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Abstract

In the recent past, ensemble prediction systems have become state of the art in the
meteorological community. However, ensembles often underestimate the uncertainty in
numerical weather prediction, resulting in underdispersive and thus uncalibrated forecasts.
In order to employ the full potential of the ensemble, statistical postprocessing is needed.
However, many of the current approaches, such as Bayesian model averaging (BMA) or
ensemble model output statistics (EMOS), focus on forecasts at single locations, not taking
spatial correlation between different observation sites into account. In this thesis, we
discuss the existing method of spatial BMA, which combines the geostatistical output
perturbation method (GOP) for modeling the spatial structure of the observation field,
with BMA, in order to produce calibrated and sharp forecasts for whole weather fields.
We propose a similar approach that employs EMOS instead of BMA. In a case study, we
apply the methods to 21-hour ahead forecasts of surface temperature over Germany, issued
by COSMO-DE-EPS. The multivariate forecasts were capable of capturing the spatial
structure of the weather field and turn out to be calibrated and sharp, while showing an
improvement over the raw ensemble as well as the reference forecasts.

Zusammenfassung

In der nahen Vergangenheit sind ensemblebasierte Wettervorhersagesysteme immer populä-
rer geworden. Dennoch unterschätzen die Ensembles häufig die Unsicherheit numerischer
Wettervorhersagen, wodurch die Vorhersagen unterdispersiv werden und folglich nicht kali-
briert sind. Um die volle Leistungsfähigkeit des Ensembles zu entfalten, werden statistische
Nachbearbeitungsverfahren benötigt. Jedoch konzentriert sich die Mehrheit dieser Metho-
den, wie unter anderem Bayesian model averaging (BMA) oder ensemble model output
statistics (EMOS), auf Vorhersagen an einzelnen Orten und berücksichtigt dabei nicht die
räumliche Korrelation zwischen den verschiedenen Beobachtungsstationen. In dieser Arbeit
diskutieren wir die vorhandene Methode spatial BMA, welche die Kombination von zwei
Nachbearbeitungsverfahren darstellt. Geostatistcal output perturbation method (GOP)
modelliert die räumliche Struktur des Wetterfeldes und BMA inkludiert die Ensembleinfor-
mation, so dass kalibrierte und scharfe Wettervorhersagen für ganze Wetterfelder produziert
werden. Wir schlagen zusätzlich einen ähnlichen Ansatz vor, der BMA durch EMOS ersetzt.
In einer Fallstudie wenden wir die Methoden auf 21-stündige Temperaturvorhersagen von
COSMO-DE-EPS für Deutschland an. Die multivariaten Vorhersagen schaffen es, die räum-
liche Struktur des Wetterfeldes wiederzugeben und erzeugen somit scharfe und kalibrierte
Vorhersagen, die eine Verbesserung gegenüber dem unbearbeiteten Ensemble sowie den
Referenzvorhersagemethoden darstellen.
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Chapter 1

Introduction

”My interest is in the future because I am going to spend the rest of my life there.”
C.F. Kettering (1876-1958), inventor, scientist, engineer, businessman, philosopher

Predictions of the future have always been of great interest for mankind. Especially
today, weather forecasts are a matter of high economical and social value, as they find
applications in many different areas. Accurate predictions are essential for the growing field
of renewable energies, management of air traffic, and natural disaster control, just to name
a few.

In the past century, huge developments have been made in the field of forecasting
weather quantities. With the advent of computer simulation, the rise of deterministic
numerical weather prediction began in the early 1950s. At the same time, concerns over
rigorous determinism, based on the principle that the future state of a system can be
entirely described by its present state, started to grow (Lewis, 2005). Following the path of
determinism, sources of uncertainty in numerical weather forecasts, such as imperfections
in model formulation or insufficiency in the description of initial and boundary conditions,
are not addressed (Leutbecher and Palmer, 2008).

In order to resolve these shortcomings, the first ensemble prediction systems were
developed in the early 1990s (Lewis, 2005). An ensemble consists of multiple runs of the
numerical weather prediction model, with variations in mathematical representations of the
development of the atmosphere, initial conditions or lateral boundaries, and thus seeks to
quantify the sources of uncertainty in deterministic forecasts. However, ensemble prediction
systems are often underdispersed and tend to be biased (Hamill and Colucci, 1997).
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To address these issues, a variety of statistical postprocessing methods for ensembles
have been proposed (Wilks and Hamill, 2007). These models yield probabilistic forecasts,
meaning that they deliver a predictive probability distribution for the weather variable of
interest, which generally outperforms the raw ensemble in terms of satisfying the underlying
goal of “maximizing sharpness subject to calibration” (Gneiting et al., 2007).

However, the majority of these methods is only applicable to univariate weather quan-
tities at a single location and does not model spatial dependencies between different
observation sites, which are of great importance when considering composite quantities,
such as minima, maxima, totals or averages. These aggregated quantities are crucial e.g. for
highway maintenance operations or flood management. Based on well-established univariate
postprocessing techniques, probabilistic forecasts of any composite quantity of interest
are straightforward to calculate. However, there is a high possibility that the predictive
uncertainty is estimated poorly, as the model does not capture that the site-specific pre-
dictive uncertainties are correlated which has a great impact on the overall uncertainty
(Thorarinsdottir et al., 2012).

In the case of deterministic temperature forecasts, Gel et al. (2004) propose the geo-
statistical output perturbation (GOP) method, that uses a geostatistical model in order
to simulate spatially consistent temperature forecasts fields. In this thesis, we discuss the
approach by Berrocal et al. (2007), that combines the univariate postprocessing method
Baysian model averaging (BMA) with GOP. Based on ensemble prediction systems, BMA
yields predictive probability density functions, which are weighted averages of densities
centered at the bias-corrected forecasts of the individual ensemble members (Raftery et al.,
2005). By uniting BMA and GOP, calibrated probabilistic forecasts of entire weather fields
are produced based on ensemble prediction systems. In a similar way, we propose combining
the univariate postprocessing method based on ensemble model output statistics (EMOS),
which produces normal predictive density functions for temperature (Gneiting et al., 2005),
with GOP in order to obtain the same goal.

The remainder of this thesis is organized as follows. Chapter 2 gives an introduction to
COSMO-DE-EPS, the 20-member ensemble prediction system developed by the German
Meteorological Service (DWD). We describe its construction and evaluate the predictive
performance of 21-hour ahead forecasts of surface temperature over Germany in 2011.
In Chapter 3, we provide details of the univariate postprocessing methods EMOS and
BMA as well as a rather simple approach, based solely on least squares regression. In
a case study, we apply these models to COSMO-DE-EPS and compare their predictive
performance with reference forecasts. At the end of this chapter, we investigate an EMOS
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approach, where we replace the commonly used normal distribution with a Student’s
t-distribution, in order to cope with some of the challenges in statistical postprocessing
of COSMO-DE-EPS. Chapter 4 describes the multivariate GOP and different ways of
estimating the corresponding parameters. Then, we combine GOP with EMOS+ and BMA
respectively in order to produce calibrated and sharp forecasts for entire weather fields,
followed by a case study based on COSMO-DE-EPS. The thesis closes with a discussion in
Chapter 5, where we summarize the results, describe possible improvements of the methods,
address some unresolved issues and hint at subjects of further research. The Appendix
describes verification methods, compares the empirical variogram calculation of two different
R packages and provides additional results for the models presented in Chapter 4.
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Chapter 2

COSMO-DE-EPS

This chapter serves as an introduction to the ensemble forecasting system COSMO-DE-EPS
(COnsortium for Small-scale MOdeling - DE - Ensemble Prediction System), which we will
use as a basis for the competing postprocessing methods in the following chapters. Starting
with some properties of the ensemble, we then describe its construction and end with an
evaluation of the forecasting performance.

2.1 Properties and Construction

COSMO-DE-EPS is a 20-member ensemble prediction system, developed by the German
Meteorological Service, with a planned extension to 40 members. Its pre-operational phase
started on 9 December 2010 and the operational phase was launched on 22 May 2012 (Theis
and Gebhardt, 2012). The forecasts are made for lead times from 0 up to 21 hours on a
grid covering Germany. The horizontal and vertical spacing between grid-points is 2.8 km,
resulting in meso-γ-scale predictions (Peralta and Buchhold, 2011; Theis et al., 2011).

The EPS is based on a convection-permitting configuration, COSMO-DE, of the numeri-
cal weather prediction model COSMO (Steppeler et al., 2003; Baldauf et al., 2011). Usually,
prediction ensembles are created by perturbing the initial conditions and model physics of
the corresponding numerical forecast model, based on an idea by Leith (1974). In case of
the COSMO-DE-EPS, variations in lateral boundary conditions are also included, in order
to generate multiple deterministic predictions for one location (Gebhardt et al., 2011). In
particular, five different configurations of the COSMO-DE model yield perturbations in the
model physics. On the other hand, the ensemble member forecasts rely on diverse lateral
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  E16    E17    E18    E19    E20  

Figure 2.1: Construction of COSMO-DE-EPS: IFS, GME, GFS, GSM represent the four
global models, which provide the initial and lateral boundary conditions, and 1-5 correspond
to the different configurations in the model physics of COSMO-DE. By running the four
sets of restricting conditions through the five distinct model formulations, 20 ensemble
members E1-E20 are generated.

boundary and initial conditions, provided by four dissimilar global models (Peralta et al.,
2012): Integrated Forecast System (IFS), run by the European Centre for Medium-Range
Weather Forecasts (ECMWF) (Janssen and Bidlot, 2002), DWD’s global model (GME)
(Majewski et al., 2002), Global Forecast System (GFS) (Environmental Modeling Center,
2003), operated by the American National Center for Environmental Prediction (NCEP)
and Global Spectral Model (GSM), generated by the Meteorological Agency of Japan (Zhan
et al., 1995). When plugging these four distinct sets of conditions in the five configurations
of COSMO-DE, 20 members are generated. This is visualized in Figure 2.1.

2.2 Forecasting Performance

We consider 21-hour ahead forecasts of surface temperature, initialized at 00:00 UTC, within
the time frame from 10 December 2010 until 30 November 2011. Using a training period of
25 days for our postprocessing methods in Chapters 3 and 4, we start making forecasts on 5
January 2011 and thus evaluate the raw ensemble over the same period of time. If at least
one member is missing at every location on a specific day, we omit this day completely,
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CHAPTER 2. COSMO-DE-EPS

Table 2.1: Scores of the raw ensemble, as well as its average width and coverage of the
nominal 90.5% prediction interval, aggregated over 5 January 2011 until 30 November 2011.

CRPS MAE RMSE Width Coverage
1.77°C 1.57°C 2.27°C 1.50°C 26.97%

Figure 2.2: Map of observational locations in Germany

pretending it never occurred. By following this approach, ten days are eliminated with 346
days remaining.

Spread over Germany, there are 515 SYNOP stations, as seen in Figure 2.2. However,
the forecasts’ grid points do usually not match the observation locations and so the ensemble
output is bilinearly interpolated, in order to produce predictions for the observation sites.
When applying this procedure, forecasts and observations are provided for the 515 locations.
However, bilinear interpolation does not account for variation of temperature due to changes
in altitude. Especially, if the surrounding grid points are situated substantially beneath
the observational site, the corresponding prediction shows a significant negative bias. This
occurs at Germany’s highest mountain Zugspitze at 2690 m above sea level and consequently
we choose to eliminate this station, as the corresponding forecasts prove to be unreliable
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Figure 2.3: Rank histogram of the raw ensemble aggregated over 514 observation sites
and the time period from 5 January 2011 until 30 November 2011.

and distort the overall performance results. In total, we evaluate forecasts for 117,879
verifying observations at 514 sites over 346 days.

As has been discussed in the literature, ensemble forecasts tend to be underdispersive
and often show a positive spread-error correlation (see e.g. Hamill and Colucci, 1997; Buizza,
1997; Eckel and Clifford, 2005). Calculating the latter for the COSMO-DE-EPS via the
absolute error and the ensemble range, the outcome equals 0.11, which motivates the
application of the postprocessing methods EMOS and BMA in Chapter 3, as both of them
incorporate the ensemble variance information.

When assessing the performance, we apply a selection of the methods presented in
Appendix A. The rank histogram in Figure 2.3 clearly shows underdispersion of the
ensemble, as the majority of the observations fall beneath the ensemble’s predicted minimum
temperature or above its maximum which leads to the conclusion that the ensemble width
is too narrow. By looking at Table 2.1, this idea is supported, as the average coverage of
the nominal 90.5% prediction interval yields only 26.97%. Consequently, its average width
of 1.50°C is highly underestimated and the spread needs to be larger in order to generate
calibrated forecasts.

A contributing factor to the small spread could be the fact that the forecast errors of the
distinct ensemble members are highly correlated, which can be seen in Figure 2.4, showing
the monthly and overall correlation coefficients between the members. The correlation
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coefficients of the error terms range from 0.82 up to 1, implying a great dependency between
the errors. In these image plots, there are some noticeable patterns, which can be traced
back to the construction of COSMO-DE-EPS. Obviously, the members E1-E5, E6-E-10,
E11-E15 and E16-E20 always show a particular high correlation, due to the fact that they
are based on initial and lateral boundary conditions provided by the same global model.
In addition, within every block of five succeeding members, there is a similar pattern of
coefficients visible, which can be related to the same configurations of the model physics.
Seasonal changes have a small impact on the correlation coefficient, as the correlation
slightly reduces during the summer months, but increases again in autumn.

While evaluating the forecasting performance, another useful tool to compare competing
forecasting methods are the scores in Table 2.1. For the mean absolute error (MAE) and
root mean square error (RMSE), the COSMO-DE-EPS yields good results, which indicates
that the ensemble’s predictive median and mean are close to the verifying observations.
However, as mentioned before, the overall spread of the ensemble is too small, which leaves
room for improvement, especially in the continuous rank probability score (CRPS). We will
investigate this in the following two chapters.

This chapter has introduced the basics of the COSMO-DE-EPS by describing its
characteristics and modulation. In its current state, the predictions are very accurate, but
the ensemble spread is too small and its members are highly correlated. In consequence,
the need for postprocessing arises, in order to address these deficiencies.
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Figure 2.4: Image plots of monthly correlation coefficients between the members of the
ensemble, where the horizontal and vertical axis represent the members of the COSMO-
DE-EPS. The plot in the last panel covers the entire time period.
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Chapter 3

Univariate Postprocessing

Most forecast ensembles, including the COSMO-DE-EPS (introduced in Chapter 2), show
a positive spread-error correlation, while at the same time being uncalibrated. In order to
address theses issues, a variety of statistical postprocessing techniques have been developed.
In this chapter, we present different methods for univariate postprocessing of ensemble
forecasts. All the procedures have in common that they yield full predictive probability
distributions, which strive to satisfy the underlying goal of “maximizing sharpness subject
to calibration” (Gneiting et al., 2007). In this thesis, we focus on techniques for the
postprocessing of temperature.

At first, we briefly demonstrate the principles of the well known techniques BMA
and EMOS, followed by a method which is solely based on least squares regression. We
name this method linear model forecasts (LMF). Subsequently, we explain procedures to
obtain reference forecasts in order to compare the overall predictive performance. After
discussing the application of all techniques to the COSMO-DE-EPS, we finalize with an
EMOS approach, where we replace the commonly used normal distribution with a Student’s
t-distribution, in an attempt to resolve some of the issues that arise in the statistical
postprocessing of COSMO-DE-EPS.

3.1 Bayesian Model Averaging (BMA)

BMA is a standard statistical approach for combining competing statistical models and has
a broad application in e.g. social and health sciences (Hoeting et al., 1999). Its advantage
over other techniques, such as conventional regression analysis, is based on the fact that
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CHAPTER 3. Univariate Postprocessing

BMA makes use of multiple models, in contrast to methods which soley use a single model
that is deemed to be the best. Only using a single model often leads to an underestimation
of the uncertainty in the process of model selection. In this thesis, we follow the extension of
BMA from statistical models to dynamical models by Raftery et al. (2005), for the purpose
of producing calibrated and sharp predictive distributions.

Let ys denote the weather variable of interest at location s ∈ S, and f1s, ..., fMs the
corresponding forecasts of the M -member ensemble. In the framework of BMA, we assign
each member a conditional probability density function pm (ys|fms), or kernel density, which
we can interpret as the conditional density of ys, given member m ∈ M being the most
skillful within the ensemble. Then, the predictive density for ys equals

p (ys|f1s, ..., fMs) =
M∑
m=1

wmpm (ys|fms) ,

where w1, ..., wM are non-negative weights that add up to 1. The weights are determined by
the member’s skill in the training period; a higher weight reflects a more reliable member,
whereas a lower weight is associated with a weak performance.

In the setting of BMA, temperature is modeled with a normal distribution. Thus, the
kernels are univariate normal densities, centered at each member’s bias-corrected forecast
ams + bmsfms,

ys|fms ∼ N (ams + bmsfms, σ2)

with a common variance σ2.
If it is necessary to produce deterministic forecasts, the BMA predictive mean, which is

a weighted average over the bias-corrected forecast,

E (y|f1, ..., fM) =
M∑
m=1

wm (am + bmfm)

can be useful. The overall variance of ys in the BMA setting is

Var(ys|f1s, .., fms) =
M∑
m=1

wm

(
(am + bmfms)−

M∑
m=1

wm (am + bmfms)
)2

+ σ2,

where the first part of the sum on the right-hand side is the between-forecast variance while
the second part represents the within-forecast variance.

18
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Given a set of verifying observations yst and associated ensemble forecasts f1st, ..., fMst

for day t within a training period T , the BMA parameters are obtained in three steps. First,
the member-specific parameters am and bm, for m = 1, ...,M , are individually determined
via simple linear regression. In the second step, the weights wm, m = 1, ...,M , and the
variance σ2 are estimated by maximizing the log-likelihood function

l(w1, ..., wM , σ2) =
∑
s,t

log
(

M∑
m=1

wmp (yt|fkst)
)
,

which, for simplicity, is based on the assumption that the forecast errors are independent
in space and time. However, the maximum cannot be found analytically and Raftery
et al. (2005) thus employ the expectation–maximization (EM) algorithm. In the final and
voluntary step, the parameter estimate for σ2 may be refined by minimizing the CRPS, a
proper scoring rule described in Appendix A, over the training period. When implementing
the BMA approach, we utilize the R package ensembleBMA by Fraley et al. (2011), which
yields the desired predictive distributions.

Apart from generating forecasts for normally distributed variables, such as temperature
or sea level pressure, BMA approaches for other weather quantities have been studied.
Sloughter et al. (2007) propose a gamma distribution with a point mass in zero for modeling
precipitation, and Sloughter et al. (2010) present a BMA method to predict wind speed
using a gamma distribution. In addition, Bao et al. (2010) describe future wind directions
via von Mises distributions.

3.2 Ensemble Model Output Statistics (EMOS)

EMOS, also called non-homogeneous Gaussian regression, is a form of multiple linear
regression and an extension to the model output statistics technique. In contrast to BMA,
EMOS is based on a single predictive density, whose parameters depend on the ensemble
forecasts.

For temperature, a normal distribution is again employed to describe the future state of
the variable (Gneiting et al., 2005). At location s ∈ S, the predictive distribution is

ys|f1s, ..., fMs ∼ N (a1 + b1f1s + ...+ bMfMs, c+ dS2
s ),

19
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which forms a linear model with the forecasts as predictors and the temperature ys as
predictand. The variance is modeled as a linear function of the ensemble variance S2

s .
In this approach, the variance term counteracts the underdispersion of the ensemble,
while additionally accounting for the positive spread-error correlation by incorporating the
ensemble information.

In contrast to BMA, the coefficients b1, ..., bM can take any value in R. However, negative
values are difficult to interpret. Hence, the authors suggest restricting the coefficients to be
non-negative and name this approach EMOS+. In this extended framework, the coefficients
reflect the relative performance of the ensemble members over the training period. We
further investigate a simpler variant, EMOS mean, where the ensemble mean is used as a
predictor rather than the individual members.

For the calculation of the parameters, Gneiting et al. (2005) use minimum CRPS and
maximum likelihood estimation. According to their results, the minimum CRPS estimation
outperforms the latter and hence we employ this method as well. Over a set of training
data which contains the past forecasts and corresponding observations, the parameters
optimizing the score are chosen. In the case of a normal distribution, the CRPS can be
written in a closed form (Gneiting et al., 2005) and the computational cost is therefore
substantially reduced.

Further developments of EMOS for wind speed, wind gust and wind vectors can be
found in Thorarinsdottir and Gneiting (2010), Thorarinsdottir and Johnson (2012) and
Schuhen et al. (2012), respectively.

3.3 Linear Model Forecast (LMF)

Originally, we developed the LMF in the context of modeling EMOS with a Student’s
t-distribution. In this framework, the technique performs very well and we hence include
it here in a more general setting. LMF is based on two subsequent applications of linear
least squares regression. In the first step, we calculate the bias correction parameters a
and b for the ensemble mean f̄ over a training period. We could include all members in
the model formulation, however, due to the high correlation of the forecast errors within
COSMO-DE-EPS, there is not much lost when following this simpler approach. Then, we
use linear regression equations with the squared values of the residuals as predictands and
the local ensemble variances as predictors, in order to obtain the variance parameters c and
d. Finally, the predictive density results in
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ys|f1s, ..., fMs ∼ N (a+ bf̄ , c+ dS2),

where S represents the standard deviation of the ensemble.

3.4 Reference Forecasts

In order to compare the postprocessing methods discussed above with standard approaches,
we also include some simpler techniques. Error dressing and the bias-corrected ensemble are
both based on ensemble predictions systems, whereas the climatology ensemble is generated
via past observations.

Error Dressing

Error dressing, proposed by Gneiting et al. (2008), is an effortless way of postprocessing
ensemble outputs, which accounts for bias and dispersion errors. We employ a global variant
of the method, where at each station s ∈ S we calculate the empirical errors es = ys − f̄s of
the ensemble mean f̄s over the training period. Let ē denote the mean of the sample of
empirical errors over all stations and σ2 the empirical variance, then the predictive density
equals

ys|f1s, ..., fMs ∼ N (f̄s + ē, σ2).

Bias-Corrected Ensemble

The bias-corrected ensemble is a slight variation of the original ensemble, which often
outperforms the former. Considering each member individually, we use linear least squares
regression, with the forecasts fmst as predictors and the verifying observations yst as
predictands for day t in the training period T . When following this approach, we obtain
the member-specific bias-correcting parameters am,t+1, bm,t+1 for the succeeding day t+ 1.
Then, the values am,t+1 + bm,t+1fm,s,t+1, m = 1, ...,M , form the bias-corrected ensemble.

Climatology

In contrast to the aforementioned methods, the climatology ensemble is not based on an EPS,
instead past observations from the training period for the statistical postprocessing methods
are used to produce forecasts. When fitting a normal distribution to the observations
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Table 3.1: Univariate scores as well as width and coverage of the nominal 90.5% prediction
interval. The results cover the time period from 5 January 2011 until 30 November 2011
and are averaged over all observation sites and days.

Prediction Intervals
CRPS MAE RMSE Width Coverage
(°C) (°C) (°C) (°C) (%)

Raw Ensemble 1.77 1.57 2.27 1.50 26.97
Bias-Corrected Ensemble 1.30 1.48 1.89 1.20 28.51
BMA 1.04 1.46 1.86 5.91 88.82
EMOS 1.02 1.43 1.83 5.61 88.70
EMOS+ 1.04 1.46 1.87 5.76 87.99
EMOS Mean 1.05 1.48 1.89 5.89 88.20
Error Dressing 1.07 1.50 1.91 4.73 80.12
LMF 1.07 1.48 1.89 6.13 89.53
Climatology 2.25 3.16 4.00 11.79 85.25

contained in the training set, we use the empirical mean and variance as the distribution
parameters. Unlike the error dressing ensemble, this procedure is performed locally at every
single station s ∈ S. In this way, for every observation site s ∈ S, a different distribution
function is obtained.

3.5 Results

All presented methods - except for the climatology ensemble - share the mutual characteristic
that they use the structural patterns of past forecast errors, with the purpose of improving
the current prediction. Hence, past data, containing the ensemble forecasts as well as
the verifying observations, is employed for the estimation of the model parameters. In
this thesis, we use the sliding window approach, which means, when estimating the model
parameters for a specific day, the data of a certain number of consecutive, previous days is
utilized in this process.

For the determination of the length of the training period, there is a trade-off (Gneiting
et al., 2005). A short span has the ability to adjust more quickly to seasonal variation,
whereas parameter estimation based on a longer time frame is more stable and less prone
to variability. However, as our given data hardly covers one year, we do not have the
opportunity for out-of-sample comparison of different lengths for the training period and
consequently use 25 days, as proposed by Berrocal et al. (2007).
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When implementing the introduced procedures, we use the output of COSMO-DE-EPS,
presented in Chapter 2. Forecast of 21h-ahead surface temperature are available from 10
December 2010 until 30 November 2011. With a 25-day training period, we begin forecasting
on 5 January 2011.

For the assessment of the forecasting performance, we evaluate the predictive densities
of the competing models with the techniques presented in Appendix A. In the case of the
raw and the bias-corrected ensemble, we replace the output with a normal distribution,
whose parameters are the empirical mean and variance of the respective ensemble.

Figure 3.1 shows the rank histograms, which are based on samples of the ensemble size
20 for all postprocessing models. The raw as well as the bias-corrected ensemble show a
U-shape and thus underestimate the forecasting uncertainty. The remaining postprocessing
techniques correct this flaw, demonstrated by nearly uniformly appearing histograms. The
scores in Table 3.1 confirm the improvement achieved by postprocessing. Considering the
CRPS, EMOS performs best, closely followed by BMA and EMOS+. Due to the high
correlation of the forecast errors between the members of the COSMO-DE-EPS (see Chapter
2), the performance of EMOS mean is very good in comparison to the more sophisticated
models. The subsequent methods, the LMF and the error dressing ensemble, although
being simple, yield very good results. When viewing the scores, the climatology performs
worst, as it is not based on predictions, but only past observations.

For the MAE and the RMSE, all postprocessed models yield comparable results, which
is to be expected as the respective predictive means are based on estimations via least
squares regression. In terms of deterministic forecasts, the raw and climatology ensemble
produce poor results reflected in a rather high MAE and RMSE.

Again, Table 3.1 confirms the underestimated spread of the raw and bias-corrected
ensemble, not even covering 30% for a nominal 19/21 ≈ 90.5% prediction interval. Most
of the other techniques fulfill the requirement nearly or entirely, while still creating much
sharper forecasts than climatology. The average width of the prediction interval by the
climatology ensemble is rather large, since the variation in temperature observed in the
previous 25 days is prone to high variability.

3.6 Extension: EMOS with Student’s t-distribution

As the pre-operational phase of COSMO-DE-EPS only started in December 2010, at the
beginning of working on this thesis soley small data sets were available. The first one
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Table 3.2: Scores in degrees Celsius for different EMOS based forecasts, averaged over the
time from 5 January 2011 until 30 March 2011 and all observational sites. EMOS normal
is based on a normal distribution. EMOS Student’s t employs a Student’s distribution
with different degrees of freedom ν, but uses the parameters a, b, c, d, estimated by EMOS
normal.

Model CRPS MAE RMSE
EMOS normal 1.06 1.48 1.90
EMOS Student’s t; ν = 3 1.09 1.48 1.90
EMOS Student’s t; ν = 5 1.07 1.48 1.90
EMOS Student’s t; ν = 100 1.06 1.48 1.90

comprised observations and forecasts for the time frame from 9 December 2011 until 31
March 2011.

After applying EMOS to the data of this period, the forecasts were not calibrated, as
can be seen in Figure 3.2. The middle section of the probability integral transform (PIT)
histogram (see Appendix A) appears almost uniform. However, many observations obtain
very low and high PIT values, which might mean that the probability mass on the edges
of the density is too small, suggesting that the normal distribution is not the best fit to
describe the predictive distribution of temperature. This particular pattern with uniformity
in the middle, but outliers at the sides might be attributed to the fact that the tails of the
normal distribution are too small. In order to address this phenomenon, we study the use
of the Student’s t-distribution, developed by Gosset (1908), which is an extension of the
normal distribution with heavier tails. For simplicity, we fit the Student’s t-distribution
within an EMOS mean setting.

The density function of the Student’s t-distribution equals

p(y) =
Γ
(
ν+1

2

)
Γ
(
ν
2

) (νπ)−
1
2

(
1 + y2

ν

)− ν+1
2

, (3.1)

where ν denotes the degrees of freedom and Γ the Gamma function. The parameter ν
determines the shape of the tails, as can be seen in Figure 3.3. For ν →∞, the Student’s t
density function converges to the normal density function.

We expand the density in Equation 3.1 by introducing a scale parameter λ and a location
parameter µ (see e.g. Bishop (2006)). Then, the density is
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p(y|µ, λ, ν) =
Γ
(
ν+1

2

)
Γ
(
ν
2

) (
λ

νπ

) 1
2
(

1 + λ (y − µ)2

ν

)− ν+1
2

,

with E (y) = µ, for ν > 1, and Var(y) = 1
λ

ν
ν−2 , for ν > 2.

When estimating parameters, we use the maximum likelihood technique. Since we want
to obtain values in terms of linear functions of the ensemble parameters, we substitute the
distribution variance by a linear function of the ensemble variance, 1

λ
ν
ν−2 = c + dS2 (for

ν > 2), and perform the same for the mean, µ = a + bf̄ . Here, S2 denotes the ensemble
variance, f̄ the forecast mean and a, b, c and d are real numbers:

p(y|a, b, c, d, ν) =
Γ
(
ν+1

2

)
Γ
(
ν
2

) ((
c+ dS2

)
(ν − 2) π

)− 1
2

1 +

(
y − a+ bf̄

)2

(c+ dS2) (ν − 2)


− ν+1

2

.

Then, the likelihood function, given the past observations y1, ..., yn, equals

L(a, b, c, d, ν|y1, ..., yn) =
n∏
i=1

p(yi|a, b, c, d, ν).

When maximizing this expression, we find the values for the parameters a, b, c, d and ν,
which were most likely to have produced the observations y1, ...yn. For algebraic simplicity
and numerical stability, instead of maximizing the likelihood function, we choose to maximize
the log-likelihood, which yields the same results. We use the R function optim with box
constraints, based on the algorithm by Bryd et al. (1995), in order to find the maximum of

l(a, b, c, d, ν|y1, ..., yn) = nlog
(

Γ
(
ν + 1

2

))
− nlog

(
Γ
(
ν

2

))
− n

2 log(πν)− 1
2

n∑
i=1

log
((
c+ dS2

i

) ν − 2
2

)

− ν + 1
2

n∑
i=1

log

1 +

(
yi −

(
a+ bf̄i

))2(
(c+ dS2

i ) ν−2
2

)
ν

 , for ν > 2. (3.2)

When estimating the parameters, we restrict ν to be greater than two and leave the
parameter space of the other variables as large as possible, by setting the lower boundary
to −1, 000 and the upper to 1, 000. However, the parameter estimation turns out to be
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unstable, as c and d usually take unrealistic values over 20 and the estimates for ν are
always as close to two as possible.

In order to stabilize the parameter estimation, we try another approach, which might
seem suboptimal. However, if the small tails of the normal density function are the issue,
this method nevertheless should detect it. We estimate the parameters a, b, c and d in the
regular EMOS setting, by minimizing the CRPS for the normal density function. Then, we
plug the results for a, b, c and d into Equation 3.2, so that it depends only on ν. In the final
step, we estimate ν separately via maximum likelihood estimation of this equation. For
this step, we again use the R function optim with box constraints, in order to regulate the
parameter space for ν. If small tails caused the issue, ν ought to take small values. However,
we find that ν always takes values as close to the upper boundary of the constraint as
possible. For these large values of ν, the normal and Student’s t density function coincide
empirically.

In Table 3.2, we follow the aforementioned approach and then force ν to take the
values of three, five, and hundred. The results show that there is no improvement when
modeling with heavier tails. Instead, the CRPS, which addresses calibration and sharpness
simultaneously, is higher for small values of ν and then decreases as ν is assigned greater
values.

Hence, the normal density function captures the predictive distribution of temperature
better and other aspects must cause the structure of the PIT histogram in Figure 3.2. It
might be attributed to the small amount of data, or due to a spatial pattern, which can not
be captured by the global parameters of EMOS. However, after receiving larger data sets,
we found that the population of the outer bins in the PIT histogram decreased noticeably
and we stopped investigating this problem further.

In this chapter, we have presented different approaches for postprocessing of temperature.
Most of them yield calibrated and sharp forecasts, by utilizing the structural patterns
of past errors for the predictions. However, these procedures do not account for spatial
correlation between these errors. This issue we will discuss in the succeeding chapter.
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Figure 3.1: Rank histograms of the competing forecasts, aggregated over all stations from
5 January 2011 until 30 November 2011.

27



CHAPTER 3. Univariate Postprocessing

EMOS

Probability Integral Transform

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Figure 3.2: PIT histogram for EMOS with values aggregated over 5 January 2011 until
30 March 2011 and all observational sites.
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Figure 3.3: Density of Student’s t-distribution with varying degrees of freedom (df) ν,
while all other parameter are kept equal. The distribution is centered at zero with a variance
of four.
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Chapter 4

Spatial Postprocessing

This chapter focuses on different models for spatial postprocessing of ensemble temperature
forecasts. We start with a summary of the GOP method for point predictions. By modeling
the spatial correlation structure, this technique produces sharp and calibrated forecasts for
entire weather fields. When combining this procedure with EMOS or BMA, introduced in
Chapter 3, we additionally include the information of the ensemble, while still incorporating
the spatial structure of the weather field. Subsequently, we present two multivariate
reference forecasts, ensemble copula coupling (ECC) and the noise ensemble, ending with a
discussion of the application of all techniques to COSMO-DE-EPS.

4.1 Geostatistical Output Perturbation (GOP)

Originally not developed for ensemble outputs, GOP produces sharp and calibrated forecasts,
based on one deterministic prediction for weather fields. The technique consists of dressing
the multidimensional output of the numerical forecast systems with simulated error fields
described by a spatial random process. Thus, GOP perturbates the outputs of numerical
weather prediction models, instead of its inputs.

Gel et al. (2004) chose to employ a parametric, stationary, and isotropic geostatistical
model, in order to capture the spatial structure of the error fields. The error is defined as
the difference between the observation and the bias-corrected forecast. Suppose S denotes
all locations for which forecasts are available. Then, let Y = {ys : s ∈ S} be the vector
that describes the weather variable of interest at site s ∈ S. Further, Fm = {fms : s ∈ S}
refers to the weather field forecast by the member m of the ensemble with size M . Note
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that this procedure is performed for only one member, although we include the subscript
for future incorporation of ensemble information.

GOP is based on a statistical model, stating that

Y|Fm ∼MVN (am1 + bmFm,Σm) ,

where 1 is a vector of length #S with all entries equal to 1. Given the forecasts Fm,
Y is multivariate normally distributed with mean equal to the bias corrected forecast,
am1 + bmFm and the covariance matrix Σm. The entries of Σm depend on the covariance
structure of the error fields. Let C (s1, s2) be a stationary and isotropic correlation function,
then the entry (i, j) of Σm equals

ρ2
mδij + τ 2

m C (si, sj) ,

where δij denotes to the Kronecker delta function. The nugget effect ρ2
m ≥ 0 has two

interpretations. On one hand, it can be thought of as the variance of the measurement
error. On the other hand, it is a measure of the spatial variation within a distance smaller
than the smallest distance between two different sites si and sj , for i 6= j. The sum ρ2

m + τ 2
m

is called the sill.
There are various ways to model the spatial structure of the weather field with different

covariance classes. Gel et al. (2004) suggest the use of the exponential correlation function,

C(si, sj) = e−
||si−sj ||
rm ,

where || · || denotes the Euclidean norm and the range rm > 0 is a parameter in the unit
of the distance and determines the rate at which the spatial correlation decays. We also
propose a more general approach, where we apply the Matérn correlation function (Matérn,
1986)

C(si, sj) = 1
21−νmΓ (νm) ·

(
||si − sj||

rm

)νm
·Kνm

(
||sj − si||

rm

)
.

Here, Γ(·) denotes the gamma distribution and Kν(·) the modified Bessel function of order
ν > 0. The parameter ν regulates the smoothness of the simulated error field. For ν = 1

2 ,
the Matérn correlation function coincides with the exponential model above.
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The value of Y|Fm can also be calculated in terms of realizations of the error field which
may be decomposed into two parts E1m = {ε1m(s) : s ∈ S} and E2m = {ε2m(s) : s ∈ S}
(Berrocal et al., 2007):

Y|Fm = am1 + bmFm + E1m + E2m.

The vectors E1m and E2m have a multivariate distribution with mean zero and a covariance
structure based on

cov[ε1m(si), ε1m(sj)] = τ 2
k C (si, sj)

and
cov[ε2m(si), ε2m(sj)] = ρ2

mkδij,

respectively. The term E1m is referred to as the continuous component of the error field
which varies in space, whereas E2m describes the discontinuous part, as it models a random
noise in order to correct measurement errors.

By using the GOP method, an ensemble of any desired size can be obtained. A new
member is produced by dressing the bias corrected forecast am1+bmFm with a simulation of
the error fields E1m and E2m. For this simulation we employ the R package RandomFields
by Schlather (2011).

When estimating the parameters, we use a set of training data which contains past
forecasts and realized observations. There are several ways to estimate the parameters of
the geostatistical model. Gel et al. (2004) mention a fully Bayesian approach, maximum
likelihood, and a variogram-based estimation. In order to reduce computational time, the
authors chose the last mentioned. Here, we also include a maximum likelihood approach.
Independently of the estimation technique for the geostatistical model, the coefficients am
and bm are estimated via linear least squares regression over the sliding training period.

In geostatistics, a variogram is a tool which describes the spatial correlation of a
stochastic process. Theoretically, it is defined as

γm (si, sj) = 1
2Var (X(si)−X(sj)) ,

where X(s) denotes the value of the stochastic process at location s. Since the underlying
model of the GOP method is stationary, the variogram reduces to a function that depends
on the distance d = ||si − sj|| only. Additionally, the mean and the variance of the error
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fields are defined as spatially constant so that the theoretical variogram values γ(d) of the
geostatistical model equal

γm(d) = ρ2
mδij + τ 2

m (1− C (si, sj)) ,

see e.g. Diggle and Ribeiro Jr. (2007).
For the estimation of the parameters, we calculate an empirical version of the variogram

following the approach by Berrocal et al. (2007). After determining am and bm, we compute
the errors, which equal the residuals of the linear least squares regression fit. For each day in
the training period, we then determine the distances between every possible pair of locations.
Additionally, we calculate one-half the squared difference between the corresponding pair of
errors,

1
2
(
esi − esj

)2
,

where esi and esj denote the site-specific errors on one day in the training period. In the
following step, the collection of distances are sorted into bins Bl with centers at dl. The cut
points of the bins are chosen by the rule that on average during the entire forecasting period,
the same amount of distances should fall in every bin. During the entire forecasting period,
the cut points and centers stay constant, as implemented in the R package ProbForecastGOP
by Berrocal et al. (2010). Finally, the empirical variogram value γ̂m(dl) at distance dl equals
the average of one-half the squared difference of the errors whose distances fall into bin Bl.

When fitting a curve to the empirical variogram values, Berrocal et al. (2007) employ
weighted least squares as proposed by Cressie (1985). Let θm denote the parameter vector
which depends on ρ2

m, τ 2
m and rm, in the case of an exponential correlation function, and

additionally on ν for a Matérn model. In order to obtain the optimal value of θm, the
function

S(θm) =
∑
l

nl
γ̂m(xl)− γ(θm, dl)

γ(θm, dl)

is minimized. Here, nl refers to the number of pairs contained in bin Bl. When minimizing
the expression, we employ the R function optim with boundary conditions based on the
algorithm by Bryd et al. (1995).

Beside the variogram-based estimation, we also apply a maximum likelihood approach.
Since the errors are assumed to be a realization of a Gaussian random field, the likelihood
function is

L(θm, em) = 1
(2π)n/2 |∑(θm)|1/2

e−
1
2 em

∑
(θm)−1etm ,

32



CHAPTER 4. Spatial Postprocessing

where em denotes a vector containing the errors over the training period, and etm its
transposite. The covariance parameter θm is obtained by maximizing this function. For
numerical stability and algebraic simplicity, we replace the likelihood by the log-likelihood
function

l(θm, em) = −1
2
(
nlog (2π) + log

(
det

(∑
(θm)

)
+ em

∑
(θm)−1 etm

))
.

In order to cut back on computational cost, we consider the profile log-likelihood, use
Cholesky decomposition and normalize the correlation function.

4.2 Spatial BMA

Spatial BMA is a postprocessing method for ensemble forecasts of entire weather fields,
which combines the univariate techniques BMA, see Section 3.1, with the aforementioned
GOP method. BMA is applied at individual locations, not taking into consideration any
spatial correlations of the forecasts, whereas GOP models the spatial structure of the
weather field. By combining both methods, the full information of the ensemble is used, and
the spatial correlation structures are modeled, resulting in calibrated forecasts for weather
fields.

Let Y = {y(s) : s ∈ S} denote a weather field at the set of locations S and let
F1 = {f1s : s ∈ S},...,FM = {fMs : s ∈ S} denote the corresponding ensemble forecasts.
Then, the spatial BMA predictive density equals

p (Y|F1, ...,FM) =
M∑
m=1

wmgm (Y|Fm) .

As described in Section 3.1, wm are the weights and gm (Y|Fm) is the conditional density
function given that member m is the best forecast in the ensemble. Here, Y|Fm has a
multivariate normal distribution, centered at the bias-corrected forecasts am1 + bmFm with
covariance matrix Σ′m:

Y|Fm ∼MVN
(
am1 + bmFm,Σ

′

m

)
.

The covariance matrix Σ′m is a fraction of the GOP-based covariance matrix Σm,
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Σ′m = σ2

ρ2
m + τ 2

m

Σm,

where σ2 denotes the BMA variance and the parameters ρ2
m and τ 2

m are based on the GOP
model. We deflate the covariance matrix Σm by the factor

αm = σ2

ρ2
m + τ 2

m

as the covariance is overestimated when combining BMA based on mixture densities and
GOP.

In analogy to GOP, we can express the value of Y|Fm in terms of the continuous E1m

and the discontinuous E2m error fields,

Y|Fm = am1 + bmFm + E1m + E2m.

When generating a spatial BMA ensemble, we first draw a sample from the numbers
{1, ...,M} with probabilities equal to the BMA weights wm. Then, we dress each of the
corresponding forecasts am1 + bmFm with simulations of both error fields.

For the parameter estimation of spatial BMA, we use past data within a sliding training
period. We fit the BMA model to the forecast ensemble, as presented in Section 3.1, and
the GOP model to each member individually (see Section 4.1). Afterwards, the deflation
factor αm is calculated in order to obtain the entries of the covariance matrix Σ′m.

Spatial BMA can be viewed as a generalized version of either BMA or GOP. If we
consider an ensemble of size one, it reduces to GOP. If we only consider one location, spatial
BMA becomes the regular BMA model.

4.3 Spatial EMOS+

Analogously to spatial BMA, we propose a spatial EMOS+ approach, where we combine
EMOS+ with the GOP method. However, since the EMOS+ variance parameter σ2

s varies
spatially, the approach differs slightly from spatial BMA.

For a weather field Y = {y(s) : s ∈ S}, considered at the set of the locations S, let
F1 = {f1s : s ∈ S} , ...,FM = {fMs : s ∈ S} denote the corresponding ensemble forecasts.
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Then, Y|Fm has a multivariate normal distribution, centered at the sum of the bias-corrected
forecasts with a covariance matrix Σ′′ ,

Y|F1, ...,FM ∼MVN
(
a1 + b1F1 + ...+ bMFM ,Σ

′′)
.

The covariance matrix Σ′′ is expressed by

Σ′′ = VΣ0V,

where V = diag(
√
c+ dS2

1 , ...,
√
c+ dS2

#S) is a diagonal matrix with entries equal to the
estimated location-specific standard deviations predicted by EMOS+ and Σ0 is a correlation
matrix, based on the GOP method.

Of course, we can state the values of Y|Fm in terms of the continuous E1m and the
discontinuous E2m error fields,

Y|F1, ...,FMm = a1 + b1F1 + ...+ bMFM + E1m + E2m.

For the production of a spatial EMOS+ ensemble, we first calculate the multivariate bias-
corrected forecast a1 + b1F1 + ...+ bMFM . In the following step, the corresponding error
fields are simulated and then added to the bias-corrected forecast field.

When estimating the parameters for spatial EMOS+, we first fit EMOS+ to past data
in a sliding training period, in order to obtain the parameters a,b1,...,bM and the predicted
variances c + dS2

s . Then, on a given day, given the error field e, which for simplicity is
defined as the difference between the ensemble mean and the verifying observation, we
standardize the values by dividing each entry of e by the site-corresponding predicted
standard deviation of EMOS+. To these normed values, accumulated over all days in the
training period, we fit a geostatistical model, as described in 4.1, in order to obtain the
parameters for Σ0.
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4.4 Reference Forecasts

Ensemble Copula Coupling (ECC)

ECC, proposed by Schefzik (2011), is a multivariate postprocessing technique for ensemble
forecasts. Based on existing univariate postprocessing methods, ECC models the multivari-
ate dependency structure of the forecasts by incorporating the multivariate rank structure
of the original ensemble through a discrete copula. In the current context, we employ ECC
based on BMA and EMOS+, discussed in Chapter 3. When generating the ECC forecasts,
we proceed according to the following steps:

1. Univariate postprocessing

First, we apply any available postprocessing method to the ensemble output, in
order to produce a calibrated predictive distribution. Subsequently, for each location
s ∈ S, we draw a random sample f̂1s, ..., f̂Ms of the original ensemble size M from
this distribution.

2. Combining the results of step 1 with the ensemble’s dependency structure

Given the ensemble forecasts f1s, ..., fMs, we denote their ranks ω(s, 1), ..., ω(s,M) at
each station. Then, we sort the random sample according to the ensemble’s order
statistic: f̂ω(s,1), ..., f̂ω(s,M). Finally, one member m of the ECC ensemble equals the
vector (f̂ω(1,m), ..., f̂ω(#S,m)).

If a larger ensemble is desired, the steps may be repeated n ∈ N times, in order to generate
an ensemble of the size nM . ECC provides an easy technique, which in our case produces
spatially consistent forecast fields by inheriting the dependence structure of the original
ensemble.

Noise Ensemble

In order to account for measurement errors or small scale spatial variations, we include
the noise ensemble, which was also considered in Berrocal et al. (2007). To each member
m of the raw ensemble, we add a Gaussian noise with mean zero and a variance equal to
the corresponding nugget effect ρ2

m. This task is performed independently at each location.
Thus, the noise ensemble does not capture the spatial structure of the weather field, but
includes patterns of past site-specific errors, in order to improve the forecasts.
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Table 4.1: The results of the multivariate assessment of the surface temperature in
Saarland. With different correlation structures, the GOP method is applied to the ensemble
mean. All scores are in degrees Celsius and averaged over the time period from 5 January
2011 until 30 November 2011.

ES EE
GOP Mean Exponential 3.59 4.92
GOP Mean Matérn 3.59 4.92

Table 4.2: The results of the minimum temperature along a section of the highway A3.
The scores MAE, RMSE and the CRPS are in degrees Celsius and averaged over the time
period from 5 January 2011 until 30 November 2011. The Brier score for the event that
the temperature drops beneath 0°C is only calculated during the winter months, January,
February and November.

CRPS MAE RMSE Brier Score
GOP Mean Exponential 0.87 1.22 1.56 0.078
GOP Mean Matérn 0.89 1.23 1.58 0.084

4.5 Results

We apply the presented methods to 21-h forecasts of surface temperature, issued by COSMO-
DE-EPS (see Chapter 2). As discussed in Section 3.5, we use a sliding 25-day training
period and the evaluation starts on 5 January 2011, ending on 30 November 2011. For each
model, we simulate 10, 000 realizations of the forecasts and then, in order to calculate the
scores, we utilize approximation techniques, described in Appendix A. Only the raw and
noise ensemble are evaluated with 20 members.

4.5.1 Different Modeling of Spatial Structure for GOP

As mentioned in Section 4.1, there are various possibilities to model the spatial structure
and estimate the corresponding parameters for GOP. Before, we have discussed applying
a Mátern correlation function, in contrast to the approach by Gel et al. (2004), who
use an exponential correlation function. Moreover, we have presented two different ways
to estimate the parameters of the GOP model: via a variogram-based method and via
maximum likelihood. Thus, before combining GOP with univariate postprocessing methods,
we compare a sophisticated approach with a simpler one. On the one hand, we model
the spatial structure with a Mátern correlation function and estimate the parameters via
maximum likelihood. On the other hand, we base the GOP method on an exponential
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Figure 4.1: Rank histograms for forecasting the minimum temperature along a section of
Highway A3. The results are aggregated over the time period from 5 January 2011 until 30
November 2011.

correlation function and utilize the estimation via variograms, constructing the empirical
variograms with the R package RandomFields by Schlather (2011).

We apply these two competing techniques to the ensemble mean, evaluate the perfor-
mance at seven stations in Saarland, and assess the forecasts for minimum temperature
at a section along the highway A3. We will discuss the choices of the evaluation area and
the aggregated variable further in the following section. As seen in Tables 4.1, 4.2 and
Figure 4.1, the forecasting performance differs only slightly. For Saarland, the two models
coincide. Looking at the results along the highway, the simpler model even outperforms the
more complex one slightly. Hence, the simple estimation approach via variograms yields
good results. Based on these results, we base our geostatistical model on an exponential
correlation function with variogram-based estimation in the following. This choice is further
supported by the temporal evolution of the parameter ν in the Mátern correlation function,
as it averages at 0.41 over the forecasting period. Thus, it is very close to 0.5, for which
both correlation functions coincide.

4.5.2 Overall Performance of the Models

Having established the methodology for the GOP technique, we compare the performance
of all aforementioned models: spatial BMA, ECC based on BMA, univariate BMA, spatial
EMOS+, ECC for EMOS+, regular EMOS, GOP, as well as the raw and noise ensemble.
Since GOP is not an ensemble-based method, we apply it to member 15 of the COSMO-DE-
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Figure 4.2: Empirical variogram of errors for member E15 on 28 November 2011 with a
fitted exponential variogram

EPS, which was assigned the highest BMA weight of 0.31 over the course of the forecasting
period.

Figure 4.2 shows an empirical variogram of the error field for member 15 on 28 November
2011 with a fitted exponential variogram. According to the figure, the exponential correlation
function represents the spatial structure well, which additionally supports the choice of a
simpler geostatistical model in Section 4.5.1.

Given forecast fields with 514 dimensions, assessing the predictive performance of vector-
valued quantities in such high dimensions is challenging. So, we employ different evaluation
approaches. On the one hand, to check if the forecast method captures the correlation
structure of the weather field well, we apply a variogram-based approach. On the other
hand, in order to reduce computational cost, we consider a subset of our data set and
investigate the predictive performance for minimum temperature along the highway A3.
Additionally, we check the forecasting performance for all seven observation sites in Saarland
with multivariate techniques. More evaluation results can be found in Appendix C.

In order to evaluate how well the models reproduce the spatial correlation structure, we
compute empirical variograms of the verifying observations and calculate the 19/21 ≈ 90.5%
point-wise prediction intervals for the variogram values of the different methods, discussed in
Appendix A. Figure 4.4 shows an example for 28 January 2011. All multivariate techniques
capture the spatial structure and the variogram values of the observations fall mainly within
the boundaries of the prediction interval, while the raw and noise ensemble as well as the
regular BMA approach fail to describe the dependencies of the weather field. However,
the raw ensemble seems to capture the spatial structure, but underestimates the variance.
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Figure 4.3: The map of Germany shows a section of Highway A3. We evaluated the
predictive performance of the minimum temperature at eleven nearby stations, which are
marked in black. The gray points represent all stations for which forecasts are available.

This explains the good results for both ECC approaches, which still rely on the structure
of the ensemble, but correct the variance term. The good performance of EMOS+ on this
specific day is probably a coincidence, as Table 4.3, where the averaged coverage over the
forecasting period is shown, indicates, that only multivariate postprocessing techniques
reach results higher than 50%. Only methods based on a more sophisticated approach,
which model the dependency structure with a geostatistical model, as spatial BMA, spatial
EMOS+ and GOP member 15, yield values in the 60% range.

Spatial correlation has a huge impact on composite quantities such as minimum tempera-
ture or average temperature. When only considering these quantities, the verification process
reduces to a one-dimensional one, which gives us the opportunity to employ well-established
univariate verification methods. We consider a section with eleven observation sites along
Highway A3, which connects the two large German cities of Cologne and Frankfurt and thus
is one of the busiest highways in Germany (Figure 4.3). Hence, reliable weather predictions
are crucial for maintenance operations of the highway.

Figure 4.5 shows histograms of the accumulated ranks over the forecasting period.
Again, the methods based on modeling the dependency structure with a geostatistical model
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Table 4.3: Coverage of the 19/21 ≈ 90.5% point-wise prediction intervals for variogram
values. The results are averaged over the time period from 5 January 2011 until 30 November
2011.

Model Coverage in %
Raw Ensemble 19.38
Noise Ensemble 37.11
GOP Member 15 63.73
Spatial BMA 67.64
ECC BMA 55.37
BMA 34.40
Spatial EMOS+ 64.82
ECC EMOS+ 55.69
EMOS+ 25.80

Table 4.4: Assessment results for forecasting the minimum temperature along the section
of Highway A3. MAE, RMSE and the CRPS in degrees Celsius are averaged over all
stations and the time period from 5 January 2011 until 30 November 2011. The Brier score
for the event that the temperature drops beneath 0°C is only calculated during the winter
months, January, February and November.

Model CRPS MAE RMSE Brier Score
Raw Ensemble 1.72 1.92 2.33 0.120
Noise Ensemble 1.21 1.56 1.91 0.107
Spatial BMA 0.86 1.21 1.55 0.081
ECC BMA 0.95 1.28 1.64 0.102
BMA 1.08 1.41 1.81 0.120
Spatial EMOS+ 0.87 1.22 1.56 0.083
ECC EMOS+ 0.92 1.25 1.61 0.094
EMOS+ 1.05 1.37 1.77 0.114
GOP Member 15 0.88 1.22 1.57 0.086

perform best, as the corresponding histograms of spatial BMA, spatial EMOS+ and GOP
member 15 appear almost uniform. For the ECC versions and the univariate postprocessing
methods, however, the forecasts are biased, as many observations are higher than the
predictions. Additionally, the raw ensemble shows a strong bias and often overestimates
the minimum temperature. The same pattern applies to the noise ensemble, but not in
such a predominant way. All non-geostatistical models underestimate uncertainty, as many
observations obtain ranks on the edge of the ensemble.

The scores in Table 4.4 further support these results, as spatial BMA, spatial EMOS+

and GOP member 15 yield the lowest CRPS scores. The corresponding values differ only
slightly, which might suggest that the ensemble information, gained by BMA or EMOS+, is
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Table 4.5: Multivariate and univariate assessment of the surface temperature in Saarland.
The scores are all in degrees Celsius and are averaged over all stations and the time period
from 5 January 2011 until 30 November 2011.

Model ES EE
Raw Ensemble 5.62 5.86
Noise Ensemble 5.65 5.90
Spatial BMA 3.56 4.89
ECC BMA 3.61 4.90
BMA 3.58 4.90
Spatial EMOS+ 3.57 4.91
ECC EMOS+ 3.61 4.91
EMOS+ 3.59 4.90
GOP Member 15 3.62 4.94

not that beneficial for the overall performance. The ECC techniques, which incorporate the
original structure of the ensemble, perform well, whereas the raw and noise ensemble, as
well as the univariate forecasting methods fail to deliver reliable predictions. These findings
are reflected by the other scores, MAE and RMSE, as well. For the Brier score, only the
geostatistical methods yield good results, followed by ECC for EMOS+. All other methods
perform poorly when forecasting the probability of the temperature to drop beneath 0°C.

Considering a subsection of the overall data, we look at seven stations, covering the
state of Saarland. As seen in Table 4.5, we apply multivariate assessment tools. The
energy score and Euclidean error are lower for all postprocessed forecast, compared to the
raw and noise ensemble. However, we find that the scores seem to be insensitive to slight
variations in the multidimensional structure and thus, the difference between the univariate
and spatial techniques vanishes. Figure 4.6 shows the minimum spanning tree histograms of
the competing forecast models. For the raw ensemble, many low MST ranks are observed,
resulting in uncalibrated forecasts. The histograms of the remaining models appear close to
uniform, fulfilling the necessary condition for calibrated forecasts.

This chapter has presented several approaches to multivariate forecasting. We have
demonstrated the need to model spatial correlation with a geostatistical approach, in order
to obtain spatially consistent, sharp and calibrated temperature forecasts. The benefits
of these approaches can be recognized in the forecasting performance, illustrated by the
scores.
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Figure 4.4: Empirical variogram coverage: The gray points show the variogram values
of the verifying observations on 28 January 2011. The black lines are the limits of the
19/21 ≈ 90.5% point-wise prediction intervals for a 20 member ensemble of the respective
models.
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Figure 4.5: Rank histograms for forecasting the minimum temperature along a section of
Highway A3. The results are aggregated over the time period from 5 January 2011 until 30
November 2011.
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Figure 4.6: Minimum spanning tree rank histograms for forecasts of temperature at seven
stations in Saarland. The results are aggregated over the time period from 5 January 2011
until 30 November 2011.
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Chapter 5

Discussion

In this thesis, we have demonstrated the importance of spatial modeling in ensemble
postprocessing. Besides reviewing the existing method spatial BMA (Berrocal et al., 2007),
we have introduced a similar approach, based on EMOS+. Both models are obtained
by combining state of the art univariate postprocessing methods with GOP. Thus, the
predictive distributions are based on spatial statistical and ensemble information. For
spatial EMOS+, the predictive density for a weather field is a multivariate normal density
centered at the bias-corrected ensemble, whereas in the case of BMA the predictive density
is a weighted average over the multivariate Gaussian density of each bias-corrected member.

In a case study with COSMO-DE-EPS, the spatial EMOS+ and spatial BMA outper-
formed all other methods including the multivariate ECC approaches. In particular, when
evaluating the composite quantities of minimum and average temperatures, the multivariate
models showed their superiority.

However, there remain several possibilities for improvements and further investigation.
The presented methods, spatial BMA and EMOS+, are only applicable to weather variables
whose distribution of forecast errors can be approximated by a normal distribution. Berrocal
et al. (2008) proposed a two-stage spatial model for producing correlated probabilistic
forecasts of precipitation accumulation. Further development is needed in order to address
variables such as wind gust or even wind speed.

Additionally, there are options for advances within spatial BMA and EMOS+. For
both methods, the bias correction is based on linear least squares regression, which does
not account for differences in terrain, such as altitude or land use. A more sophisticated
approach might yield better results.
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Moreover, local parameter estimation such as proposed by Kleiber et al. (2011) could
further improve the forecast performance. In particular considering the histogram with
a uniform center and two bars at the sides, discussed in Section 3.6, a model with local
parameters might resolve this phenomenon. If the forecasts were calibrated locally, the
structure of the error fields would be more realistic and the overall parameter estimation
for the GOP method would yield better results.

In the case of GOP, there are several ways to reduce the computational cost of parameter
estimation. We used a rolling training period and estimated the covariance parameters
daily. If the variable of interest is temporal stationary over the years and a larger data set
is available, the estimation can be based on a previous year or season. For spatial EMOS+,
we only estimated the covariance parameters for the ensemble mean, which performed as
well as spatial BMA, for which the parameters are estimated individually for each member.
Hence, in order to speed up computational time for spatial BMA, the member-specific
parameter estimation can be replaced as well.

When modeling the covariance structure with the GOP method, we have shown that an
exponential correlation function with parameters based on simple variogram estimation
yields slightly better results than the modeling with a Mátern correlation function, whose
parameters are obtained by maximum likelihood estimation. However, there might still be
room for improvement with different covariance structures, as discussed in e.g. Gneiting
(1999), which represents the atmosphere more accurately.

Obviously, our choice of the length of the training period is subject to debate. However,
due to shortage of data, out-of-sample comparison of different lengths was not possible and
so we followed the proposal by Berrocal et al. (2007). Given data sets over longer time
periods, data from the same season of previous years could be included into the training
period (Hamill et al., 2004).

When evaluating the forecasting performance of the multivariate postprocessing methods,
we found the improvements over univariate postprocessing to be quite significant in the
assessment of forecasts for aggregated quantities. However, they were not visible in the
multivariate energy score and Euclidean error. We suspect that these scores are not
sufficiently sensitive to slight variations in the multidimensional structure, and thus are not
a good verification tool for this task, but further research on this topic is needed.

Motivated by the high correlation of the forecast errors within COSMO-DE-EPS, which
was neither accounted for by the BMA weights nor the EMOS coefficients, as the values
varied drastically over time, we also investigated a ridge regression approach. When
calculating the predictive mean, we applied linear least squares, but also introduced a
penalty term, which should force the coefficients to be similar, if the members were strongly
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correlated. We proposed that two members should be assigned similar coefficients, if they
were based on the same global model or were produced by the same model formulation of
COSMO-DE-EPS. However, our attempt failed to yield better results than original EMOS
or BMA in terms of MAE and consequently this line of research was not pursued any
further.

In conclusion, we have demonstrated that spatial EMOS+ and spatial BMA perform
very well, despite the fact that there are still many possibilities for improvement or changes
in either method. Our verification results for composite quantities have demonstrated once
again the need for spatial modeling in ensemble postprocessing. Also, we have addressed
some of the issues that arise in the statistical postprocessing of COSMO-DE-EPS and hope
that further research will provide solutions to these.
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Appendix A

Verification Methods

The goal of probabilistic forecasts is to “maximize sharpness subject to calibration” (Gneiting
et al., 2007). Calibration depends on the observations as well as the forecasts, measuring
the statistical consistency between both. This means that a predicted event should on
average occur as often as its forecast probability indicates. Sharpness is a characteristic of
the forecast only and measures the concentration of the predictive distribution. Illustrating
the concept, a small standard deviation yields a sharp forecast, whereas a large dispersion
around the distribution’s mean does not reflect a sharp forecast.

There are several techniques to assess the predictive performance of forecasts, considering
sharpness and calibration individually as well as simultaneously. Here, we present a selection
of tools which we have used in the proceeding chapters to evaluate the performance of the
competing forecasters. On account of the fact that we produce one-dimensional forecasts as
well as forecast fields with up to 514 dimensions, the shown methods not only cover the
univariate, but also the multivariate case. They can be applied to ensemble forecasts as
well as predictive distributions. However, the distinction between both is rather artificial,
because by sampling from the predictive distribution, an ensemble is obtained or, on the
other hand, an ensemble can be replaced by an appropriate distribution. Thus, both types
of forecasts can be transformed into each another.

Here, we first present tools to check calibration, followed by a method to evaluate the
sharpness of forecasts. Then, we introduce proper scoring rules, which address sharpness
and calibration simultaneously. Finally, we present the empirical variogram coverage for
forecasting fields.
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A.1 Assessing Calibration

As mentioned before, calibration is a measure for the statistical consistency between the
forecasts and the verifying observations, which means that an event with a certain predicted
probability should on average occur as many times as has been predicted. Depending on
the type of the forecast, there are several ways to assess calibration. Given a probabilistic
forecast with a predictive cumulative distribution function (CDF) for a univariate quantity,
usually a probability integral transform (PIT) histogram (Dawid, 1984; Diebold et al.,
1998) is employed. In case of an ensemble forecast, the corresponding counterpart is the
verification rank histogram (VRH) or Talagrand diagram (Anderson, 1996; Hamill and
Colucci, 1997; Talagrand et al., 1997). A method to assess the calibration of a multivariate
quantity is the minimum spanning tree (Smith, 2001; Gneiting et al., 2008).

Probability Integral Transform Histogram

In order to assess the calibration of a univariate forecast distribution F , the PIT histogram
(Dawid, 1984; Diebold et al., 1998) is frequently used. Its idea is based on the assumption
that nature samples the materializing event y from an unknown, true distribution G. Then,
for all forecasts and observations available, the PIT values p = F (y) are determined and
collected. For F to equal G and therefore an ideal forecaster, it is a necessary condition
that these values have a uniform distribution on [0, 1] (Gneiting et al., 2007).

In practice, for every forecast the PIT value is computed, collected and afterwards sorted
into bins in order to plot a histogram. When interpreting the outcome of the histogram,
we take a look at its shape. If the histogram shows uniformity, it indicates calibration. A
U-shape reveals that the predictive distributions are underdispersive, meaning that they
are too narrow. On the other hand, a hump-shaped histogram suggests that too many
observations lie in the center of the distributions and therefore the prediction intervals are
too wide, resulting in overdispersion. If the histograms resemble a triangle, the predictive
distributions are biased.

Rank Histogram

Considering a discrete ensemble forecast, the VRH or Talagrand diagram (Anderson,
1996; Hamill and Colucci, 1997; Talagrand et al., 1997) replaces the PIT histogram. The
interpretation of the resulting histogram stays the same, but the construction differs. Given
an ensemble of size M , for each forecast available, the rank of the observation y in the set
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of all forecasts x1, ..., xM , combined with y, is determined. Afterwards, a histogram of all
aggregated ranks, which range from 1 to m+ 1, is plotted.

Minimum Spanning Tree Rank Histogram

In order to check the calibration of multivariate ensemble forecasts, the minimum spanning
tree (MST) rank histogram (Smith, 2001) is an appropriate tool. Evaluating an ensemble
forecast {xi∈ Rd|i = 1, ...,M}, d ∈ N, with the observation x0 ∈ Rd, the construction of
the MST histogram follows these steps:

1. Standardize

Sometimes, it can be useful to apply a principal component transform to the set of
forecasts and observations {xi ∈ Rd|i = 0, ...,M}, in order to generate standardized
quantities {x?i ∈ Rd|i = 0, ...,M}.

2. Compute minimum spanning tree

Considering every subset {x?i ∈ Rd|i ∈ {0, ...,M} \ j}, for j = 0, ...M , where either
the observation or one of the ensemble members has been removed, determine the
minimum spanning tree and calculate its length, lj > 0.

3. MST rank

The MST rank r equals the rank of l0 in the pool of all lengths li, i = 0, ...,M . If ties
occur, they are resolved at random. Let

s< =
M∑
i=0

I(li < l0)

be the number of MST lengths that are smaller than the length of the MST without
the observation, and

s= =
M∑
i=0

I(li = l0)

the number of MST lengths which equal the length of the MST without the observation.
Then the MST rank r is chosen from a discrete uniform distribution on the set
{s< + 1, ..., s< + s=}, so that r ∈ {1, ...,M + 1}.
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4. Aggregate ranks and plot histogram

Finally, we collect all MST ranks over all dates and locations available and plot the
corresponding histogram.

For the calculation of the minimum spanning trees, we employ the R package vegan by
Oksanen et al. (2011).

The interpretation of this tool differs from that of other histogram-based methods. An
underdispersed or biased ensemble results in many low MST ranks. In contrast, if the
ensemble is overdispersed, the higher ranks are overpopulated. Given an ideal forecaster, so
that the ensemble members and the observation can be considered exchangeable, the MST
rank histogram appears uniform.

A.2 Assessing Sharpness

Sharpness measures the concentration of the predictive distribution and is therefore a
feature of the forecast only. Following the principle of “maximizing sharpness subject to
calibration” (Gneiting et al., 2007), the more concentrated the distribution, the sharper it is,
the better we rate it, subject to calibration. When evaluating the sharpness, we determine
the width of the prediction intervals. To facilitate comparability of the postprocessed
forecasts with the M member ensemble, often the nominal M−1

M+1 · 100% prediction interval
is used, because its coverage corresponds to that of the ensemble range.

A.3 Proper Scoring Rules

A very important tool to assess a forecaster’s performance are proper scoring rules, which
evaluate sharpness and calibration concurrently. Scores are negatively oriented and can
be interpreted as a penalty, which the forecaster wants to reduce. They are based on the
predictive distribution F and the verifying observation y. If we assume y to be drawn from
a true, but unknown distribution G, the expected value is written as s(F,G). We call a
scoring rule proper if it is minimized for F = G; it is strictly proper if s(F,G) > s(G,G)
for all F 6= G. The theory of strictly proper scoring rules is discussed further in Gneiting
and Raftery (2007).

Here, we present the equations for each score independently of time and space. In
practice, we calculate the scores for all times and locations available and then determine
the average score
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s̄ = 1
n

n∑
i=1

s(Fi, yi),

where n denotes the number of available forecasts.

Brier Score

The Brier score (BS), also referred to as quadratic score, is a well-known scoring rule for
univariate quantities with a CDF, which was first presented by Brier (1950), and is defined
as

bs(z) = (F (z)− I(z ≥ y))2 ,

where z ∈ R is a threshold value, F represents the predictive distribution and y the verifying
observation.

Continuous Rank Probability Score

The continuous rank probability score (CRPS), also applicable to univarite quantities,
corresponds to the integral of the BS over all threshold values z ∈ R (Toth and Kalnay,
1997). It was proposed by Matheson and Winkler (1976) and further developed in Hersbach
(2000), Gneiting et al. (2005) and Wilks (2006):

crps(F, y) =
ˆ ∞
−∞

(F (z))− I(z ≥ y))2dz = EF |X − y| −
1
2EP |X −X

′|,

where F is the predictive distribution, y represents the verifying observation, and X and
X ′ are independent random variables with distribution function F and finite first moment.
Gneiting and Raftery (2007) showed the second equality.

Energy Score

A multivariate generalization of the CRPS is the energy score (ES), described in Gneiting
and Raftery (2007), which is defined as

es(F,y) = EF ||X− y|| − 1
2EF ||X−X′||,
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where || · || is the Euclidean norm, F represents the predictive distribution, y ∈ Rd is the
observation and X∈ Rd and X′∈ Rd are independent random vectors with distribution F .
For d = 1, the energy score reduces to the CRPS. In order to facilitate computability, we
replace the ES for normal or related predictive densities with a Monte Carlo approximation.
In this case, we draw a sample x1, ...,xk ∈ Rd of size k = 10, 000 from the predictive
distribution F and estimate the ES via

ês(F,y) = 1
k

k∑
i=1
||xi − y|| − 1

2(k − 1)

k−1∑
i=1
||xi − xi+1||.

We follow the same technique when calculating the CRPS. Given a forecast ensemble,
instead of a predictive distribution, the ES can be calculated, using

es(Fens,y) = 1
M

M∑
i=1
||xi − y|| − 1

2M2

M∑
i=1

M∑
j=1
||xi − xj||,

where point masses 1
M

are placed on each ensemble member x1, ...,xM ∈ Rd.

Mean Absolute Error

In the case of a deterministic forecast, the CRPS can be reduced to the absolute error
(Gneiting et al., 2005):

ae(µ, y) = |µ− y|,

with µ being the median of F .

Euclidean Error

The multivariate generalization of the absolute error is the Euclidean error

ee(F,y) = ||smedF − y||,

where smedF defines the spatial median of the predictive distribution F , which can be
defined as (Gneiting, 2011; Vardi and Zhang, 2000)
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smedF = arg minx∈RdEF ||x−X||,

with X a random vector with distribution F . For the calculation of the spatial median, we
employ the R package ICSNP by Nordhausen et al. (2010).

A.4 Empirical Variogram Coverage

This is an alternative approach to evaluate the spatial performance of forecasting ensembles,
which is also used in Berrocal et al. (2007). Considering one forecast field, we calculate
the empirical variogram values for the observed temperature as well as all members of the
ensemble individually. Then, at each distance we determine the maximum and minimum of
the semi-variance within the values of the ensemble, in order to generate the borders of
the point-wise M−1

M+1 · 100% prediction intervals. If the forecaster simulates the true spatial
structure, M−1

M+1 · 100% of the empirical variogram values of the observations should fall
within the prediction interval. Finally, this technique is repeated over all forecast fields
available and averaged.
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Plots of the Empirical Variograms

In R, there are several packages provided for calculating empirical variograms. Berrocal
et al. (2007) suggest the use of the package ProbForecastGOP (Berrocal et al., 2010). We
also compute variograms based on the package RandomFields by Schlather (2011). As
Figure B.1 shows, the results for the same member differ substantially on certain days,
depending on the package. Since models based on RandomFields yield better forecasting
results, we use this package for the entire thesis.
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Figure B.1: Comparison of empirical variograms for member 15 of COSMO-DE-EPS on
different days, calculated by the R packages RandomFields and ProbForecastGOP. Each
variogram is based on 300 bins, for which the cut points are kept equal over all days and
for both packages.
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Appendix C

Further Verification Results

In addition to the results presented in Subsection 4.5.2, we also consider multivariate
assessment of different subsets of the data, another aggregated variable, and the univariate
performance of the forecasts. The interpretation of these results does not differ from the
discussion in 4.5.2. However, for the sake of completeness, we add our findings.

Table C.1 presents the scores for the prediction of the average temperature in every
German state individually; the results are then averaged over all states. Figure C.1
exemplary shows the rank histograms for Hessen.

Furthermore, we consider two subsets of the data. One contains the observation sites
at the airports in Hamburg, Berlin and Frankfurt, separated by a great distance, and the
other consists of three closely located stations in Berlin. The corresponding scores can be
seen in the Tables C.2 and C.3, as well as the minimum spanning tree rank histograms in
the Figures C.2 and C.3.

For forecasts at individual sites, spatial BMA or ECC BMA are equal to the original
BMA. Thus, the one-dimensional assessment of the spatial techniques coincides with their
univariate counterparts, as can be seen in Table C.4 and Figure C.4. The slight differences
are due to variability in drawing the forecast samples. Theoretically, the same applies to
EMOS+. However, we found that for spatial EMOS+ the predicted site-specific variance is
greater than for regular EMOS+. The reason for this might be rooted in the normalization
process of the error field.
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APPENDIX C. Further Verification Results

Table C.1: Verification results for forecasting the average temperature in 14 of Germany’s
states. The MAE, RMSE, CRPS and the width of the nominal 19/21 ≈ 90.5% prediction
interval in degrees Celsius, as well as its coverage are aggregated over all states and the
time period from 5 January 2011 until 30 November 2011.

Prediction Intervals
CRPS MAE RMSE Width Coverage
(°C) (°C) (°C) (°C) (%)

Raw Ensemble 1.26 1.43 1.73 1.18 23.34
Noise Ensemble 1.23 1.43 1.73 1.51 29.97
Spatial BMA 0.71 1.00 1.26 3.78 86.29
ECC BMA 0.78 1.00 1.27 2.27 60.04
BMA 0.82 1.00 1.26 1.41 42.30
Spatial EMOS+ 0.72 1.00 1.26 4.66 92.68
ECC EMOS+ 0.78 1.01 1.27 2.21 58.77
EMOS+ 0.85 1.00 1.26 1.15 34.89
GOP Member 15 0.73 1.01 1.28 3.39 81.02

Table C.2: Multivariate assessment of the temperature at airports in Hamburg, Berlin
and Frankfurt. The scores are all in degrees Celsius and are averaged over the time period
from 5 January 2011 until 30 November 2011.

Model ES EE
Raw Ensemble 2.48 3.63
Noise Ensemble 2.61 3.67
Spatial BMA 2.12 2.99
ECC BMA 2.15 2.99
BMA 2.13 2.99
Spatial EMOS+ 2.13 2.99
ECC EMOS+ 2.10 2.96
EMOS+ 2.11 2.96
GOP Member 15 2.15 3.02
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APPENDIX C. Further Verification Results

Raw Ensemble

Rank

R
el

at
iv

e 
F

re
qu

en
cy

0.
0

0.
2

0.
4

0.
6

1 5 9 13 17 21

Noise Ensemble

Rank

R
el

at
iv

e 
F

re
qu

en
cy

0.
0

0.
2

0.
4

0.
6

1 5 9 13 17 21

GOP Mem. 15

Rank

R
el

at
iv

e 
F

re
qu

en
cy

0.
0

0.
2

0.
4

0.
6

1 5 9 13 17 21

Spatial BMA

Rank

R
el

at
iv

e 
F

re
qu

en
cy

0.
0

0.
2

0.
4

0.
6

1 5 9 13 17 21

ECC BMA

Rank

R
el

at
iv

e 
F

re
qu

en
cy

0.
0

0.
2

0.
4

0.
6

1 5 9 13 17 21

BMA

Rank

R
el

at
iv

e 
F

re
qu

en
cy

0.
0

0.
2

0.
4

0.
6

1 5 9 13 17 21

Spatial EMOS+

Rank

R
el

at
iv

e 
F

re
qu

en
cy

0.
0

0.
2

0.
4

0.
6

1 5 9 13 17 21

ECC EMOS+

Rank

R
el

at
iv

e 
F

re
qu

en
cy

0.
0

0.
2

0.
4

0.
6

1 5 9 13 17 21

EMOS+

Rank

R
el

at
iv

e 
F

re
qu

en
cy

0.
0

0.
2

0.
4

0.
6

1 5 9 13 17 21

Figure C.1: Rank histograms for forecasting the average temperature in the German
state Hessen. The results are aggregated over the time period from 5 January 2011 until 30
November 2011.
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Figure C.2: Minimum spanning tree rank histograms for forecasts of surface temperature
at airports in Hamburg, Berlin, and Frankfurt. The results are aggregated over the time
period from 5 January 2011 until 30 November 2011.
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Figure C.3: Minimum spanning tree rank histograms for forecasts of temperature at three
stations in Berlin. The results are aggregated over the time period from 5 January 2011
until 30 November 2011.
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Table C.3: Multivariate assessment of the surface temperature at three stations in Berlin.
The scores are all in degrees Celsius and are averaged over the time period from 5 January
2011 until 30 November 2011.

Model ES EE
Raw Ensemble 2.50 3.64
Noise Ensemble 2.66 3.68
Spatial BMA 2.01 2.82
ECC BMA 2.04 2.83
BMA 2.06 2.83
Spatial EMOS+ 2.00 2.79
ECC EMOS+ 2.02 2.80
EMOS+ 2.05 2.79
GOP Member 15 2.01 2.81

Table C.4: Univariate assessment results for forecasting the surface temperature in
Germany: The MAE, RMSE, CRPS and the width of the nominal 19/21 ≈ 90.5% prediction
interval in degrees Celsius, as well as its coverage are aggregated over all stations and the
time period from 5 January 2011 until 30 November 2011.

Prediction Intervals
CRPS MAE RMSE Width Coverage
(°C) (°C) (°C) (°C) (%)

Raw Ensemble 1.57 1.77 2.27 1.50 25.97
Noise Ensemble 1.37 1.79 2.29 4.43 66.79
Spatial BMA 1.04 1.46 1.86 5.91 88.87
ECC BMA 1.04 1.46 1.86 5.91 88.83
BMA 1.04 1.46 1.86 5.91 88.82
Spatial EMOS+ 1.05 1.46 1.87 6.14 94.08
ECC EMOS+ 1.05 1.46 1.87 5.76 87.99
EMOS+ 1.04 1.46 1.87 5.76 87.99
GOP Member 15 1.06 1.48 1.89 5.38 85.20
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Figure C.4: Rank histograms for forecasting surface temperature in Germany. The results
are aggregated over all stations and the time period from 5 January 2011 until 30 November
2011.
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