1

nk

nk−1∑
t=0

|x̂tt+k − yt+1
t+k|.

Furthermore there is the very commonly used root-mean-squared error (RMSE) sum-
mary measure:
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Table 5.1.: Correlations between xt+k and yt+1
t+k, for every forecast horizon k, for a total

of 1581 data pairs

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9
xt+k vs. yt+1

t+k 1 0.982 0.958 0.935 0.909 0.879 0.845 0.820 0.803

RMSE(x̂,y) =
1

9

9∑
k=1

√√√√ 1

nk

nk−1∑
t=0

(x̂tt+k − y
t+1
t+k)

2.

Note that instead of evaluating predictions x̂tt+k against the realizations xt+k, the futures
rate of the following month yt+1

t+k is used instead. This is done in accordance with Leitch
and Tanner (1993, p. 585):

”Note that, instead of the actual realized interest rate, we have used only the
next month’s new futures-market forecasts for the realization in this table
[see Table 5.6]. However, the results are not affected by doing the calculations
this way, as the cash markets[1] give essentially identical results.”

For all 1581 predictions that were made, the correlation between xt+k and yt+1
t+k was

calculated for every forecast horizon to infer the interchangeability of the two. Results
are displayed in Table 5.1. It can be seen that the two values do correlate strongly
for short forecast horizons, as is expected, but not in a manner that one would expect
identical results.

The profit rules are summary measures that determine the hypothetical profit that could
be gained from a forecast:

Given that one is currently at month t, the current T-Bill price xt and the futures prices
for the following 9 months ytt+1, y

t
t+2, . . . , y

t
t+9 are observed. If one agrees to buy a futures

contract for month t+ k, then one agrees that at month t+ k one will make a payment
of ytt+k to buy a T-Bill which can then be sold for xt+k. The resulting profit (or loss)
will be xt+k − ytt+k.

Vice versa, if one agrees to sell a futures contract for month t + k, then one agrees to
deliver a T-Bill at month t+k for which a payment of ytt+k will be received. If the T-Bill
is not previously owned one will have to buy it first, the price for which will be xt+k,
resulting in profit (or loss) ytt+k − xt+k.

On a fictious $1 million three-month Treasury bill that is held until maturity, each basis-
point change in the interest rate changes the gross return by $2500 ($1 million x 0.01

1”Cash market” simply refers to the market for Treasury bills as opposed to the market for its futures
contracts.
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x 0.25 years). For all four profit rules a $40 cost for every purchase/sale of a contract
is assumed, which is an estimate of transaction costs (broker’s fees) and lost interest on
the money invested. The summary measures π(x̂,y) of the profit rules then express the
average annual profit2. Given a prediction for a T-Bill, four alternative strategies for
buying and selling are considered, called profit rules.

Profit rule A instructs to buy a futures contract ytt+k for month t + k if a rise in T-Bill
prices is predicted, i.e. x̂tt+k > xt. Conversely, one sells a futures contract if x̂tt+k < xt is
predicted. If the prediction is for no change, x̂tt+k = xt, as is the case with the no-change
forecast, no action is taken. The implicit assumption in using this profit rule is that the
market does not expect interest rates to change.

πA(x̂,y) =
9∑

k=1

1

m

nk∑
t=0

(
1{x̂tt+k > xt} (xt+k − ytt+k)︸ ︷︷ ︸

profit/loss from buying futures

+ 1{x̂tt+k < xt} (ytt+k − xt+k)︸ ︷︷ ︸
profit/loss from selling futures

− 1{x̂tt+k 6= xt}($40)
)
,

where m is the duration of the forecasting period in years.

Profit rule B states to buy a futures contract ytt+k for month t+ k if it is predicted that
the rate will lie above the futures market rate, i.e. x̂tt+k > ytt+k. Conversely, one sells a
futures contract if x̂tt+k < ytt+k is predicted. In contrast to profit rule A, the assumption
that the market expects no change of rates is dropped:

πB(x̂,y) =
9∑

k=1

1

m

nk∑
t=0

(
1{x̂tt+k > ytt+k} (xt+k − ytt+k)︸ ︷︷ ︸

profit/loss from buying futures

+ 1{x̂tt+k < ytt+k} (ytt+k − xt+k)︸ ︷︷ ︸
profit/loss from selling futures

− 1{x̂tt+k 6= ytt+k}($40)
)
.

Profit rule C is the same as B with the additional requirement that a change must be
predicted, x̂tt+k 6= xt, for any action to be taken. If x̂tt+k = xt is predicted, no futures
contract is bought or sold:

2Strictly speaking, the profit rules used are not an annual average in the conventional sense where one
would average each year’s profit. Instead, profits are averaged over every forecast horizon and then
summed up in order to stay consistent with the methods of the other summary measures.
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πC(x̂,y) =
9∑

k=1

1

m

nk∑
t=0

(
1 (x̂tt+k 6= xt)︸ ︷︷ ︸

take a position

[
1{x̂tt+k > ytt+k} (xt+k − ytt+k)︸ ︷︷ ︸

profit/loss from buying futures

+ 1{x̂tt+k < ytt+k} (ytt+k − xt+k)︸ ︷︷ ︸
profit/loss from selling futures

− 1{x̂tt+k 6= ytt+k}($40)
])
.

Profit rule D orders to buy a futures contract if a fall in rates is predicted while the
futures market rate lies above the current rate, i.e. x̂tt+k < xt and ytt+k > xt. Conversely,
one sells a contract if a rise is predicted while the futures price lies below the current
rate: x̂tt+k > xt and ytt+k < xt. On occasions where both the forecast and the futures
price lie above the current rate, i.e. x̂tt+k > xt and ytt+k > xt, no action is taken. Likewise
if both lie below the current rate:

πD(x̂,y) =
9∑

k=1

1

m

nk∑
t=0

(
1{x̂tt+k > xt}1{ytt+k < xt} (xt+k − ytt+k)︸ ︷︷ ︸

profit/loss from buying futures

+ 1{x̂tt+k < xt}1{ytt+k > xt} (ytt+k − xt+k)︸ ︷︷ ︸
profit/loss from selling futures

− 1{x̂tt+k 6= ytt+k}($40)
)
.

A final note on the summary measures: when averaging the performances of the pre-
dictions under each scoring function, slight variations of the interpretation of ”average”
are possible. The summary measures employed all firstly average a forecast over ev-
ery forecast horizon before averaging the performances per horizon, as is expressed by
1
9

∑9
k=1

1
nk

∑nk−1
t=0 (. . . ). Alternatively, one could average over all predictions, giving each

an equal weighting in the form of 1
n

∑n
k=1(. . . ) where n is the total number of pre-

dictions. For this study, however, the resulting differences between interpretations is
negligible with regard to the final results.

5.2. Bayes rules

Arriving at a point prediction from a probabilistic forecast requires that the forecaster is
instructed to provide a functional of his predictive distribution (e.g. the mean functional)
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and that the scoring function for evaluation is consistent3 for the functional; alternatively,
the forecaster can be provided the scoring function, in which case he is able to make an
optimal point forecast x̂t by using the Bayes rule

x̂t = arg max
x

EF [S(x, Y )]

for a positively oriented scoring function S (using arg min instead for a negatively ori-
ented score function), where F is the predictive distribution for the random variable Y .
The argument x which maximizes EFS(x, Y ) is dependent on S. It is for this reason
that a ”best” forecast is meaningless in the context of point forecasts when the scoring
function used for evaluating the forecast is unknown (Gneiting, 2010). Considerations
have to be made which point forecast to deliver for each of the scoring functions in use.

For the average directional accuracy, the Bayes rule yields

EF [ADA(x̂,y)] =
(
EF [1{yt+1

t+k ≥ ytt+k}]1{x̂tt+k ≥ ytt+k}

+ EF [1{yt+1
t+k < ytt+k}]1{x̂tt+k < ytt+k}

)
=
(
[1− F (ytt+k)]1{x̂tt+k ≥ ytt+k}+ [F (ytt+k)]1{x̂tt+k < ytt+k}

)
.

If

1− F (ytt+k) ≥ F (ytt+k)

⇔ median(F ) ≥ ytt+k,

the expected value of the scoring function is maximized for any x̂tt+k ≥ ytt+k vis-a-vis
x̂tt+k < ytt+k if median(F ) < ytt+k.

For the mean absolute error, the median µmed of a random variable X minimizes the
score, as can be demonstrated briefly. If P is a probability measure, a ∈ R and without
loss of generality a < µmed, then

|X − a| − |X − µmed| = (a− µmed)1{X < a}+ (2X − a− µmed)1{a < X < µmed}
+ (µmed − a)1{X ≥ µmed}

⇒ EP [|X − a| − |X − µmed|] = (µmed − a)︸ ︷︷ ︸
≥0

(1− 2(1− P(X ≥ µmed)))︸ ︷︷ ︸
≥0

+ 2EP [(X − a)1{a < X < µmed}︸ ︷︷ ︸
≥0

]

≥ 0.

3A scoring function S is consistent for a functional T relative to the class F of probability measures
on the observation domain D if EF [S(t, Y )] ≤ EF [S(x, Y )] for all probability measures F ∈ F , all
t ∈ T (F ) and all x ∈ D.
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Similarly, it can be shown that the mean µ of a random variable X minimizes quadratic
scoring functions. If µ2 = EP [X2]− µ2, then

EP [(X − a)2] = EP [(X − µ+ µ− a)2]

=µ2 + (a− µ)2

so that the score is minimal for a = µ, where µ = EP [X].

As for the profit rules, a Bayes rule is obtained via

EF [πA(x̂,y)] = (1{x̂tt+k > xt}(µ− ytt+k)
+ 1{x̂tt+k < xt}(ytt+k − µ)

− 1{x̂tt+k 6= xt}{$40}),

indicating that any x̂tt+k > xt is optimal if ytt+k − µ > µ− ytt+k and vice versa. 4 Profit
rule B has an analogous Bayes rule, the only difference being that any x̂tt+k > ytt+k
becomes optimal if ytt+k − µ > µ − ytt+k and vice versa. Profit rule C in turn has the

same Bayes rule as Profit rule B with the only addition that x̂tt+k
!

6= xt in order to realize
positive profit. For profit rule D, given ytt+k − µ > 0, it’s also necessary that ytt+k < xt
in order for positive profits to be attainable. If the latter condition is not met, any x̂tt+k
is optimal since profit will be 0 anyway. Otherwise, any x̂tt+k > xt is a Bayes rule, and
vice versa for a change of signs.

The Bayes rules are summarized in Table 5.2

5.3. Results 1982 to 1996

The performance of each forecast from the studied period from 1982 to 1996 can be seen
in Table 5.3. The profit rules are expressed in thousands and always rounded to the
nearest thousand.

It is apparent that the naive no-change forecast is the most competitive of the forecasts:
it performs best of all the forecasts under 5 of the 7 scoring functions. It can be seen
from the figures in Appendix A that this is due to the naive no-change forecast’s strong
performance over long forecast horizons. The overall strong performance of the naive
no-change forecast is agreeable with the random walk assumption of financial markets.
Under this assumption the naive no-change forecast is optimal.

4An additional necessary condition is that the potential profit outweigh the transaction costs, |µ −
ytt+k| > $40 but this is always met with even the smallest possible change in interest rates of 0.01%
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Table 5.2.: Bayes rules for the various scoring functions

Scoring function Bayes rule Condition

ADA x̂tt+k ≥ ytt+k median(F ) ≥ ytt+k
x̂tt+k < ytt+k median(F ) < ytt+k

MAE x̂tt+k = median(F )
RMSE x̂tt+k = mean(F )

Profit A x̂tt+k > xt µ− ytt+k > 0
x̂tt+k < xt ytt+k − µ > 0

Profit B x̂tt+k > ytt+k µ− ytt+k > 0
x̂tt+k < ytt+k ytt+k − µ > 0

Profit C x̂tt+k > ytt+k , x̂tt+k 6= xt µ− ytt+k > 0
x̂tt+k < ytt+k , x̂tt+k 6= xt ytt+k − µ > 0

Profit D

x̂tt+k ≥ xt µ− ytt+k > 0 and ytt+k < xt
any x̂tt+k µ− ytt+k > 0 and ytt+k ≥ xt
x̂tt+k < xt ytt+k − µ > 0 and ytt+k ≥ xt
any x̂tt+k ytt+k − µ > 0 and ytt+k < xt

The constant rate forecast performs worst under every scoring function. Figure A.1.2 as
well as the according figures in Appendix B give evidence to its dismal performance over
long forecast horizons. This is particularly true during periods of large price changes as
was the case in 1982 and 1988 where the constant rate forecast is most susceptible to
large prediction errors.

Although the autoregressive forecast fails to outperform the naive no-change forecast,
note its strong performance under short forecast horizons of 1 to 3 months as demon-
strated by the figures in Appendix B.

The forward rate forecast is interesting in that it performs well under the profit measures
while doing relatively badly when using the standard measures. Upon closer inspection,
it becomes noticeable from the figures in Appendix B that the forward rate forecast
appears to have an erratic performance when comparing forecast horizons as opposed to
having a clear trend as one would expect. Notice, however, that performance generally is
best for a 3-month and 6-month horizon which also happens to knots on the yield curve
for which the interest rates are provided. The bad performance in between these knots
can therefore be traced back to the construction method of the yield curve which does
not seem to provide a good forward rate prediction. In particular, the low performance
over 1- and 2-month horizons is conspicuous, which gives evidence that the yield curve
may not be modeled well by a cubic polynomial over the 0- to 3-month term structure.
Since the yield curve must necessarily go through the knots 0 at t = 0 and the spot
rate of a 3-month T-Bill at t = 3, a cubic fitting may not be appropriate to model such
short-term interest rates.
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Table 5.3.: Forecast evaluation results, 1982 to 1996

ADA MAE RMSE Profit A Profit B Profit C Profit D
Naive no-change 0.316 0.482 0.645 $0 -$106 $0 $0
Constant rate 0.601 1.186 1.904 -$155 -$186 -$186 -$130
AR36(1) 0.558 0.652 0.910 -$115 -$126 -$125 -$110
Forward rate 0.416 1.141 1.440 $2 -$57 -$57 -$52
Ecp naive no-change 0.316 0.779 0.966 $53 -$10 -$9 -$27
Ecp constant rate 0.372 0.774 1.112 $36 -$36 -$36 -$35
Ecp AR36(1) 0.534 0.873 1.131 -$96 -$120 -$120 -$101
Ecp forward rate 0.356 0.571 0.803 $5 -$73 -$72 -$51

The error-corrected probabilistic forecasts provide an improvement over their counter-
part forecasts in some cases but not all. Most noticeably, the ecp forecasts perform much
better under the profit rules and likewise under the average directional accuracy. This
holds particularly for the constant rate and autoregressive forecast which will predict a
price change in the same direction over every forecast horizon. This apparent weakness
in prediction is corrected by the ecp forecasts and as a result, profits are increased for
these two forecasts.

It may also come as a surprise that most of the forecasts produce negative annual profit.
This fact cannot be explained by the accuracy (or rather, the lack thereof) of forecasts
alone as the prevailing futures rates determine profits and losses. Even if a forecast
correctly predicts a fall in T-Bill rates, if the corresponding futures rates is below the
predicted value, according to profit rules A, B and C one would still opt to buy a futures
contract. If T-Bill rates then fall below the rate of the futures contract, the contract
results in a loss even though the correct price movement was predicted. As prices of
financial markets are said to reflect all information available to investors by the efficient-
market hypothesis, the generally negative profits give testimony that such information
includes more than just knowledge of past rates, whereas the forecasts used rely solely
on past and current rates.

Table 5.4 shows the correlations between each scoring function. Every forecast horizon
is treated separately, meaning for every forecast, predictions over the same horizon were
grouped together and then evaluated. The correlations between scoring functions uses
the standard Pearson correlation

rxy =
n
∑
xiyi −

∑
xi
∑
yi√

n
∑
x2i − (

∑
xi)2

√
n
∑
y2i − (

∑
yi)2

.
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Table 5.4.: Correlations between the various scoring functions with each forecast horizon
treated separately, 1982 to 1996

ADA MAE RMSE Profit A Profit B Profit C Profit D
ADA - 0.409 0.452 -0.753 -0.569 -0.654 -0.691
MAE - - 0.974 -0.366 -0.406 -0.479 -0.586
RMSE - - - -0.454 -0.484 -0.562 -0.654
Profit A - - - - 0.821 0.857 0.852
Profit B - - - - - 0.892 0.797
Profit C - - - - - - 0.943

5.4. Results 1982 to 1987

Additionally, the results were cropped to the time window used by Leitch and Tanner
(1991) to allow for better comparisons. Table 5.5 shows the corresponding results of
this paper while Table 5.6 displays the results of Leitch and Tanner. Tables 5.7 and 5.8
again show the correlations found from each study.

Comparing Table 5.3 to the cropped results of Table 5.5, the discussed observations
retain their validity. What is noticeable is the overall deteriorating of performances
under every scoring rule. This is due to the nature of the data as the period from
1982 to 1983 saw an exceptionally large change in rates which the forecasts failed to
capture.

The results of Leitch and Tanner (1991) from Table 5.6 have similar tendencies but
obviously differ. A detailed discussion of possible reasons for the unexpected discrepancy
is given in chapter 6. The conclusions drawn from the results run counter to those
offered by Leitch and Tanner (1991): while correlations between profits and the standard
measures may not be substantial, they are significantly higher than was observed in the
Leitch and Tanner study.
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Table 5.5.: Forecast evaluation results, 1982 to 1987

ADA MAE RMSE Profit A Profit B Profit C Profit D
Naive no-change 0.299 0.574 0.747 $0 -$209 $0 $0
Constant rate 0.600 1.671 2.650 -$224 -$253 -$253 -$216
AR36(1) 0.580 0.799 1.125 -$216 -$234 -$232 -$211
Forward rate 0.420 1.481 1.813 -$9 -$123 -$123 -$109
Ecp naive no-change 0.352 0.887 1.034 $33 -$89 -$88 -$87
Ecp constant rate 0.386 1.031 1.344 $73 -$29 -$28 -$68
Ecp AR36(1) 0.585 1.089 1.415 -$242 -$251 -$250 -$225
Ecp forward rate 0.343 0.772 1.079 $72 -$92 -$92 -$68

Table 5.6.: Forecast evaluation results by Leitch and Tanner (1991), Table 1, 1982 to
1987

ADA MAE RMSE Profit A
Naive no-change 0.379 0.410 0.530 $0
Constant rate 0.466 2.013 2.514 -$674
AR(2) 0.479 0.739 0.902 -$928
Forward rate 0.437 0.656 0.848 -$3,050

Table 5.7.: Correlations between the various scoring functions with each forecast horizon
treated separately, 1982 to 1987

ADA MAE RMSE Profit A Profit B Profit C Profit D
ADA - 0.467 0.516 -0.789 -0.483 -0.689 -0.725
MAE - - 0.974 -0.496 -0.307 -0.493 -0.581
RMSE - - - -0.566 -0.374 -0.558 -0.634

Table 5.8.: Correlations between the various scoring functions by Leitch and Tanner
(1991), Table 4, with each forecast horizon treated separately, 1982 to 1987

ADA MAE RMSE Profit A Profit B Profit C Profit D
ADA - 0.012 0.024 0.441 0.819 0.619 0.572
MAE - - 0.996 -0.095 0.074 0.100 0.212
RMSE - - - -0.101 0.096 0.123 0.216
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6. Conclusion

The purpose of this study was to perform forecasts of historical interest rates and an-
alyze their performance under different scoring functions. The procedure was largely a
replication of a 1991 study by Leitch and Tanner to assess their findings with since then
newly available data.

Additionally, probabilistic forecasting was introduced in the form of error-corrected prob-
abilistic forecasts derived from point forecasts. Probabilistic forecasts have the advantage
that rather than limiting a future event to a single outcome, a forecast in form of a dis-
tribution shows a forecaster’s full set of beliefs. Point forecasts may still be acquired
from a probabilistic distribution where it suits practicality; however, it is imperative
that they minimize expectation under the scoring function that is used to evaluate the
prediction.

To conduct the forecasts, 3-month U.S. Treasury bill rates were gathered along with
corresponding futures rates for the period from 1982 to year-end 1996.

At the end of each month, predictions were made for the T-Bill rates for the following
9 months. The forecasting techniques included a naive no-change forecast, a constant
rate forecast, an autoregressive forecast and a forward rate forecast. Additionally, an
ecp forecast was derived from each technique.

Two types of scoring functions were then employed to evaluate forecasts: standard mea-
sures and profit measures. Standard measures included the average directional accuracy,
the mean average error and the root-mean-squared error. The profit measures consisted
of a set of 4 profit rules that evaluated hypothetical profits from each forecast by virtually
buying and selling T-Bill futures contracts at the prevailing futures rates.

Comparing the presented results to those of Leitch and Tanner (1991), this study par-
tially diverges from theirs: in particular, Leitch and Tanner note the low correlation be-
tween the standard performance measures and profit measures. Such correlations were
found to be significantly higher in this study, both over the 1982-1987 and 1982-1996
periods. In trying to explain this discrepancy, one notices that already the performances
of forecasts under each performance measure differ when they should be the same. There
are three identifiable sources of error for this.

Firstly, it is not precisely clear to the author exactly which rates of the 3-month Treasury
bills were used. The Federal Reserve Statistical Release (FRB, 2010) offer rates both
from the primary and secondary market. Furthermore, rates are available either day by
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day or as monthly averages. However, regardless of which rates are used, none delivered
results closer to those offered by Leitch and Tanner. Each possibility was tested and the
differences were only slim.

Secondly, some of the forecasting methods were difficult to reproduce: from the de-
scription provided it was not exactly clear how the constant rate forecast was done. An
alternative interpretation to the one used in section 4.1.2 is that changes from the month
previous to the current month are observed and the difference linearly extrapolated for
each forecast horizon, i.e.

x̂t = (xt + (xt − xt−1), xt + 2(xt − xt−1), . . . , xt + 9(xt − xt−1))′.

This method too was undertaken and yielded results no closer than the chosen method.
Concerning the autoregressive forecast, the authors do not explain how the ARIMA
model was fitted to the training period from 1975 to 1981, only the resulting coefficients
are presented. Using their model to make predictions also did not lead to the expected
results, so a new AR fitting was done from scratch. The forward rate was difficult
to reproduce because a reconstruction of the yield curve had to be done for which no
definitive method exists, as explained in section 4.1.4. However, most surprisingly of all,
the unambiguous naive no-change forecast did not match the results either.

This leads to a third possible error: the performance measures could have been applied
differently than was done in this paper. Each was duplicated to the best of the author’s
ability since no formulas were provided. The average directional accuracy described
herein adheres to the description by Leitch and Tanner (1991, p. 584) and measures

”the percentage of interest rate changes in the futures market that were
accurately forecast by each technique over the one-month observation interval
until the new forecasts were available.”

The mean average error and root-mean-squared error are common scoring functions
with no ambiguity. Concerning these scoring functions, it was unclear, however, how
predictions were averaged. As noted in section 5.1, different interpretations were un-
dertaken and no meaningful differences were found. The profit rules are described in
great detail, and the profit rules used here are simply an algebraic expression of the text
description.

It remains a nuisance that the results could not be replicated. Nonetheless, the methods
used in this study are very similar and have their own merits and justification, so it still
is a noteworthy concluding remark that correlations between standard measures and
profit measures were found to be more significant than was by Leitch and Tanner.

The benefits of applying an error-corrected probabilistic forecast to a point forecast
are somewhat inconclusive. The ecp forecast generally outperformed its point forecast
counterpart when performances were comparatively bad, as was the case for the constant
rate forecast and the forward rate forecast. Performances actually worsened in general
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for comparatively good performances, such as the naive no-change and autoregressive
forecast. The rational of applying an ecp forecast is to eliminate systematic errors that
occur with forecasts that are susceptible to trends. This applied to the constant rate
and forward rate forecast, and as expected, performances were generally improved.

What may strike the reader as remarkable is the fact that the most simplistic of the
forecasting methods, namely the naive no-change forecast, is also one of the most com-
petitive. While it may be the state of affairs that other, more sophisticated forecasts
don’t easily outperform the naive no-change forecast, one wouldn’t necessarily expect
them to do worse either. This result could be explained by the nature of the data:
particularly the period of 1982 to 1985 saw extraordinarily high interest rates compared
to the entire period since recording history began in 1934. This was mainly due to fiscal
policy measures of the U.S. Federal reserve to control inflation at the time. With high
fluctuations from month to month, forecasts that rely on earlier rates can be grossly mis-
leading as is exemplarily seen from the constant rate forecast. Further insight is given
by the figures in Appendix A: other forecasts perform better over short horizons but the
naive no-change forecast does far better over long horizons. The strong performance of
the naive no-change forecast is consistent with the random walk assumption of financial
markets for which the naive no-change forecast is optimal.

Another conspicuous fact is the forward rate performing worst over horizons of 1 and
2 months compared to longer horizons when the opposite is expected. This can be ex-
plained by the construction technique of the yield curve: fitting a cubic spline polynomial
to interpolate between the given points on the yield curve is problematic in that it does
not model the yield curve well between the first and second knot. The first knot has to
necessarily correspond to an interest rate of 0%. However, it seems unlikely that this
first interval between the first and second knot is modeled well by a cubic polynomial.
This is evidenced by the forecasts over a 1-month and 2-month horizon which rely on
interpolated points between the first and second knot: they consistently over-estimate
the interest rate and in doing so generally score worse than the predictions over the other
horizons. Perhaps this issue is not important for most uses of yield curve interpolation
with cubic splines because the time span covered by the first interval of this yield curve
(90 days) is quite short compared to the entire span of the full yield curve (30 years).
It is also noticeable how predictions are generally best for the 3 and 6 month horizons.
Such predictions rely on knots from the yield curve that did not have to be constructed,
thus perhaps displaying the limitations of cubic spline interpolation.

That every scoring function differs in how predictions are evaluated is not the contentious
issue of this paper. The merits and appropriateness of a scoring function depend on
the context and purpose of each forecast. Rather, it is interesting to note that the
relationship, that is to say the correlation, between scoring functions does not appear to
be the same as was established by Leitch and Tanner (1991). However, while the results
here presented do not fully agree with those of the two authors, their findings have
already found backing in the scientific community as is exhibited by 225 citations of their
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published paper.1 Since the evaluation of forecasts is by no means a trivial matter, it
seems vital that further investigation be undertaken to examine the relationship between
standard statistical measures and ones expressing tangible measures such as profits.

1Citations performed via Google Scholar.
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A. Forecast graphics

The following figures show the predictions made by every forecast over a 3-month and
9-month horizon. For comparison, the realized spot rates are included in each figure.
The strength of the no-change forecast is visible from its 9-month forecast which is con-
siderably closer to the realized spot rates than any of its competitors. However, one can
also see that over the 3-month horizon, other forecasts such as the autoregressive fore-
cast produce better predictions. Comparing the point forecasts to their error-corrected
probabilistic counterparts, it can be seen from the constant rate forecasts that its large
mispredictions are less pronounced when using a rolling correction period. However, for
the no-change forecast, the ecp no-change forecast worsens 9-month horizon forecasts.
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APPENDIX A. FORECAST GRAPHICS

A.1.1 No-change forecast A.1.2 Constant rate forecast

A.1.3 Autoregressive forecast A.1.4 Forward rate forecast
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APPENDIX A. FORECAST GRAPHICS

A.1.5 Ecp no-change forecast A.1.6 Ecp constant rate forecast

A.1.7 Ecp autoregressive forecast A.1.8 Ecp forward rate forecast
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B. Evaluation separated by horizons

To gain further insight into the evaluation of the forecasts under each scoring function,
the following figures display performances with each forecast horizon treated separately.
The function S(k) evaluates a forecast’s prediction for horizon k. For the average direc-
tional accuracy, S(k) takes the form

SADA(k) =
1

nk

nk−1∑
t=0

(
1{yt+1

t+k ≥ ytt+k}1{x̂tt+k ≥ ytt+k}+ 1{yt+1
t+k < ytt+k}1{x̂tt+k < ytt+k}

)
.

Results are displayed in Figure B.1.1 to Figure B.1.8.

Similarly, the mean absolute error is evaluated for each forecast horizon by

SMAE(k) =
1

nk

nk−1∑
t=0

|x̂tt+k − yt+1
t+k|

and results are displayed in Figure B.2.1 to Figure B.2.8.

For the root-mean-squared error, S(k) takes the form

SRMSE(k) =

√√√√ 1

nk

nk−1∑
t=0

(x̂tt+k − y
t+1
t+k)

2

and results are displayed in Figure B.3.1 to Figure 3.1.8.

Profit rule A is evaluated with every forecast horizon treated separately by

SπA(k) =
1

m

nk∑
t=0

(1{x̂tt+k > xt}(xt+k − ytt+k)

+ 1{x̂tt+k < xt}(ytt+k − xt+k)
− 1{x̂tt+k 6= xt}($40)),

where m is the duration of the forecasting period in years. Results are displayed from
Figure B.4.1 to Figure B.4.8.
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APPENDIX B. EVALUATION SEPARATED BY HORIZONS

For profit rule B, S(k) takes the form

SπB(k) =
1

m

nk∑
t=0

(1{x̂tt+k > ytt+k}(xt+k − ytt+k)

+ 1{x̂tt+k < ytt+k}(ytt+k − xt+k)
− 1{x̂tt+k 6= ytt+k}($40))

and results can be seen in Figure B.5.1 through Figure B.5.8.

Profit rule C has S(k) function

SπC (k) =
1

m

nk∑
t=0

(
1(x̂tt+k 6= xt)(1{x̂tt+k > ytt+k}(xt+k − ytt+k)

+ 1{x̂tt+k < ytt+k}(ytt+k − xt+k)

− 1{x̂tt+k 6= ytt+k}($40))
)
,

results shown from Figure B.6.1 to Figure B.6.8.

Profit rule D has S(k) function

SπD(k) =
1

m

nk∑
t=0

(1{x̂tt+k > xt}1{ytt+k < xt}(xt+k − ytt+k)

+ 1{x̂tt+k < xt}1{ytt+k > xt}(ytt+k − xt+k)
− 1{x̂tt+k 6= ytt+k}($40))

with results displayed from Figure B.7.1 to Figure B.7.8. The figures reveal the varying
strengths of the forecasts over different forecast horizons. Notice the no-change forecast’s
strong performance over long forecast horizons. The erratic performance of the forward
rate forecast seems obscure and is possibly due to a flawed modeling of the yield curve
as discussed in section 6.
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APPENDIX B. EVALUATION SEPARATED BY HORIZONS

B.1.1 Naive no-change B.1.2 Constant rate

B.1.3 Autoregressive B.1.4 Forward rate

B.1.5 Ecp naive no-change B.1.6 Ecp constant rate

B.1.7 Ecp autoregressive B.1.8 Ecp forward rate
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APPENDIX B. EVALUATION SEPARATED BY HORIZONS

B.2.1 Naive no-change B.2.2 Constant rate

B.2.3 Autoregressive B.2.4 Forward rate

B.2.5 Ecp no-change forecast B.2.6 Ecp constant rate forecast

B.2.7 Ecp autoregressive B.2.8 Ecp forward rate
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APPENDIX B. EVALUATION SEPARATED BY HORIZONS

B.3.1 Naive no-change B.3.2 Constant rate

B.3.3 Autoregressive B.3.4 Forward rate

B.3.5 Ecp no-change forecast B.3.6 Ecp constant rate forecast

B.3.7 Ecp autoregressive B.3.8 Ecp forward rate
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APPENDIX B. EVALUATION SEPARATED BY HORIZONS

B.4.1 Naive no-change B.4.2 Constant rate

B.4.3 Autoregressive B.4.4 Forward rate

B.4.5 Ecp no-change forecast B.4.6 Ecp constant rate forecast

B.4.7 Ecp autoregressive B.4.8 Ecp forward rate
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APPENDIX B. EVALUATION SEPARATED BY HORIZONS

B.5.1 Naive no-change B.5.2 Constant rate

B.5.3 Autoregressive B.5.4 Forward rate

B.5.5 Ecp no-change forecast B.5.6 Ecp constant rate forecast

B.5.7 Ecp autoregressive B.5.8 Ecp forward rate
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APPENDIX B. EVALUATION SEPARATED BY HORIZONS

B.6.1 Naive no-change B.6.2 Constant rate

B.6.3 Autoregressive B.6.4 Forward rate

B.6.5 Ecp no-change forecast B.6.6 Ecp constant rate forecast

B.6.7 Ecp autoregressive B.6.8 Ecp forward rate
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APPENDIX B. EVALUATION SEPARATED BY HORIZONS

B.7.1 Naive no-change B.7.2 Constant rate

B.7.3 Autoregressive B.7.4 Forward rate

B.7.5 Ecp no-change forecast B.7.6 Ecp constant rate forecast

B.7.7 Ecp autoregressive B.7.8 Ecp forward rate
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C. Scatter plots

C.1. Averaged by month and prediction horizon

In this section, forecasts’ predictions are plotted averaged over both the months and
prediction horizons. Each point corresponds to one forecast. There are 8 points per
plot, representing the 8 forecasts made. The first scoring function named in the caption
is plotted on the horizontal axis, the second is plotted on the vertical axis.

C.1.1 DA vs. MAE C.1.2 DA vs. RMSE

C.1.3 DA vs. Profit A C.1.4 DA vs. Profit B
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C.1. MONTH AND HORIZON APPENDIX C. SCATTER PLOTS

C.1.5 DA vs. Profit C C.1.6 DA vs. Profit D

C.1.7 MAE vs. RMSE C.1.8 MAE vs. Profit A

C.1.9 MAE vs. Profit B C.1.10 MAE vs. Profit C

C.1.11 MAE vs. Profit D C.1.12 RMSE vs. Profit A
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C.1. MONTH AND HORIZON APPENDIX C. SCATTER PLOTS

C.1.13 RMSE vs. Profit B C.1.14 RMSE vs. Profit C

C.1.15 RMSE vs. Profit D C.1.16 Profit A vs. Profit B

C.1.17 Profit A vs. Profit C C.1.18 Profit A vs. Profit D

C.1.19 Profit B vs. Profit C C.1.20 Profit B vs. Profit D
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C.2. BY MONTH APPENDIX C. SCATTER PLOTS

C.1.21 Profit C vs. Profit D

C.2. Averaged by month

In this section, the performance of a forecast is averaged over every month while the
forecast horizons are treated separately. This method yields 9 performance measure-
ments per forecast, thus totaling 72 points per plot. The first scoring function named in
the caption is plotted on the horizontal axis, the second is plotted on the vertical axis.

C.2.1 DA vs. MAE C.2.2 DA vs. RMSE
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C.2. BY MONTH APPENDIX C. SCATTER PLOTS

C.2.3 DA vs. Profit A C.2.4 DA vs. Profit B

C.2.5 DA vs. Profit C C.2.6 DA vs. Profit D

C.2.7 MAE vs. RMSE C.2.8 MAE vs. Profit A

C.2.9 MAE vs. Profit B C.2.10 MAE vs. Profit C
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C.2. BY MONTH APPENDIX C. SCATTER PLOTS

C.2.11 MAE vs. Profit D C.2.12 RMSE vs. Profit A

C.2.13 RMSE vs. Profit B C.2.14 RMSE vs. Profit C

C.2.15 RMSE vs. Profit D C.2.16 Profit A vs. Profit B

C.2.17 Profit A vs. Profit C C.2.18 Profit A vs. Profit D
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C.3. INDIVIDUAL APPENDIX C. SCATTER PLOTS

C.2.19 Profit B vs. Profit C C.2.20 Profit B vs. Profit D

C.2.21 Profit C vs. Profit D

C.3. Individual predictions

In this section, each individual prediction’s performance is plotted. Every forecast makes
1581 predictions, equaling 12648 points per plot. The first scoring function named in the
caption is plotted on the horizontal axis, the second is plotted on the vertical axis. Since
individual predictions are plotted, summary measures are replaced by their respective
scoring functions, changing the description from the MAE and RMSE to absolute error
(AE) and squared error (SE) respectively.

Note from Figure C.3.7 that not all points lie on a deterministic line. This is due to the
probabilistic forecasts delivering different point predictions under the absolute error and
the squared error scoring functions.

The general ”cross” shape of Figures C.3.16 to C.3.21 can be explained in that the profit
rules only differ in whether a futures contract is bought or sold. The magnitude of the
resulting profit (or loss) will be the same, hence all points lie on the diagonals of the
plane. Exceptions are when no action is taken under one of the profit rules in which
case the points will lie on the horizontal or vertical axis.
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C.3. INDIVIDUAL APPENDIX C. SCATTER PLOTS

C.3.1 DA vs. AE C.3.2 DA vs. SE

C.3.3 DA vs. Profit A C.3.4 DA vs. Profit B

C.3.5 DA vs. Profit C C.3.6 DA vs. Profit D

C.3.7 AE vs. SE C.3.8 AE vs. Profit A
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C.3.9 AE vs. Profit B C.3.10 AE vs. Profit C

C.3.11 AE vs. Profit D C.3.12 SE vs. Profit A

C.3.13 SE vs. Profit B C.3.14 SE vs. Profit C

C.3.15 SE vs. Profit D C.3.16 Profit A vs. Profit B
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C.3. INDIVIDUAL APPENDIX C. SCATTER PLOTS

C.3.17 Profit A vs. Profit C C.3.18 Profit A vs. Profit D

C.3.19 Profit B vs. Profit C C.3.20 Profit B vs. Profit D

C.3.21 Profit C vs. Profit D
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D. R Code

D.1. AR fitting and predicting

What follows is the R code used for fitting an autoregressive model to the data and
making predictions, as explained in section 4.1.3. In particular, it relies on the imple-
mentation of the ”tseries” R package, see Trapletti & Hornik (2011)

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \\

library(tseries) \\

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \\

ar.prediction <- function(x,n) \{ \\
\# ar.prediction predicts the next 9 forecast horizons based on a fitted
autoregressive model. The function performs a stationarity test on a rolling
training period of length n and fits either a AR(1) or ARIMA(1,1,0) model \\
\# x is the data input, minimum length has to be n \\
\# n is the desired length of the training period \\

if( length(x) < n) return(’’the length of your input is too short!’’) \\

data.length <- length(x) \\
stationarity.vector <- -999 \\

\# stationarity.vector is a vector that is filled with the entries
’’stationary’’ or ’’non-stationary’’ by the following function
stationarity.test; each entry corresponds to a training period. see
stationarity.test description for more info \\

stationarity.test <- function(x) \{ \\
if(kpss.test(x, null = ’’Trend’’)\$statistic > 0.146) stationarity.vector
<- ’’non-stationary’’ \\
else if (kpss.test(x, null = ’’Trend’’)\$statistic <= 0.146)
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D.1. AR FITTING AND PREDICTING APPENDIX D. R CODE

stationarity.vector <- ’’stationary’’ \\
return(stationarity.vector)\} \\

\# stationarity.test performs a kpss (Kwiatkowski-Phillips-Schmidt-Shin
tests) test for each training period to determine whether it is stationary or
non-stationary with a 95\% level of confidence. The results are saved in
stationarity.vector \\

for(i in 1:(data.length-n+1)) stationarity.vector[i]
<- stationarity.test(x[i:(i+n-1)]) \\

prediction <- -999 \\
prediction <- matrix(prediction, nrow = data.length-n+1, ncol = 9) \\

for(i in 1:(data.length-n+1))\{ \\
if (stationarity.vector[i] == ’’stationary’’) prediction[i,]
<- predict(ar(x[i:(i+n-1)], order.max = 1), n.ahead = 9)\$pred \\
else if (stationarity.vector[i] == ’’non-stationary’’) prediction[i,]
<- predict(arima(x[i:(i+n-1)], order = c(1,1,0), xreg=1:n), n.ahead = 9,
newxreg = (n+1):(n+9))\$pred \\
\}

\# The preceeding for-loop creates predictions from each training period’s
fitted model to the following 9 forecast horizons. The results are saved in
the matrix ’’prediction’’ \\

prediction <- round(prediction, digits = 2) \\
prediction <- as.data.frame(prediction) \\

\# Note: the last row of the matrix ’’prediction’’ can generally be discarded
since it represents a prediction made at the last point in time where
predictions are no longer necessary \\

return(prediction)\} \\

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \\

realization <- function(x)\{ \\
\# This function turns a vector of data into a matrix that can be used as a
realization matrix with which forecasts are compared \\

data.length <- length(x) \\

realization <- NA \\
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realization <- matrix(realization, nrow = data.length, ncol = 9) \\

for(i in 1:(data.length-8)) realization[i,] <- x[i:(i+8)] \\
for(j in (data.length-7):data.length) realization[j,1:(data.length-j+1)]
<- x[j:data.length] \\

realization <- as.data.frame(realization) \\

return(realization)\} \\

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \\

test.n <- function(x,m)\{ \\
\# Tests for which training period the mean average error is smallest \\
\# x is the data to perform the predictions on \\
\# m is a vector of different training periods to compare
(e.g. m = c(12,18,24,36) ) \\

data.length <- length(x) \\
r <- realization(x) \\
a <- -999 \\

\# Vector ’a’ will store the results of each fitting’s mean average error \\

for(n in m)\{ \\
p <- ar.prediction(x,n) \\

if(n==max(m))\{ a[which(m==n)] <- sum(abs(p - r[-(1:(max(m)-1)),]),
na.rm = TRUE)/((data.length - max(m) + 1 - 8)*9 + 36) \} \\
else\{ a[which(m==n)] <- sum(abs(p[-(1:(max(m)-n)),] - r[-(1:(max(m)-1)),]),
na.rm = TRUE)/((data.length - max(m) + 1 - 8)*9 + 36) \} \\

\} \\

\# One has to be careful that over the same set of data, model fittings with
longer training periods produce fewer forecasts than AR fittings with shorter
training periods; however, when comparing forecasts of different fittings, all
should be evaluated only over the realizations which are common to all (i.e.
the realizations of the fitting with the longest training period) \\

return(a)\}
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D.2. ECP FORECAST APPENDIX D. R CODE

D.2. Ecp forecast

The following code is used for turning a forecast into an error-corrected probabilistic
forecast as explained in section 4.2:

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \\

pointforecast <- function(x, fct)\{ \\
\# This function derives a ’best’ point forecast based on a probability
forecast \\
\# x is the probability forecast matrix \\
\# fct is the function to apply to retrieve a point forecast
(e.g. mean, median) \\

m <- dim(x)[2]/9 \\
point <- numeric() \\

for(i in 1:9)\{ \\
a <- apply(x[,(1:m) + (i-1)*m], 1, fct) \\
point <- round(cbind(point, a), digits = 2) \\
\} \\

return(point)\} \\

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \\

ecpforecast <- function(data, pf, m)\{ \\
\# Creates a matrix that serves as the probability forecast \\
\# See ecpf description for more info \\

a <- rbind( ecpf(data,pf,m,1) , matrix(NA, ncol = m, nrow = 0) ) \\
b <- rbind( ecpf(data,pf,m,2) , matrix(NA, ncol = m, nrow = 1) ) \\
c <- rbind( ecpf(data,pf,m,3) , matrix(NA, ncol = m, nrow = 2) ) \\
d <- rbind( ecpf(data,pf,m,4) , matrix(NA, ncol = m, nrow = 3) ) \\
e <- rbind( ecpf(data,pf,m,5) , matrix(NA, ncol = m, nrow = 4) ) \\
f <- rbind( ecpf(data,pf,m,6) , matrix(NA, ncol = m, nrow = 5) ) \\
g <- rbind( ecpf(data,pf,m,7) , matrix(NA, ncol = m, nrow = 6) ) \\
h <- rbind( ecpf(data,pf,m,8) , matrix(NA, ncol = m, nrow = 7) ) \\
i <- rbind( ecpf(data,pf,m,9) , matrix(NA, ncol = m, nrow = 8) ) \\

x <- cbind(a,b,c,d,e,f,g,h,i) \\
return(x)\} \\
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\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \\

ecpf <- function(data,pf,m,k)\{ \\
\# Function creates an error-corrected probability forecast matrix based
on a point

forecasts matrix \\
\# data denotes the data for the training period as well as the data that
is to be

predicted (variable should be a vector) \\
\# pf denotes the point forecast matrix for the (m+1)th data entry to the
last data

entry (i.e. not including the initial correction period) \\
\# m denotes the length of the correction period \\
\# k denotes the forecast horizon \\

\# Note: the ’’data’’ input has to be modified to fit the point forecast
by which it is

supposed to be predicted: discard the beginning entries of the ’’data’’
vectors until

its length is +1 the number of rows of the point forecast matrix (see
below for more

info) \\

real <- as.matrix(realization(data)) \\
error <- pf - real[-1,] \\

\# The error of a point forecast. The first row is discarded from the
realization

matrix because it corresponds to the first ’’input for the predictions’’
which cannot be

part of their prediction \\

prob <- numeric() \\
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for(i in 1:(dim(pf)[1]-m-k+1))\{ \\

e <- error[(i:(i+m-1)),k] \\
prob[(1:m) + (i-1)*m] <- sort( pf[m+i,k] + e) \\
\} \\

prob <- matrix(prob, ncol = m, byrow = TRUE) \\
return(prob)\} \\

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \\

realization <- function(x)\{ \\
\# This function turns a vector of data into a matrix that can be used
as a realization \\

matrix with which forecasts are compared \\

data.length <- length(x) \\

realization <- NA \\
realization <- matrix(realization, nrow = data.length, ncol = 9) \\

for(i in 1:(data.length-8)) realization[i,] <- x[i:(i+8)] \\
for(j in (data.length-7):data.length) realization[j,1:(data.length-j+1)]
<- x \\

[j:data.length] \\

realization <- as.data.frame(realization) \\

return(realization)\} \\

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \\

naive <- function(data)\{ \\
\# creates a naive no-change forecast matrix that can quickly be used
as a sample forecast\\

datam <- matrix(data[-length(data)], nrow = length(data) - 1, ncol = 9) \\
for(j in (length(data)-8):(length(data)-1)) datam[j,((length(data)-j+1):9)]
<- NA \\
return(datam)\} \\
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