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Abstract

Probabilistic forecasts of precipitation are of high socio-economic interest, with applica-
tions in industries ranging from agriculture to tourism and logistics. Nowadays, such
forecasts are usually based on forecast ensembles from numerical weather prediction
models. However, even state-of-the-art ensemble prediction systems are uncalibrated
and biased, and a variety of post-processing techniques aiming to calibrate the ensemble
output have been proposed. In this project, we propose a novel way of post-processing
forecast ensembles for precipitation based on quantile regression. Although conventional
quantile regression has been found to perfom well, seperately fitted regressions are not
constraint to be mutually consistent and the method does not yield predictive densi-
ties. In order to solve these issues, we propose a two-step approach which models the
probability of precipitation occurrence using logistic regression and the precipitation
amounts using a log-normal distribution. The method is applied to 48-h forecasts of
24-h precipitation accumulation over the North American Pacific Northwest, using the
University of Washington mesoscale ensemble. The resulting probabilistic forecasts turn
out to be much better calibrated than the unprocessed ensemble and a climatological
reference forecast.

Zusammenfassung

Probabilistische Niederschlagsvorhersagen haben einen hohen sozio-ökonomischen Wert
und finden Anwendung in den unterschiedlichsten Wirtschaftszweigen, beispielsweise in
der Landwirtschaft, im Tourismus und in der Logistik. Heutzutage werden solche Vorher-
sagen oft mithilfe von Vorhersageensemblen numerischer Wettervorhersagemodelle erstellt.
Allerdings sind selbst Ensemblevorhersagemodelle, die dem neuesten Stand der Forschung
entsprechen, nicht kalibriert, sondern oft mit systematischen und Dispersionsfehlern
behaftet. Um diese Fehler zu korrigieren wurde eine Vielzahl sogenannter Postprocessing-
methoden entwickelt. In der vorliegenden Arbeit schlagen wir eine neue Postprocessing-
methode vor, die mithilfe von Quantilregression Vorhersageensembles für Niederschlag
nachbearbeitet. Reguläre Quantilregression liefert zwar gute Ergebnisse, bisher aber
nicht in Form von Vorhersagedichten. Zudem sind separat geschätzte Regressionen nicht
zwingenderweise konsistent. Um diese Probleme zu lösen, schlagen wir einen zweistufigen
Ansatz vor, der zuerst die Niederschlagswahrscheinlichkeit mit logistischer Regression,
und dann die Niederschlagsmenge mit einer Log-Normalverteilung modelliert. Diese
Methode wurde im Anschluss in einer Fallstudie auf Ensemble-Niederschlagsvorhersagen
über dem nordamerikanischen Pazifischen Nordwesten angewandt. Die resultierenden
probabilistischen Vorhersagen waren wesentlich besser kalibriert als die Vorhersagen des
Ensembles ohne Korrektur und klimatologische Referenzvorhersagen.
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Chapter 1

Forecasting with Uncertainty

Whether it is forecasting the weather, the economy or the course of a disease – anticipating
things to come is arguably one of the biggest human desires. By knowing what to expect,
we feel better prepared to make decisions.

Henri Poincare said that “it is far better to foresee even without certainty than not
to foresee at all”. Still, how valuable can a forecast possibly be that, in the best case,
fails to provide key information on how certain predictions are, and, in the worst case, is
simply wrong? Besides, what if one is not interested in what is most likely to happen,
but rather in minimizing the risks of unlikely but nontheless possible events?

One of the most substantial applications of forecasting is the weather. Apart from
being convenient in everyday life, sophisticated weather forecasts are used for decision
making in such diverse fields as electrical power generation, ship routing, pollution
management, risk management in insurance and reinsurance, disease prediction, crop
yield modeling, and many more (Palmer, 2002).

For millennia, humankind has tried to understand the complex dynamics of climate
and weather. Nevertheless, personal experiences and common knowledge in form of
weather lores were all sailors, farmers, and everyone else had to rely on until more
advanced weather forecasts became possible. In the 21st century, weather modeling and
forecasting have become a global multi-billion dollar endeavor involving thousands of
scientists, countless weather stations, trillions of arithmetic operations per second, and
some of the largest supercomputers in the world.

Weather forecasting has come a long way since scientists first made use of com-
putational models for predictive purposes in the mid-20th century. In recent years,
exponentially growing computer capacities and a comprehensive stream of live weather
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CHAPTER 1. Forecasting with Uncertainty

data have lifted some of the restrictions on modern weather forecasting. However, even
though today’s 7-day-forecasts are likely to outperform the 24h-forecasts from 30 years
ago, uncertainty still remains. Consequently, in spite of seeing uncertainty as a flaw on
our ability to forecast, one should embrace uncertainty as the essence of forecasting.

To increase both accuracy and usefulness of weather forecasts, methods have to be
developed to characterize, evaluate and, where possible, quantify uncertainty. The goal
is not to foresee with certainty what is going to happen, but to better understand and
represent uncertainty. Forecasts need to o�er the necessary means to tackle concrete
questions in the decision making process, i.e. they have to enable risk-based rational
decision making. As a consequence, forecasts should be probabilistic rather than deter-
ministic. Wherever possible they should be expressed as probability distributions over
future weather quantities or events (Dawid, 1984; Gneiting, 2008).

Probabilistic versus Deterministic Forecasting

Probabilistic forecasts are scientifically more “honest” than deterministic forecasts,
allowing the forecaster to admit and express uncertainty. In this way awareness for
uncertainty is raised, as users are provided with the necessary means to quantify and
predict weather related risk. Deterministic forecasts on the other hand are incapable of
providing the necessary uncertainty information. Even more so, they possibly create the
illusion of certainty in a user’s mind, as they hide the predictive uncertainty behind the
facade of a precise “best” estimate.

Ranging from weather and climate prediction to economic and financial risk man-
agement, the probabilistic approach is very e�ective in a variety of applications. Often,
ranges or thresholds are crucial: farmers may be interested in the risk of freezing tem-
peratures for e�cient agricultural activities, or the chance of winds being low enough
to spray pesticides safely, rather than the most likely estimates of temperature or wind
speed. Also, for issuing severe weather warnings, possible extreme values are of particular
interest. Still, regardless of the many situations in which probabilistic information could
be of value, for reasons of communication and simplified decision making, the prevailing
format of forecasts remains deterministic (Gneiting, 2011).

Krzysztofowicz (2001) illustrates suboptimal actions and fatal consequences, including
massive economic and social opportunity losses, that can arise from forecasts suppressing
information and judgment about uncertainty. In 1997, an estimate of 49 ft for the flood
crest on the Red River close to Grand Forks, North Dakota was issued. City o�cials and
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CHAPTER 1. Forecasting with Uncertainty

residents took the forecast literally and prepared themselves as if the estimate of 49 ft
was a perfect forecast. Weeks later the actual crest of 54 ft (being 26 ft above the flood
stage) was overtopping dikes, forcing not only evacuations, but also devastating the city.
Bearing in mind that the conventional deterministic prediction of 49 ft for the flood crest
did not imply that the risk of a higher flood crest was zero, suppose what di�erence a
probabilistic forecast indicating a 30% risk of exceeding 50 ft could have made: the risks
of the river crest overtopping dikes and causing heavy losses could have been traded o�
against the costs of additional precautionary actions and might have led to a di�erent
scenario.

In situations calling for risk-based decision making or cost/loss analysis, knowing the
probabilities of di�erent outcomes can make a huge di�erence. These varying probabilistic
point predictions are often quantiles of the underlying predictive probability distribution.
Opposed to probabilistic point predictions, which represent probabilities for certain
specific events only, predictive probability density functions (PDFs) assign probabilities
to all possible future outcomes at once. These distribution functions tend to not only be
more convenient to manipulate than a set of point values (Bröcker and Smith, 2008),
they also provide a better insight into the current circumstances as they look at the
system as a whole.

Probabilistic Weather Forecasting

Probabilistic weather forecasts are often based on so called ensemble prediction systems.
Numerical weather prediction (NWP) models are run several times with di�erent ini-
tial conditions or model physics, addressing the inherent uncertainties in atmospheric
prediction. However, even state-of-the-art ensemble systems lack calibration and are
contaminated by systematic biases. Moreover, they do not generate probabilistic forecasts
in terms of full predictive distributions per se, as the raw ensemble output only consists
of a finite set of deterministic forecasts. In view of these limitations, ensembles call
for some sort of post-processing in order to make use of all information available in an
ensemble forecast.

In concert with statistical post-processing, ensemble prediction systems o�er the
possibility of well-calibrated probabilistic forecasts in form of predictive probability
density functions (PDFs) over future weather quantities or events. Still, what exactly
constitutes a good probabilistic forecast? And how can we evaluate and compare the
performance of competing forecasts? According to the diagnostic paradigm of Gneiting
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et al. (2007), the goal is to maximize the sharpness of a probabilistic forecast subject to
its calibration. Calibration refers to the reliability of the forecast, that is, the statistical
consistency between the probabilistic forecast and the actually occuring observations.
Sharpness refers to the concentration of the predictive distribution; under the condition
that all forecasts are calibrated, we define the sharpest to be the best. In other words,
the sharper a calibrated predictive distribution, the fewer uncertainty and, ultimately,
the better its performance.

Here we are concerned with probabilistic forecasts of precipitation. Precipitation
poses a particular challenge, as for its mixed discrete-continuous probability distribution.
Ranging from regression techniques such as linear (Glahn and Lowry, 1972), logistic
(Wilks, 2009), and quantile regression (Bremnes, 2004) to binning techniques (Gahrs
et al., 2003), and neural networks (Koizumi, 1999), a variety of methods has been
developed to statistically post-process numerical model output and generate probabilistic
precipitation forecasts. To date, however, the only statistical post-processing techniques
transforming raw ensemble output into fully specified, calibrated predictive distributions
are Bayesian Model Averaging (BMA; Sloughter et al., 2007) and, to some extend, logistic
regression (Wilks 2009).

In this project, we take a closer look at techniques based on quantiles, i.e. logistic
regression and quantile regression. So far, these approaches only give probabilistic
point predictions, in form of probability forecasts at a given threshold or quantile
forecasts at a given level. The problem then is to ensure consistency, as both, threshold
non-exceedance probabilities and quantiles, are not automatically constrained to be
monotonically increasing. Nevertheless, even though they are associated with additional
obstacles, these conventional regression techniques were found to perform comparatively
well in the statistical post-processing of ensemble forecasts. In the study of Sloughter
et al. (2007), in which multi-analysis ensemble forecasts of precipitation were calibrated,
conventional logistic regression and BMA showed comparable Brier skill scores for a
large range of precipitation thresholds.

Wilks (2009) proposed to extend the logistic regression framework and fit logistic
regressions for all thresholds simultaneously, thereby not only resolving the issues
mentioned above, but also providing fully specified predictive densities. After studying
Wilks’ method from a probabilistic perspective, i.e. deriving a closed form expression for
the predictive distribution, we intended to develop an analogous method for quantile
regression. However, this turned out to be a more demanding endeavor than first
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CHAPTER 1. Forecasting with Uncertainty

expected, as it was not possible to transfer his ideas to the quantile regression framework
directly.

Instead, we developed a completely new method based on quantile regression, which
also both resolves the issues mentioned above and yields fully specified predictive densities.
Our approach proceeds in two steps: First, the probability of precipitation occurrence
(PoP) is modeled using logistic regression. Second, the precipitation amounts are modeled
using a log-normal distribution. Thus, the predictive PDF is a mixture of a point mass
at zero and a skewed continuous distribution.

The thesis at hand is organized as follows:

In Chapter 2, we provide some background information on numerical weather prediction
and ensemble forecasting. Chapter 3 is concerned with probabilistic forecasts of precipi-
tation. Specifically, we discuss three statistical post-processing techniques that generate
probabilistic forecasts of precipitation based on ensemble forecasts: We first portray
BMA and logistic regression, including Wilks’ extension, before we review conventional
quantile regression and discuss our new approach in detail. Chapter 4 containts a
case study, i.e. results for daily 48-h forecasts of 24-h accumulated precipitation over
the North American Pacific Northwest in 2008, based on the eight-member University
of Washington mesoscale ensemble (Grimit and Mass, 2002) and associated verifying
observations. Throughout the thesis we use illustrative examples drawn from these data.
Finally, in Chapter 5, we give a summary and discuss the results of the case study,
leading to the question of how the method could be improved even further.
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Chapter 2

Numerical Weather Prediction and
Ensemble Forecasting

Weather forecasting has come a long way since the possibility of numerical weather
prediction has first been suggested by Lewis Fry Richardson in 1922. He proposed to
start by modeling the laws of physics governing the behavior of the atmosphere as a
system of mathematical equations (Bjerknes, 1904) and then apply his finite di�erence
method to solve the system. To demonstrate how this method could be put to use, he
calculated the changes in surface pressure at two points in central Europe by hand, using
the most complete set of observations available to him. Needless to say, that, in absence
of computational powers, it took him more than six weeks to complete the tremendous
number of required equations. In addition, both due to incomplete and imperfect initial
data and serious deficiencies in his approach, the first results were very poor (Lynch,
2008).

Nevertheless, Richardson’s work turned out to be more than visionary. Even though
it took another 30 years until computation time dropped below the forecast period itself,
his prospective ideas are now not only universally acknowledged among meteorologists,
but constitute the foundation of modern weather forecasting. For years to come, weather
forecasting was considered an intrinsically deterministic endeavor: For one set of “best”
input data, deemed to represent the current weather conditions, one “best” weather
prediction was to be generated. Alongside a comprehensive stream of live weather data,
model complexity and the size of initial data sets have gradually been increased to take
advantage of exponentially growing computer capacities, making numerical prediction
models not only faster, but also more accurate.
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CHAPTER 2. Numerical Weather Prediction and Ensemble Forecasting

Today, weather forecasts worldwide rely primarily on numerical weather prediction
models very similar to the ones Richardson thought of almost 100 years ago. Alternative
forecasting models based on purely statistical methods, using auto-regressive time series
techniques (Brown et al., 1984) or neural network methods (Kretzschmar et al., 2004),
have been implemented successfully at prediction horizons of a few hours. In the medium
range, however, they are outperformed by numerical weather prediction models (Campbell
and Diebold, 2005).

Still, weather forecasting is not exact science. In the early 1990s researchers began to
realize that inherent limitations in atmospheric predictability restrict the value added
by further increasing model complexity. The belief in one near-perfect model with
complexity close to the real world faded, resulting in a shift of paradigm within the
meteorological community. Even with ever increasing computational resources at hand,
computer-generated forecasts will always stay flawed, containing a mix of errors due
to incomplete initial estimates of atmospheric conditions and the chaotic nature of
the partial di�erential equations used to simulate the atmosphere. As a consequence,
alternative ways of using the available computational resources to improve numerical
weather forecasts were explored, ensemble forecasting being a primary candidate (Leith,
1974).

Ensemble prediction systems utilize a varied set of initial conditions and/or numerical
models to compute a set of separate deterministic forecasts (Gneiting and Raftery, 2005).
Whereas no single one of these forecasts might be ultimately correct, ensembles can be
exploited to better define the most likely weather outcome while also more accurately
assessing the risks of rare and possibly dangerous events. However, even though ensembles
do provide additional information compared to a single numerical forecast, they are often
associated with an unsatisfactory degree of calibration (Hamill and Colucci, 1998).

The remainder of this chapter is organized as follows. First, numerical weather
prediction techniques, including the inherent limitations to numerical predictability, are
discussed. In the second section, ensemble forecasting is elaborately portrayed including
the di�erent types, advantages, and disadvantages of ensemble prediction systems and
how they can be further improved.

14



CHAPTER 2. Numerical Weather Prediction and Ensemble Forecasting

2.1 Numerical Weather Prediction Models
Numerical weather prediction (NWP) models are based on the idea that the laws of
physics will determine future atmospheric states, given that the current state of the
atmosphere is known. These grid-based atmospheric simulations rely on a system
of di�erential equations derived from the laws of fluid- and thermodynamics. Those
equations are discretized and integrated forward from initial states based on observational
data assimilated from a variety of sources.

Ever since the first operational real-time NWP forecasts in the 1950s, the enterprise
was driven by the objective of improving the quality of these models, i.e. reducing model
forecast errors under the constraint of model e�ciency. Since then, our understanding of
earth’s atmosphere has improved significantly, providing a strong theoretical foundation
for weather forecasting. On top of that, technology spurred the NWP development
in two major ways: by providing ever-increasing computer capacities and the steady
introduction of additional instruments for data acquisition.

Consequently, NWP forecasts have become more and more accurate over time. Data
assimilation methodologies have become increasingly sophisticated to make best use of
the ever increasing amount of observational data. Model complexity has been increased,
facilitating more sophisticated numerical schemes and model parametrization along with
the use of progressively finer resolutions in order to capture small scale processes. Having
said that, why will even complexer models not automatically lead to better forecasts?

The errors in numerical weather prediction are essentially of two classes: incomplete
or inadequate initial estimates of atmospheric conditions (analysis error), along with
deficiencies within the numerical models itself (model error).

Di�erences between the true atmospheric conditions and the analyzed initial state
serving as input to NWP models arise from instrument errors, as well as from imperfect
data assimilation techniques. Irregularly spaced observations and areas with sparse data
add further di�culties to the interpolation to the grid structure. In case of limited area
models, additional di�culties arise from both uncertainties and errors due to artificial
lateral boundary conditions. Errors introduced by the analyzed initial state therefore
pose the first set of limitations to atmospheric predictability, no matter how skillful the
model might be (Grimit and Mass, 2002).

Deficiencies within the numerical models itself further limit atmospheric predictions.
Even increasingly complex numerical models are subject to imprecision, especially within
the physical parametrisation, as these parametrisations are merely simplifications of
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CHAPTER 2. Numerical Weather Prediction and Ensemble Forecasting

complex atmospheric processes. Clouds, for example, are very di�cult to model as
they encompass many physical processes on a vast range of scales. Still, they play a
crucial role in transporting water and momentum throughout the atmosphere. In order
to incorporate clouds into NWP models, they are related to variables on the scales the
model resolves, i.e. they are parametrized by processes of various precision.

However, the most fundamental problem within the numerical weather prediction
framework is the chaotic nature of the partial di�erential equations used to simulate the
atmosphere (Lorenz, 1963). It is impossible to solve these equations exactly through
analytical methods. Any so called ‘solutions’ of NWP models are therefore only approxi-
mations and even small errors, whether they result from inaccurate initial conditions or
imperfect numerical models, grow with time and may lead to significant forecast errors.

As a result, although the benefits of complexer models and higher resolution forecasts
are numerous, recognition of these limitations to atmospheric predictability has led to
increased interest in alternative ways of using the available computational resources
to improve numerical weather forecasts. Research e�orts have shifted from minimiz-
ing the sources of uncertainty even further by incremental improvements to a better
representation of uncertainty itself.

2.2 Ensemble Prediction Systems
As the belief in one near-perfect model with complexity close to the real world faded,
alternatives to single-integration forecasts were explored. Ensemble prediction systems
(EPS) allocate the available computational resources to compute a series, or ensemble,
of reduced-resolution dynamical NWP model forecasts with varying initial conditions
and/or model physics. Thereby ensemble forecasting o�ers the possibility to address the
uncertainties within the initial state estimates and numerical models, i.e. the inherent
uncertainties in atmospheric prediction. Whereas no single one of these forecasts might
be ultimately correct, multiple results of the ensemble output both suggest the possibility
and provide the means of probabilistic forecasts. Moreover, the ensemble mean forecast
typically outperforms all or most of the individual forecasts comprising the ensemble.
In doing so, it tends to be the best estimate for the verifying state of the atmosphere
(Grimit and Mass, 2002).

Ensembles can not only be exploited to better define the most likely weather outcome,
but also to more accurately assess the risks of rare and unlikely, but nonetheless possible
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events. Thus, ensembles manage to reflect the predictability of a weather system, as
well as identify predictability limits and reduce forecast surprises. This is particularly
relevant as the most dangerous weather conditions are not likely to be the most probable.

In late December 1999, two storms of extreme force, subsequently named Lothar
and Martin, swept across Central Europe, causing major damage in France, Southern
Germany and Switzerland. Over 100 people were killed, and the storm caused extensive
damage to buildings, infrastructure and forests resulting in substantial economic loss.
Figure 2.1 shows the surface pressure ‘stamp maps’ for the 42-hour ensemble forecast
generated at the European Centre for Medium-Range Weather Forecasts (ECMWF)
just days before winter storm Lothar hit Northern France. The top left shows the best-
guidance deterministic forecast for December 26th and the verifying analysis. Given the
available data on December 24th, ECMWF’s operational high-resolution deterministic
forecast predicted a rather typical winter’s day, and missed the storm completely. Even
though a number of ensemble members support this forecast, it can be seen that several
members predict some sort of a storm. In other words, the ensemble did display a
significant risk of a severe event, while the single best deterministic forecast depicting
the most-likely outcome failed to even indicate such a risk. In this particular case, the
ensemble spread was enormous, i.e. the development of atmospheric flow was highly
unpredictable. Di�erences between ensemble members predicting storms and those that
did not, turned out to correspond to small perturbations in temperature and wind over
the West Atlantic (Palmer, 2002).

Ensemble prediction systems can be designed in several ways, including a varied set
of initial conditions or numerical models. In the former case, a collection of forecasts is
generated running one numerical model with varying initial conditions, which are chosen
to be consistent with current observations and the typical analysis error. These so called
multi-analysis ensembles address forecast uncertainties due to imperfect representations
of the atmosphere. Thus, they may diagnose sensitivity to the initial conditions (ICs).
The example above conveys how big the impact of analysis errors, even at shorter lead
times, can be. Today, the selection of initial conditions is a science in itself and a number
of methods, including random perturbations and breeding methods, have been developed
to generate initial conditions reflecting this uncertainty. Multi-model ensembles, on the
other hand, include a number of independently derived models within the ensemble in
order to stress model uncertainty. These numerical models are generally run using a
single set of initial conditions. Alternative representations of forecast uncertainty due
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CHAPTER 2. Numerical Weather Prediction and Ensemble Forecasting

to imperfect models include stochastic representations of the parameterized physical
processes (Buizza et al., 2005) and a perturbated parameter approach (Murphy et al.,
2004). Figure 2.2 shows a schematic representation of the combined approach, namely
a multimodel multianalysis ensemble, where an ensemble forecast is generated running
several numerical models with a collection of initial conditions.

In an ideal ensemble forecast setting, where a particular ensemble prediction system
samples all sources of forecast error appropriately, ensembles are supposed to provide
a flow-dependent sample of the probability distribution of possible future atmospheric
states. The dispersion of a forecast ensemble then corresponds to the uncertainty in the
forecast: a small ensemble spread indicates low uncertainty and vice versa. In addition,
the probability of any event can be estimated directly from the relative event frequency
in the ensemble (Wilks, 2006). For example, if 15 out of 50 ensemble members indicate
the risk of a severe storm, the probability of the actual occurrence of such a storm should
be 30%. The forecast would be considered calibrated, if in 30% of the cases when a 30%
probability for a storm was issued, such an event did actually occur.

In practice, however, ensemble prediction systems are far from perfect. Initial
condition selection procedures fail to randomly sample the current atmospheric state,
and numerical models are still deterministic simplifications of atmospheric reality. In
other words, ensembles capture only some of the uncertainties involved in numerical
weather prediction – and even those only partially. As a result, ensemble forecasts are
often uncalibrated, in that they are contaminated by systematic biases and dispersion
errors. Nevertheless, ensembles can give us an indication of uncertainty, and relationships
between forecast error and the a priori known ensemble spread have been established for
several ensemble prediction systems, even when the ensemble is uncalibrated (Buizza
et al., 2005). Especially for extreme spread events, ensemble spread and ensemble mean
error tend to be highly correlated, i.e. they are a good estimator of the eventual
forecast skill (Whitaker and Loughe, 1998). However, it has also been shown that
ensemble forecasts typically turn out to be underdispersive, in that they fail to cover
the full range of possibilities of the verifying weather. The ensemble spread, then, is
on average too small and the observation lies outside of the ensemble range too often.
Moreover, if ensemble relative event frequencies are used to estimate event probabilities,
underdispersive ensemble outputs tend to lead to overconfidence in probability assessment.
Consequently, in order to produce reliable probability forecasts, numerous methods for
calibrating the ensemble output have been proposed, see e.g. Wilks (2011).
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Figure 2.2: Diagram of an eight member multimodel multianalysis ensemble. Two numerical
models are discretized and integrated forward from four sets of initial conditions (IC 1 - IC 4)
resulting in eight seperate deterministic forecasts (E 1 - E 8).

In concert with statistical post-processing, ensemble prediction systems o�er the
possibility of well-calibrated, flow-dependent probability forecasts in form of predictive
probability density functions (PDFs) over future weather quantities or events. Over
the past years, several statistical post-processing methods for weather variables such as
temperature, air pressure and quantitative precipitation have been developed. State-of-
the-art-approaches include Bayesian model averaging (BMA; Raftery et al., 2005) and
ensemble model output statistics (EMOS; Gneiting et al., 2005). BMA represents the
predictive PDF of any future weather quantity of interest as a weighted average of PDFs
centered on the individual bias-corrected ensemble member forecasts. EMOS is based on
multiple linear regression, and e.g. fits a normal distribution to the ensemble member
forecasts for temperature and pressure. The following chapter extensively portrays
several post-processing techniques that have been proposed to generate probabilistic
forecasts of precipitation based on ensemble forecasts.
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Chapter 3

Probabilistic Forecasts of
Precipitation

Probabilistic forecasts of precipitation are of high socio-economic interest. Agriculture,
forestry, landscaping, hydraulic engineering, tourism, transportation and logistics are
just few of the industries that depend on precise precipitation forecasts and particularly
benefit from probabilistic forecasts for optimal decision making. The advantages of a
probabilistic point of view become visible when looking at precipitation-related extreme
events such as floods, flash floods, landslides or avalanches. When applied in such
circumstances, probabilistic forecasts may not only help to minimize economic damages,
but also potentially save human lives.

However, probabilistic forecasts of precipitation turn out to be especially challenging as
precipitation has a mixed discrete-continuous probability distribution, i.e. the predictive
distribution of precipitation is skewed, non-negative and has a positive probability at
zero. Despite the fact that the U.S. National Weather Service already began to produce
and disseminate the first probabilistic forecasts in terms of probability of precipitation
occurrence (PoP) in the 1960s, the transition to fully specified probability distributions
is still in progress.

As mentioned in the introduction, several statistical techniques have been proposed
to generate probabilistic forecasts of precipitation based on ensemble forecasts. Below,
we discuss three such statistical post-processing techniques: First, we portray Bayesian
Model Averaging, which was the first method proposed in the literature to provide
fully specified predictive densities for precipitation. In the second section, we outline
the logistic regression approach of Wilks (2009) and investigate his method from a
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probabilistic perspective. In the third and final section of this chapter, we propose a new
method based on quantile regression, which also yields fully specified predictive densities.

3.1 Bayesian Model Averaging
Bayesian model averaging (BMA) was originally developed to combine predictions from
di�erent competing statistical models, in order to account for uncertainties within
the model selection process (Hoeting et al., 1999). It has been successfully applied
to several statistical model classes including linear regression and related models in
the health and social sciences, improving predictive performance in all cases. Raftery
et al. (2005) extended BMA from statistical to dynamical models, such as numerical
weather prediction models. Moreover, they demonstrated how BMA can be used to
statistically post-process forecast ensembles, that is, transforming ensemble output
into well-calibrated probabilistic forecasts in form of predictive PDFs of future weather
quantities.

In BMA for forecast ensembles, Y denotes the weather quantity of interest and
X1, . . . , X

K

denote K ensemble member forecasts. In addition, every forecast X

k

is
associated with a component PDF, h

k

(y | x

k

), which can be interpreted as the conditional
PDF of the weather quantity Y given X

k

= x

k

, conditional on X

k

providing the best
forecast in the ensemble. The BMA predictive PDF for Y can then be expressed as a
mixture of the component PDFs,

p (y | x1, . . . , x

K

) =
Kÿ

k=1
w

k

h

k

(y | x

k

), (3.1)

where the weight w

k

is based on ensemble member k’s relative performance or skill in
the training period. These weights can thus be interpreted as the posterior probability
of forecast X

k

being the best forecast in the ensemble. As the w

k

’s are probabilities,
they are non-negative and sum to one, that is q

K

k=1 w

k

= 1.
The distribution of the component PDFs depends on the weather variable of inter-

est. For weather variables whose predictive PDFs are approximately normal, such as
temperature and sea level pressure, the component PDFs can be taken to be normal
distributions centered at the bias-corrected ensemble member forecasts (Raftery et al.,
2005).
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In order to apply BMA to quantitative precipitation forecasts, Sloughter et al. (2007)
propose to model the component PDF of precipitation, h

k

(y | x

k

), as a mixture of a
point mass at zero and a gamma distribution. More specifically, the probability of
precipitation (PoP) is modeled as a function of the forecast X

k

, using logistic regression
with a power transformation of the forecast as the predictor variable, and the predictive
PDF of the amount of precipitation is specified as a gamma distribution, given the
amount of precipitation being greater than zero. The BMA predictive PDF is then a
weighted average or a mixture of such distributions,

p (y | x1, . . . , x

K

) =
Kÿ

k=1
w

k

Ó
P [y = 0 | x

k

] I{y=0} + P [y > 0 | x

k

] g

k

(y | x

k

)I{y>0}
Ô

, (3.2)

where y is the cube root of precipitation accumulation, I is the general indicator function,
and w

k

is the BMA weight.
The logistic regression model is

logitP (y = 0 | x

k

) = logP (y = 0 | x

k

)
P (y > 0 | x

k

) = a0k

+ a1k

x

1/3
k

+ a2k

”

k

, (3.3)

where x

1/3
k

is the power-transformed forecast x

k

, and ”

k

is an indicator variable, that
is equal to one if x

k

= 0 and equal to zero otherwise. The probability P (y = 0 | x

k

)
specifies the probability of zero precipitation given x

k

, and P (y > 0 | y

k

) its complement,
the probability of non-zero precipitation given x

k

, conditional on x

k

providing the best
forecast in the ensemble.

The predictive PDF g

k

(y | x

k

) of the cube root of the precipitation amount y, given
that it is positive, is specified as a gamma distribution

g

k

(y | x

k

) = 1
—

–

k

k

� (–
k

)y

–

k

≠1exp
A

≠ y

—

B

,

where –

k

= µ

2
k

‡

2
k

is the shape parameter and —

k

= ‡

2
k

µ

k

is the scale parameter of the gamma
distribution. The mean, µ

k

, and the variance, ‡

2
k

, of the gamma distribution are modeled
as

µ

k

= b0k

+ b1k

x

1/3
k

and ‡

2
k

= c0k

+ c1k

x

k

.
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As the variance parameters c0k

and c1k

do not vary much from one model to another,
Sloughter et al. (2007) restrict them to be constant across all ensemble members. The c0k

and c1k

terms are replaced with c0 and c1, reducing not only the number of parameters
to be estimated, but also the risk of overfitting.

Parameter estimation is based on training data, i.e. forecast-observation pairs from
a training period. The parameters a0k

, a1k

, a2k

are member-specific and estimated
separately for each ensemble member, using the logistic regression in (3.3) with precipi-
tation/no precipitation as the dependent variable, and x

1/3
k

and ”

k

as the independent
variables. The mean parameters b0k

and b1k

are estimated using linear regression over
all the cases where precipitation occurred. These parameters are also member-specific,
and are estimated using the cube root of precipitation as the dependent variable, and
the cube root of the forecasted accumulation amount as the independent variable. The
remaining parameters c0 and c1 and the BMA weights w1, . . . , w

K

are estimated using
the maximum likelihood technique and the EM algorithm.

3.2 Logistic Regression
Logistic regression is a nonlinear regression technique that has been implemented in
a variety of fields ranging from statistics and epidemiology to the social sciences and
econometrics. It is particularly suited to probability forecasting, as it predicts the
occurrence of an event by fitting data to a logistic function, yielding ‘S-shaped’ prediction
functions that are, like probabilities, strictly bounded to the unit interval.

Denoting p as the probability of a particular outcome, the logistic regression model
can be expressed as

p = exp [≠f (x)]
1 + exp [≠f (x)] (3.4)

or, equivalently

log
C

p

1 ≠ p

D

= ≠f (x) , (3.5)

where f (x) is a linear function of the predictor variables x, say

f (x) = —0 + —1x1 + —2x2 + . . . + —

K

x

K

. (3.6)

Note that even though the log-odds ratio of p is related linearly to both the predictor
variables x and the parameters —

i

, the probabilities themselves are not. Thus, the
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regression parameters —

i

cannot be estimated directly using standard linear regression
techniques; rather they are generally estimated using an iterative maximum likelihood
procedure.

Post-Processing Ensemble Forecasts with Logistic Regression

An important recent implementation of logistic regression is in the statistical post-
processing of ensemble forecasts of continuous weather variables such as temperature
or precipitation, for which the forecast probabilities p pertain to the occurrence of the
verification, Y , above or below a prediction threshold q:

p = P (Y Æ q) . (3.7)

Furthermore, when the predictor variables x are given by a K member ensemble forecast,
the predictors in (3.6) are usually simple functions of these forecasts, such as the mean
value function, the variance function, or the square root of a single entry.

Although logistic regression has been found to perform comparably well for the
statistical post-processing of ensemble forecasts, notable di�culties arise when it is used
in its classical form. Specifically, separate regression equations are usually fitted for a
finite number of predictand thresholds, yielding a collection of threshold probabilities
rather than full forecast probability distributions. As a consequence, probabilities for
intermediate predictand thresholds must be interpolated from the finite collection of
regression equations, the number of which is limited, as the training sample size is
limited.

However, the most problematic consequence of the conventional logistic regression
framework is that threshold non-exceedance probabilities derived from the di�erent
equations are not constrained to be mutually consistent per se. As an example, con-
sider probability forecasts for the lower tercile, q1/3, and the upper tercile, q2/3, of
the climatological distribution of a predictand. According to (3.5), the two threshold
non-exceedance probabilities, p1/3 = P

1
V Æ q1/3

2
and p2/3 = P

1
V Æ q2/3

2
, are specified

by log
5

p1/3
1≠p1/3

6
= f1/3 (x) and log

5
p2/3

1≠p2/3

6
= f2/3 (x), respectively. Then, unless the

regression functions f1/3 (x) and f2/3 (x) are exactly parallel, i.e. they only di�er with
respect to their intercept parameters —0, they will cross for some values of the predictors
x, leading to the nonsense result of p1/3 > p2/3, which is clearly impossible.
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Extending the Logistic Regression Structure

Wilks (2009) proposes to circumvent the problem of potentially incoherent forecast
probabilities by fitting logistic regressions for all thresholds simultaneously. Specifically,
he suggests to extend the logistic regression structure, i.e. equations (3.4) and (3.5), to
include an additional predictor that is a non-decreasing function, g (q), of the predictand
threshold itself, yielding a unified logistic regression model that pertains to any and all
predictand thresholds:

F (q | x) = P (Y Æ q | X = x) = exp [g (q) ≠ f (x)]
1 + exp [g (q) ≠ f (x)] , (3.8)

or,

log
C

F (q | x)
1 ≠ F (q | x)

D

= g (q) ≠ f (x) . (3.9)

The unified logistic regression model o�ers several benefits. In addition to providing
smoothly-varying forecast probabilities for all predictand thresholds, F (q | x) can be
explicitly computed for each fixed set of predictor variables x. In this case, F (q | x) is a
function of q œ R and therefore a forecast CDF. Moreover, as di�erent logistic regressions
only di�er in respect to the non-decreasing function g(q), the number of parameters to be
estimated is significantly reduced, and the resulting forecast probabilities are necessarily
mutually consistent.

For the function g (q), Wilks (2009) considers

g (q) = –1
Ô

q,

and (3.6) is given by
f (x) = —0 + —1

Ô
x,

where x denotes the ensemble mean. Furthermore, this approach has been shown to
perform slightly better than the classical logistic regression approach, in particular for
small data sets.

A natural question arising in this context is whether the expression in (3.8) leads to
a known parametric family of distributions, i.e. if we can choose g (q) in such a way that
(3.8) is a standard CDF. We found that if g (q) = –0 + –1q with –1 > 0, then F (q | x) is
a logistic distribution

F (q | x) = 1
1 + exp

1
≠ q≠µ

s

2
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Figure 3.1: (a) CDFs and (b) PDFs for accumulated precipitation, evaluated at selected
values of the ensemble mean (black corresponds to an ensemble mean of 0 mm, red to 5 mm,
orange to 15 mm, and green to 25 mm). Parameter values as in Wilks (2009).

with location parameter, the mean, µ = f(x)≠–0
–1

and scale parameter s = 1
–1

. The
variance of the logistic distribution is modeled as ‡

2 = fi

2

3–

2
1
. A result can be seen in

Figure 3.1.

3.3 Quantile Regression
Opposed to conventional regression techniques, which focus on the conditional averages,
quantile regression o�ers the possibility to estimate any and all conditional quantiles
of a response variable distribution, thereby providing a more complete view of possible
causal relationships.

Let Y denote the response variable, say the precipitation amount, and X = x a
forecast for Y . Assume that some b œ R+ exists such that Y , X œ [0, b]. Then

Q

Y

(· | x) := inf {q : P (Y Æ q | X = x) Ø ·}

denotes the ·th conditional quantile (0 Æ · Æ 1) of Y given X. A linear quantile
regression model for Q

Y

(· | x), at a given · , specifies

Q

Y

(· | x) = —0 (·) + x—1 (·) . (3.10)
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Figure 3.2: Quantile regression curves valid on 8 January 2008 in Astoria, Oregon. As
these regressions are fitted separately, they are not constrained to be parallel, and logically
inconsistent forecasts are inevitable for su�ciently extreme values of the predictor (black
corresponds to the 1%, red to the 10%, orange to the 15%, green to the 30%, blue to the 50 %,
purple to the 90% and grey to the 99% quantile).

By choosing · appropriately, one can focus on any quantile of interest, such as
the tails and other non-central parts of a response variable distribution. However, the
conventional quantile regression framework can only give quantile forecasts for certain
specific probabilities, rather than yielding full predictive PDFs. As a consequence, one is
faced with similar problems as with the logistic regression framework, and the separately
derived quantile forecasts are not automatically constrained to be mutually consistent.

Figure 3.2 shows an example for separately fitted quantile regression curves, based
on data provided by the UWME (see Section 4.1 for a description). To estimate the
regression coe�cients, we use the R package quantreg with the ensemble mean as the
only predictor. As the regressions were fitted separately, they are not constrained to be
parallel. Thus, logically inconsistent forecasts are possible, especially for small predictor
values.
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3.3.1 Probabilistic Forecasts in Terms of Quantiles

Bremnes (2004) proposes a two-step approach for making reliable probability forecasts
of precipitation in terms of quantiles. He suggests to first model the probability of
precipitation using probit regression, and then to estimate selected quantiles in the
distribution of precipitation amounts, given the occurrence of precipitation, by means of
local quantile regression. By applying the laws of probability, these steps are combined
in order to make unconditional quantile forecasts.

However, Bremnes (2004) does not intend to make probabilistic forecasts in terms of
full predictive distributions; rather, he avoids distributional assumptions, and estimates
the quantiles of interest directly. He reasons that the distribution for precipitation
amounts varies highly with the predictors, and is di�cult to model using standard
parametric distributions whose parameters all depend on these predictors.

In order to circumvent consistency issues, the use of local quantile regression is
suggested. Bremnes (2004) points out that it might be unrealistic to restrict quantiles to
be linear, or di�cult to find appropriate transformations for the predictors, and that it
might be troublesome to put constraints on all the —s to avoid crossing quantile curves.

In contrast to Bremnes’ approach, we propose a method based on quantile regression
which resolves both the consistency issues and yields fully specified predictive densities.
Our approach is based on a result of Tokdar and Kadane (2011).

3.3.2 New Approach Based on Tokdar and Kadane (2011)

Tokdar and Kadane (2011) introduce a semi-parametric Bayesian framework for a simul-
taneous analysis of linear quantile regression models. For a one-dimensional covariate,
they present a simpler equivalent characterization of the monotonicity constraint through
an interpolation of two monotone curves. In addition, they make use of the observation
that equation (3.10) automatically lends itself to a conditional density for Y , which can
be written as

f (y | x) = 1
ˆ

ˆ·

Q

Y

(· | x)

----
·=·

x

(y)
= 1

—

Õ
0 (·) + x—

Õ (·)

----
·=·

x

(y)
, (3.11)

where ·

x

(y) solves y = Q

Y

(· | x) in · , and —

Õ denotes the derivative of the function —.
Based on a similar result in Tokdar and Kadane (2011), we derive the following

theorem and corollary.
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Theorem 1. A linear specification of Q

Y

(· | x) as in (3.10) for · œ [0, 1] is monotoni-
cally increasing in · for every x œ [0, b] if and only if

Q

Y

(· | x) = –1 + –2x +
3

1 ≠ 1
b

x

4
÷1 (·) + 1

b

x÷2 (·) (3.12)

where –1, –2 are constants and ÷1, ÷2 are monotonically increasing in · .

Proof. If Q

Y

(· | x) is given by (3.12), then it must be monotonically increasing in · for
every x œ [0, b], for which both 1 ≠ 1

b

x and 1
b

x are non-negative. One can express such
Q

Y

(· | x) as in (3.10) by defining —0 (·) = –1+÷1 (·) and — (·) = –2+ 1
b

(≠÷1 (·) + ÷2(·)).

For the converse, every monotonicity-obeying Q

Y

(· | x) of the form (3.10) can be
expressed as (3.12) by taking –1 = 0 , –2 = 0, ÷1 = Q

Y

(· | 0) , ÷2 = Q

Y

(· | b).

Corollary 2. It follows that
—

Õ
0 (·) = ÷

Õ
1 (·) (3.13)

and
—

Õ
1 (·) = 1

b

[÷Õ
2 (·) ≠ ÷

Õ
1 (·)] . (3.14)

Corollary 2 implies that the density in (3.11) is of the form

f (y | x) = 1
1
1 ≠ x

b

2
÷

Õ
1 (·) + x

b

÷

Õ
2 (·)

----
·=·

x

(y)
. (3.15)

Let us assume for a moment that ÷1 = ÷2. Under this assumption, we can easily write
the conditional density f

Y

in terms of ÷1. In order to find ·

x

(y), we need to solve

y = –1 + –2x + ÷1 (·) (3.16)

for · . This gives
· = ÷

≠1
1 (y ≠ [–1 + –2x]) . (3.17)

If we combine (3.15), (3.13) and (3.17), we get

f (y | x) = 1
÷

Õ
1

1
÷

≠1
1 (y ≠ [–1 + –2x])

2
. (3.18)
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Recall that
1

÷

Õ
1

1
÷

≠1
1 (z)

2 = ˆ

ˆz

÷

≠1
1 (z) . (3.19)

When now comparing (3.18) and (3.19), keeping in mind that f

Y

is a density, we see that
÷1 must be something like the quantile function of the forecast error z = y ≠ [–1 + –2x].
However, this approach will not work if y Ø 0: Without loss of generality, assume –1 = 0
and –2 Ø 1. Then it follows from (3.16) that ÷1 (·) Ø 0 for all · . Hence, we obtain y Ø x

for all values of x.
In order to resolve these problems, we log-transform the support of f

Y

and model
the predictive density for Y as a mixture of a point mass at zero and a log-normal
distribution.

3.3.3 Discrete-Continuous Model

Let Y denote precipitation, x = (x1, . . . , x

k

) an ensemble forecast for Y , x the ensemble
mean, and s

2 the ensemble variance. We model the predictive density for Y as

p (y | x) = P [y = 0 | x] I{y=0} + P [y > 0 | x] g(y | x)I{y>0}. (3.20)

For precipitation occurrence, we employ logistic regression with a power transformation
of the ensemble mean as a first predictor, an indicator function ”

x

as a second predictor,
and the ensemble variance as a third predictor:

logitP (y > 0 | x) = logP (y > 0 | x)
P (y = 0 | x) = ‹0 + ‹1x

1/3 + ‹2”x

+ ‹3s
2
.

The predictive distribution of the precipitation amount y, given that it is positive, is
specified as a log-normal distribution with density function

g (y | x) = 1
y‡

x

Ô
2fi

exp
A

≠(logy ≠ µ

x

)2

2‡

2
x

B

. (3.21)

This distribution can be derived from the linear quantile regression model in (3.10),
where the parameters µ

x

and ‡

x

may depend on the ensemble forecast x in various ways.
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Homoskedastic Model Depending on the Ensemble Mean

In this context we employ a homoskedastic model depending on the ensemble mean.
However, alternative models are possible, see Appendix B for examples.

Let z = log y denote the precipitation amount on the log-scale. Assume that the
covariate x from the previous section is the ensemble mean x, and that

÷1 (·) = ÷2 (·) = F

≠1
1
· ; 0, Ê

2
2

= Ê�≠1 (·) ,

where F (·; 0, Ê

2) is the CDF of a normal distribution with mean 0 and variance Ê

2, and
� is the CDF of a standard normal distribution. From (3.18) and (3.19) it follows that

f (z | x) = 1
Ê

Ï

A
z ≠ (–1 + –2x)

Ê

B

,

where Ï is the PDF of a standard normal distribution. That is, the parameters of the
predictive density g in (3.21) are given by

µ

x

= –1 + –2x and ‡

x

= Ê. (3.22)

3.3.4 Parameter Estimation

For forecasts on any given day, parameter estimation is based on forecast and observation
data from a rolling training period, which consists of the N most recent days available.
In Section 4.2, we give details for the choice of N .

Logistic Regression Model: Parameters ‹0, ‹1, ‹2, and ‹3

The parameters ‹0, ‹1, ‹2, and ‹3 are estimated using the maximum likelihood technique
for the logistic regression model:
Let W be a Bernoulli random variable, indicating whether precipitation occurs. We then
obtain

p (w) = p

w · (1 ≠ p)1≠w

as the density for w, with the respective probability of precipitation p.
The likelihood function L (‹0, ‹1, ‹2, ‹3) = r

N

i=1 p (w
i

) can be interpreted as the
probability of the training data being observed, viewed as a function of the parameters.
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As it is customary, we maximize the log-likelihood function rather than the likelihood
function itself, in order to obtain the optimal parameters based on the training data:

l (‹0, ‹1, ‹2, ‹3) = log
A

NŸ

i=1
p (w

i

)
B

=
Nÿ

i=1
log

1
p

w

i

i

· (1 ≠ p

i

)1≠w

i

2

=
Nÿ

i=1
[w

i

log (p
i

) ≠ (1 ≠ w

i

) log (1 ≠ p

i

)]

As log
1

p

1≠p

2
= ‹0 + ‹1x

1/3 + ‹2”x

+ ‹3s
2 denotes the logit for p,

l (‹0, ‹1, ‹2, ‹3) =
Nÿ

i=1

Ë
w

i

1
‹0 + ‹1x

1/3
i

+ ‹2”x

i

+ ‹3s
2
i

2È
≠

Nÿ

i=1

Ë
log

1
1 + exp

1
‹0 + ‹1x

1/3 + ‹2”x

+ ‹3s
2
22È

.

Log-Normal Distribution: Parameters –1, –2, and Ê

The parameters –1, –2, and Ê are estimated employing minimum continuous ranked
probability score (CRPS) estimation, as proposed in Gneiting et al. (2005). As the
predictive density is modeled with a log-transformed normal distribution, we use the
CRPS for normal distributions (see Appendix A.2) with the log-transformed observation
set z.

When expressing the CRPS in terms of the parameters, the average score over all N

pairs of forecasts and observations contained in the training data set is

� (–1, –2; Ê) = 1
N

Nÿ

i=1
Ê

I

Z

i

[2 � (Z
i

) ≠ 1] + 2 Ï (Z
i

) ≠ 1Ô
fi

J

,

where
Z

i

= z

i

≠ (–1 + –2xi

)
Ê

,

and � (·) and Ï (·) denote the CDF and the PDF of the standard normal distribution,
respectively.

Both optimization processes are performed with the optim function in R and the
Broyden-Fletcher-Goldfarb-Shanno algorithm (R Development Core Team, 2012). As
initial values for the algorithm, we use the results of the previous day’s estimation. For
the forecast errors, we assume independence of time and space, which is reasonable as we
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only make forecasts for one time and one location simultaneously (Raftery et al., 2005;
Gneiting et al., 2005).

Furthermore, because of the similarities to the family of EMOS post-processing
techniques, we refer to our technique in the following as EMOS.
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Chapter 4

Case Study

We apply our EMOS method in a case study to 48-h precipitation forecasts of 24-h
precipitation accumulation over the North American Pacific Northwest. We describe the
forecast and observation data used, and the choice of training data in the subsequent
Sections 4.1 and 4.2. In Section 4.3, we illustrate how the method works in practice.
In the final section, Section 4.4, we evaluate the performance of our new approach, by
employing the assessment tools presented in Appendix A and comparing its performance
to the unprocessed raw ensemble and climatology.

4.1 Forecast and Observation Data
This case study is based on forecast data provided by the University of Washington
mesoscale ensemble (UWME; Eckel and Mass, 2005), for the period between 1 January
2008 and 31 December 2008. During this time, the eight-member multi-analysis ensemble
consisted of multiple runs of the Fifth-Generation Penn State/NCAR Mesoscale Model
(MM5) with initial and lateral boundary conditions from eight di�erent operational
centers around the world, see Table 4.1.

The region covered by the UWME is the North American Pacific Northwest. Specifi-
cally, an inner nest, of 12 km grid spacing, roughly consists of the states Washington,
Oregon and Idaho, as well as the southern part of the Canadian province British Columbia.
The outer domain covers the western part of North America and large parts of the eastern
Pacific Ocean, having a horizontal grid spacing of 36 km.

We use 48-h ahead forecasts of daily (24 hour) precipitation accumulation generated
on the 12 km grid and bilinearly interpolated to observation locations from the forecast
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Table 4.1: The UWME: initial and lateral boundary conditions from eight di�erent operational
centers around the world.

No IC / LBC Source Operational Center

1 Global Forecast System USA National Centers for
Environmental Prediction

2 Global-Environmental
Multi-Scale Model Canadian Meteorological Center

3 ETA Limited-Area Mesoscale
Model

USA National Centers for
Environmental Prediction

4 Global Analysis and Prediction
Model

Australian Bureau of
Meteorology

5 Global Spectral Model Japanese Meteorological Agency

6 Navy Operational Global
Atmospheric Prediction System

Fleet Numerical Meteorological
and Oceanographic Center

7 Global Forecast System Taiwan Central Weather Bureau
8 Unified Model UK Met O�ce

grid points. The observation data come from meteorological stations located in the
Pacific Northwest, and were subject to quality control procedures, described in Bahrs
(2005), that is, dates and locations with missing forecasts or observations were removed
from the data set.

For the time period considered, the data set contains 17,270 pairs of ensemble forecasts
and observations, corresponding to 297 forecast days. There are 69 observation locations,
whose distribution is pictured in Figure 4.1. In order to provide an appropriate training
period for all days of 2008, additional data from the year 2007 is used. Further information
about the UWME, now using the WRF mesoscale model, as well as real time forecasts and
observations can be found at http://www.atmos.washington.edu/~ens/uwme.cgi.
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Figure 4.1: The 69 observation locations contained in the 2008 data set are located in the
Pacific Northwest, including the Canadian province British Columbia (BC), and the US states
of Washington (WA), Oregon (OR) and Idaho (ID). The arrow indicates the city of Astoria,
Oregon (see Figure 3.2 and Section 4.3).

4.2 Choice of Training Data
As noted, we fit the parameters of our EMOS model using forecast and observation data
from a rolling training period. That is, on any given day, we use training data from
the N most recent days available. In principle, a longer training period reduces the
statistical variability in the parameter estimation. However, if a long training period
is chosen, the model is also less adaptive to e.g. changes in atmospheric regimes. For
each day, we use training data from all 69 stations to estimate a single set of parameters
across the Pacific Northwest, comparable to the regional EMOS method (Thorarinsdottir
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Figure 4.2: Comparison of training period lengths: (a) CRPS of EMOS forecasts and (b)
MAE of the EMOS median forecasts.

and Gneiting, 2010). These parameters are then used to create EMOS forecasts at each
of the 69 stations.

To make an informed decision about the length of the training period, we computed the
average continuous ranked probability score (CRPS; see Appendix A) for the probabilistic
forecasts and the mean absolute error (MAE) of the resulting deterministic forecasts,
considering various training period lengths. The results are shown in Figure 4.2. Both
the CRPS and the MAE improve (decrease) as the length of the training period N

increases to 30 days, and thereafter they deteriorate (increase). We therefore use a
training period of N = 30 days.

Note that it is however possible that other forecast lead times and other geographic
regions require other choices for the training period.

4.3 Example: Forecast for Astoria, 8 January 2008
In order to illustrate how the new EMOS method works, we show an example of a
post-processed 48-hour-ahead precipitation forecast valid on 8 January 2008 at station
KAST in Astoria, Oregon.

The parameters estimated for this particular date are shown in Table 4.2. The logistic
regression model assigns the highest coe�cient, ‹1, to the ensemble mean, indicating a
high predictive skill for this predictor. Note that the coe�cient, ‹3, for the ensemble
variance is negative, which implies an inversely proportional relationship between the
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Table 4.2: Parameter estimates for the predictive model in (3.20), valid on 8 January 2008.

‹0 ‹1 ‹2 ‹3 –1 –2 Ê

EMOS ≠3.12 5.87 0.16 ≠0.99 ≠3.84 3.19 0.96

Table 4.3: Ensemble and EMOS forecast characteristics and the verifying observation for
station KAST, valid on 8 January 2008.

PoP mean variance median observation
Ensemble 1.00 0.17 0.01 0.13 0.03
EMOS 0.54 0.19 0.05 0.03

variance and the probability of precipitation. Furthermore, both intercept parameters,
‹0 and –1, have a rather high negative value, suggesting a high bias in the ensemble.

Table 4.3 shows the ensemble mean, median and variance, the EMOS results, and
the verifying observation. By applying the logistic regression model in order to derive a
calibrated PoP forecast, the unrealistically high probability denoted by the raw ensemble
is reduced to 54% of the original value. Considering the quantative forecast, we find that
EMOS adjusts the ensemle spread, thereby giving a more realistic estimate of forecast
uncertainty. As for the deterministic forecasts, we can see that the observation lies
fairly close to the EMOS median, which is substantially lower than the ensemble median
forecast.

The corresponding predictive PDF at this date and location is displayed in Figure 4.3.
The probability of exceeding a particular threshold can be derived by the proportion of
the area under the solid curve to the right of the threshold, multiplied by the probability
of precipitation. Although the observation lies far outside the ensemble range, it is
contained in the region of high probability of the EMOS predictive PDF.
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Figure 4.3: 48-hour-ahead EMOS density forecast of precipitation valid on 8 January 2008,
in Astoria, Oregon. The blue vertical line at zero represents the EMOS estimate for the
probability of no precipitation, and the solid curve the EMOS PDF of the precipitation amount
given that it is non-zero. The dashed red line represents the ensemble median forecast, the solid
red line the ensemble range, and the red dots the ensemble member forecasts. The dashed blue
line indicates the EMOS median forecast, and the black vertical line the verifying observation.
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Figure 4.4: Reliability diagram of binned PoP forecast versus observed relative frequency
of precipitation, for climatology (stars), consensus voting of the raw ensemble (crosses) and
EMOS (circles).

4.4 Results for the Pacific Northwest, 2008
In this section, we present the results for both the probability of precipitation (PoP)
forecasts and the precipitation amount forecasts, aggregated over all locations for the
full calendar year 2008. We compare our new method to the raw ensemble forecast
and a climatological forecast, which was produced for each day by taking all available
observations from the training data as an ensemble forecast.

4.4.1 Probability of Precipitation Forecasts

We begin with a discussion of the PoP forecasts. Figure 4.4 shows the reliability diagram.
Our new approach produces well-calibrated results, while both the consensus vote from
the raw ensemble and the climatological ensemble produce severely uncalibrated forecasts.

Note that the climatologal ensemble failed to produce any PoP forecasts greater that
0.7, see Figure 4.5. This is due to both the large number of ensemble members and the
high variability within the observations, as we use a regional approach. Furthermore we
notice that EMOS calibrates the raw ensemble, by reducing the amount of probability

41



CHAPTER 4. Case Study

(a) climatology

PoP

# 
fo

re
ca

st
s

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
30

00
50

00

(b) ensemble

PoP

# 
fo

re
ca

st
s

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
30

00
50

00

(c) EMOS

PoP

# 
fo

re
ca

st
s

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
30

00
50

00

Figure 4.5: Histograms of forecast frequency for probability of precipitation, over all locations
and available test dates in 2008.

forecasts equal to one. The Brier scores for PoP forecasts, see Table 4.4, reflect these
results, in that the Brier scores based on our new approach were significantly better than
both the raw ensemble and climatology.

4.4.2 Precipitation Amount Forecasts

In assessing probabilistic forecasts of quantitative precipitation, we follow Gneiting et al.
(2005) and aim to maximize the sharpness of the predictive PDFs, subject to calibration.
In order to assess calibration, we consider Figure 4.6, which shows the verification rank
histogram (VRH) for the raw ensemble forecast and climatology, and the probability
integral transform (PIT) histogram for the EMOS forecast distributions, see Appendix
A for a general description of these methods.

For the verification rank histogram, there were incidences where the observed value
was zero (no precipitation), and one or more forecasts were also zero. To obtain a rank in
these situations, the observation rank was randomly chosen between zero and the number
of forecasts equal to zero. In order to calculate the values for the PIT histogram, the
EMOS cumulative distribution function was evaluated at its corresponding observation.
In the case of an observation of zero, a value was randomly drawn between zero and the
probability of no precipitation.

The histogram for the raw ensemble forecast is far from flat, indicating a lack of
calibration. Specifically, it shows that the raw ensemble is underdispersed, that is, too
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Table 4.4: Brier scores (BS) for probability of precipitation forecasts, and MAE and CRPS
for quantitative precipitation forecasts over the Pacific Northwest in 2008. MAE and CRPS
are given in mm, and the MAE refers to the deterministic forecast given by the median of the
respective forecast distribution.

BS MAE CRPS
Climatology 0.22 0.18 0.15
Ensemble 0.19 0.14 0.11
EMOS 0.11 0.12 0.09
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Figure 4.6: Verification rank histogram for (a) the climatological forecast and (b) the raw
ensemble forecast, and (c) PIT for EMOS forecast distributions of precipitation accumulation.

many observations fall out of the ensemble range. The PIT histogram for the post-
processed EMOS forecast on the other hand shows substantially better calibrated results,
reflected by a uniformly distributed histogram. As can be expected, the climatological
forecast seems to be fairly well calibrated as well.

To further assess the predictive performance of the three forecasting methods, we
employ the MAE and the CRPS, see Appendix A. Table 4.4 shows the MAE and CRPS
values for climatology, raw ensemble forecasts, and EMOS forecasts, all measured in
millimeters. Deterministic forecasts can be created from all forecasts by finding the
median of the predictive PDF, or the forecast ensemble, respectively; the MAE refers to
the error of this desterministic forecast. EMOS outperfomed both climatology and the
raw ensemble. The results for the CRPS were even stronger, in that the post-processed
EMOS forecast improved by 18% compared to the raw ensemble forecast.
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Discussion

We proposed a novel way of statistically post-processing ensemble forecasts of precipitation
based on quantile regression. The resulting predictive distribution is a mixture of a
point mass at zero and a log-normal distribution. That is, it has two components:
the probability of zero precipitation occurrence, and a predictive distribution for the
precipitation accumulation given that it is greater than zero; it thus provides both
probability of precipitation forecasts and probabilistic quantitative precipitation forecasts
in a unified form.

In our experiments with the University of Washington mesoscale ensemble (UWME;
Eckel and Mass, 2005), we applied the new technique to 48-h forecasts of 24-h precipitation
over the North American Pacific Northwest. The EMOS probabilistic forecasts turned
out to be much better calibrated than the unprocessed ensemble and a climatological
reference forecast. Specifically, the EMOS forecasts outperformed both reference forecasts
in terms of their respective Brier scores. Moreover, the EMOS median forecast had a
lower MAE, and the EMOS forecast PDFs had substantially lower CRPS than both
reference forecasts.

In addition, by providing a full predictive PDF, EMOS o�ers the advantage of giving
quantile forecasts for any and all precipitation thresholds of interest, and the resulting
quantile forecasts are necessarily mutually consistent. This provides a substantial
improvement over the conventional quantile regression framework, where separate quantile
regressions have to be fitted for each threshold of interest, and logically inconsistent
forecasts are possible, as separately fitted regressions are not constrained to be parallel.

Still, various improvements to our method are possible. We estimated only a single
set of parameters using data from the entire Pacific Northwest, and a more local approach
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might perform better, see e.g. the local EMOS method (Thorarinsdottir and Gneiting,
2010). Moreover, our choice of training period is specific to our data set and region,
where it rains relatively often. Other forecast lead times and other geographic regions
are likely to require a di�erent training period. Furthermore, we assumed independence
of forecast errors in space and time, which is reasonable as we only make forecasts
for one time and one location simultaneously (Raftery et al., 2005; Gneiting et al.,
2005). However, methods for probabilistic forecasts at multiple locations have been
developed for precipitation, see e.g. Berrocal et al. (2008). Finally, besides the used
homoskedastic model for quantitative precipitation, several other models, which e.g.
include heteroskedasticity or depend on additional predictors, are possible.
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Performance Measures for
Probabilistic Forecasts

In concert with statistical post-processing, ensemble prediction systems o�er the possi-
bility of well-calibrated probabilistic forecasts in form of predictive probability density
functions (PDFs) over future weather quantities or events. Often it is critical to assess
the predictive ability of these forecasts, or to compare and rank competing forecasting
methods.

In the introduction we stated that, according to the diagnostic paradigm of Gneiting
et al. (2007), the goal is to maximize the sharpness of a probabilistic forecast subject to
its calibration. Calibration refers to the reliability of the forecast, that is the statistical
consistency between the probabilistic forecast and the actually occurring observations.
Sharpness refers to the concentration of the predictive distribution; it is a property of
the forecasts only. Under the condition that all forecasts are calibrated, we define the
sharpest to be the best.

Here we present several methods to assess the predictive performance of probabilistic
forecasts for both dichotomous events, such as probability of precipitation, and proba-
bilistic density forecasts, such as probabilistic forecasts of quantitative precipitation. For
further reference see e.g. Wilks (2011).
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A.1 Assessing Dichotomous Events

Brier Score (Accuracy Measure)

The most common accuracy measure for verification of probabilistic forecasts of dichoto-
mous events, such as the probability of precipitation, is the Brier score (BS). It measures
the total probability error, considering that the observation is 1 if the event occurs, and
0 if the event does not occur. The Brier score averages the squared di�erences between
pairs of forecast probabilities p

i

and the subsequent binary observations x

i

,

BS = 1
N

Nÿ

i=1
(p

i

≠ x

i

)2
,

where the index i denotes the numbering of the N forecast-event pairs. The Brier score
can take values in the range 0 Æ BS Æ 1, and is negatively oriented, i.e. perfect forecasts
exhibit BS = 0. Less accurate forecasts receive higher Brier scores, note however that it
weights large errors more than small ones.

Reliability Diagram (Calibration)

The reliability diagram is a graphical device that shows the full joint distribution of
forecasts and observations for probability forecasts of a binary predictand, such as the
probability of precipitation occurrence. It measures the agreement between predictand
probabilities and observed frequencies, i.e. if the forecasts are calibrated. In order to
obtain a reliability diagram, the binned forecast probabilities are plotted against the
observed relative frequencies. For perfect calibration, the binned forecast probabilities
and the observed frequencies should be equal, and the plotted points should lie on the
diagonal.

A.2 Assessing Probabilistic Forecasts

PIT / VRH (Calibration)

The prefered tool to assess calibration of density forecasts is the probability integral
transform histogram (PIT histogram; Dawid 1984, Diebold et al. 1998). If the predicted
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Figure A.1: Example VRHs /PITs, illustrating characteristic dispersion errors. Perfect
uniformity is indicated by the horizontal dashed lines.

distribution F is equal to a hypothetical “true” distribution, the value of the predictive
cumulative distribution function (CDF) at the observation x has a uniform distribution

p = F (x) ≥ U [0, 1] .

For perfect calibration, the histogram of all PIT values p, computed for all forecasts
available, should show a flat shape. Deviations from uniformity can be used to diagnose
aggregate deficiencies, as they are both easy to recognize and to interpret. A U-shaped
histogram indicates overconfidence, in that the spread of the underlying predictive distri-
bution is too small, and the predictive distribution is under-dispersed. An over-dispersed
distribution reveals itself in a hump-shaped diagram, with too many observations in the
center of the distribution.

The discrete analog of the PIT histogram is the verification rank histogram or
Talagrand diagram (VRH; Anderson 1996, Hamill and Colucci 1998, Talagrand et al.
1997), which can be used to evaluate ensemble forecasts. It plots the frequency of
the observation ranks within the forecast ensemble. As before, a U-like shape implies
under-dispersion, while the opposite holds for a hump-like shape. Skewed histograms
indicate a certain bias and calibrated ensembles produce a flat histogram. The VRH can
be interpreted in the same manner as the PIT histogram, see Figure A.1 for characteristic
shapes of these histograms.

Note however that a flat histogram does not necessarily indicate a skilled forecast,
i.e. rank uniformity is a necessary but not su�cient criterion for determining that an
ensemble is reliable.
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Proper Scoring Rules (Accuracy Measures)

In order to evaluate calibration and sharpness simultaneously, we employ so called proper
scoring rules. These accuracy measures assign penalties depending on forecast accuracy,
and can be used to compare competing forecasting methods.

Continuous Ranked Probability Score (CRPS)

A widely used proper scoring rule for probabilistic forecasts is the continuous ranked
probability score (CRPS). It is defined as

crps (P, x) =
Œ̂

≠Œ

(F (y) ≠ I {y Ø x})2 dy,

where F denotes the CDF associated with the predictive distribution P , and x denotes
the observation.

For ensemble forecasts, where the predictive distribution Pens places a point mass of
1
N

on the ensemble members x1, . . . , x

N

œ R, the CRPS can be evaluated as

crps (Pens, x) = 1
N

Nÿ

j=1
|x

j

≠ x

i

| ≠ 1
2N

2

Nÿ

i=1

Nÿ

j=1
|x

j

≠ x

i

| .

For a normal distribution, N (µ, ‡

2), there exists a closed form of the CRPS,

crps
1
N

1
µ, ‡

2
2

, x

2
= ‡

I
x ≠ µ

‡

5
2 �

3
x ≠ µ

‡

4
≠ 1

6
+ 2 Ï

3
x ≠ µ

‡

4
≠ 1Ô

fi

J

,

where � (·) and Ï (·) denote the CDF and the PDF of the standard normal distribution,
respectively (Gneiting et al., 2005).
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Mean Absolute Error (MAE)

The CRPS generalizes the mean absolute error (MAE) and reduces to it for point
forecasts; the MAE can thus be viewed as a special case of the CRPS. The MAE is
specified as the mean absolute di�erence between the predictive median and the realizing
observations:

mae (P, x) = 1
N

Nÿ

i=1
|µ

i

≠ x

i

| ,

where µ

i

is the median of the predictive distribution and the sum extends over all forecast
cases. It is used to determine the skill of the distribution median as a point forecast.
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Alternative Models

In addition to the previously used model for quantitative precipitation, see Section B.1
and 3.3.3, we propose several other possible models, described in Section B.2 and Section
B.3.

B.1 Homoskedastic Model Depending on the En-
semble Mean

Let z = log y denote the precipitation amount on the log-scale. Assume that

÷1 (·) = ÷2 (·) = F

≠1
1
· ; 0, Ê

2
2

= Ê�≠1 (·) ,

where F is the CDF of a normal distribution with mean 0 and variance Ê

2, and � is the
CDF of a standard normal distribution. From (3.18) and (3.19) it follows that

f (z | x) = 1
Ê

Ï

A
z ≠ (–1 + –2x)

Ê

B

,

where Ï is the PDF of a standard normal distribution. That is, the parameters of the
predictive density g in (3.21) are given by

µ

x

= –1 + –2x and ‡

x

= Ê. (B.1)
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B.2 Heteroskedastic Model Depending on the En-
semble Mean

We can include heteroskedasticity in our model by allowing ÷1 and ÷2 to di�er. For
instance, let

÷1 (·) = Ê1�≠1 (·) , ÷2 (·) = Ê2�≠1 (·) .

Equation (5.16) then becomes

z = –1 + –2x +
53

1 ≠ x

b

4
Ê1 ≠ +x

b

Ê2

6
�≠1 (·)

which leads to a predictive density g with

µ

x

= –1 + –2x and ‡

x

=
3

1 ≠ x

b

4
Ê1 ≠ +x

b

Ê2. (B.2)

B.3 Models Depending on the Ensemble Mean and
Variance

From Equation (12) in Tokdar and Kadane (2011) it follows that it should be easy to
extend the models discussed above to any of the following,

µ

x

= –1 + –2x + –3s
2 and ‡

x

= Ê, (B.3)

µ

x

= –1 + –2x + –3s
2 and ‡

x

=
3

1 ≠ x

b

4
Ê1 ≠ +x

b

Ê2, (B.4)

µ

x

= –1 + –2x + –3s
2 and ‡

x

=
3

1 ≠ x

b

Õ

4
Ê1 ≠ + x

b

Õ Ê2, (B.5)

where b

Õ is the upper bound for s

2.
Note that in all the models (B.1) - (B.5), the forecasts are used on their original scale.

This is due to the fact that Theorem 1 only holds for bounded positive variables.

53





Bibliography

Anderson, J. L. (1996) A method for producing and evaluating probabilistic forecasts
from ensemble model integrations. Journal of Climate, 9, 1518–1530.

Bahrs, J. (2005) Observations QC documentation. Available at http://www.atmos.

washington.edu/mm5rt/qc_obs/qc_doc.html.

Berrocal, V. J., A. E. R. and T. Gneiting (2008) Probabilistic quantitative precipitation
field forecasting using a two-stage spatial model. Annals of Applied Statistics, 2,
1170–1193.

Bjerknes, V. (1904) Das Problem der Wettervorhersage, betrachtet vom Standpunkte
der Mechanik und der Physik. Meteorologische Zeitschrift, 21, 1–7.

Bremnes, J. B. (2004) Probabilistic forecasts of precipitation in terms of quantiles using
NWP model output. Monthly Weather Review, 132, 338–347.

Bröcker, J. and L. a. Smith (2008) From ensemble forecasts to predictive distribution
functions. Tellus A, 60, 663–678.

Brown, B. G., R. W. Katz and A. H. Murphy (1984) Time series models to simulate and
forecast wind speed and wind power. Journal of Climate and Applied Meteorology, 23,
1184–1195.

Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei and Y. Zhu (2005) A
comparison of the ECMWF, MSC and NCEP global ensemble prediction systems.
Monthly Weather Review, 133, 1076–1097.

Campbell, S. D. and F. X. Diebold (2005) Weather forecasting for weather derivatives.
Journal of the American Statistical Association, 100, 6–16.

55

http://www.atmos.washington.edu/mm5rt/qc_obs/qc_doc.html
http://www.atmos.washington.edu/mm5rt/qc_obs/qc_doc.html


BIBLIOGRAPHY

Dawid, A. P. (1984) Statistical theory: The prequential approach. Journal of the Royal
Statistical Society: Series A (Statistics in Society), 147, 278–292.

Diebold, F. X., T. A. Gunther and A. S. Tay (1998) Evaluating density forecasts
with applications to financial risk management. International Economic Review, 39,
862–883.

Eckel, F. A. and C. F. Mass (2005) Aspects of e�ective mesoscale, short-range ensemble
forecasting. Weather and Forecasting, 20, 328–350.

Gahrs, G. E., S. Applequist, R. L. Pfe�er and X.-F. Niu (2003) Improved results for
probabilistic quantitative precipitation forecasting. Weather and Forecasting, 18, 879–
890.

Glahn, H. R. and D. A. Lowry (1972) The use of model output statistics (MOS) in
objective weather forecasting. Journal of Applied Meteorology, 11, 1203–1211.

Gneiting, T. (2008) Editorial: Probabilistic forecasting. Journal of the Royal Statistical
Society: Series A (Statistics in Society), 171, 319–321.

Gneiting, T. (2011) Making and evaluating point forecasts. Journal of the American
Statistical Association, 106, 746–762.

Gneiting, T., F. Balabdaoui and A. E. Raftery (2007) Probabilistic forecasts, calibra-
tion and sharpness. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 69, 243–268.

Gneiting, T., A. Raftery, A. Westveld and T. Goldman (2005) Calibrated probabilistic
forecasting using ensemble model output statistics and minimum CRPS estimation.
Monthly Weather Review, 133, 1098–1118.

Gneiting, T. and A. E. Raftery (2005) Weather forecasting with ensemble methods.
Science, 310, 248–9.

Grimit, E. P. and C. F. Mass (2002) Initial results of a mesoscale short-range ensemble
forecasting system over the Pacific Northwest. Weather and Forecasting, 17, 192–205.

Hamill, T. M. and S. J. Colucci (1998) Evaluation of Eta-RSM ensemble probabilistic
precipitation forecasts. Monthly Weather Review, 126, 711–724.

56



BIBLIOGRAPHY

Hoeting, J. A., D. Madigan, A. E. Raftery and C. T. Volinsky (1999) Bayesian model
averaging: A tutorial (with discussion). Statistical Science, 14, 382–401.

Koizumi, K. (1999) An objective method to modify numerical model forecasts with newly
given weather data using an artificial neural network. Weather and Forecasting, 14,
109–118.

Kretzschmar, R., P. Eckert, D. Cattani and F. Eggimann (2004) Neural network classifiers
for local wind prediction. Journal of Applied Meteorology, 43, 727–738.

Krzysztofowicz, R. (2001) The case for probabilistic forecasting in hydrology. Journal of
Hydrology, 249, 2–9.

Leith, C. E. (1974) Theoretical skill of Monte Carlo forecasts. Monthly Weather Review,
102, 409–418.

Lorenz, E. N. (1963) Deterministic nonperiodic flow. Journal of Atmospheric Science,
20, 130–141.

Lynch, P. (2008) The origins of computer weather prediction and climate modeling.
Journal of Computational Physics, 227, 3431–3444.

Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins and
D. A. Stainforth (2004) Quantification of modelling uncertainties in a large ensemble
of climate change simulations. Nature, 430, 768–772.

Palmer, T. N. (2002) The economic value of ensemble forecasts as a tool for risk
assessment: From days to decades. Quarterly Journal of the Royal Meteorological
Society, 128, 747–774.

R Development Core Team (2012) R: A Language and Environment for Statistical
Computing. Available at http://www.r-project.org.

Raftery, A. E., T. Gneiting, F. Balabdaoui and M. Polakowski (2005) Using Bayesian
model averaging to calibrate forecast ensembles. Monthly Weather Review, 133, 1155–
1174.

Sloughter, J. M., A. E. Raftery, T. Gneiting and C. Fraley (2007) Probabilistic quan-
titative precipitation forecasting using Bayesian model averaging. Monthly Weather
Review, 135, 3209–3220.

57

http://www.r-project.org


BIBLIOGRAPHY

Talagrand, O., R. Vautard and B. Strauss (1997) Evaluation of probabilistic prediction
systems. Proc., ECMWF Workshop on Predictability, 1–25, Reading, UK, European
Centre for Medium-Range Weather Forecasts.

Thorarinsdottir, T. L. and T. Gneiting (2010) Probabilistic forecasts of wind speed:
Ensemble model output statistics by using heteroscedastic censored regression. Journal
of the Royal Statistical Society: Series A (Statistics in Society), 173, 371–388.

Tokdar, S. and J. B. Kadane (2011) Simultaneous linear quantile regression: A semi-
parametric Bayesian approach. Bayesian Analysis, 6, 1–22.

Whitaker, J. S. and A. F. Loughe (1998) The relationship between ensemble spread and
ensemble mean skill. Monthly Weather Review, 126, 3292–3302.

Wilks, D. S. (2006) Comparison of ensemble-MOS methods in the Lorenz ’96 setting.
Meteorological Applications, 13, 243.

Wilks, D. S. (2009) Extending logistic regression to provide full-probability-distribution
MOS forecasts. Meteorological Applications, 16, 361–368.

Wilks, D. S. (2011) Statistical Methods in the Atmospheric Sciences. Academic Press,
3rd edition.

58



Erklärung

Hiermit versichere ich, dass ich meine Arbeit selbstständig unter Anleitung verfasst habe,

dass ich keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, und

dass ich alle Stellen, die dem Wortlaut oder dem Sinne nach anderen Werken entlehnt

sind, durch die Angabe der Quellen als Entlehnungen kenntlich gemacht habe.

08. Mai 2012

59


	Forecasting with Uncertainty
	Numerical Weather Prediction and Ensemble Forecasting
	Numerical Weather Prediction Models
	Ensemble Prediction Systems

	Probabilistic Forecasts of Precipitation
	Bayesian Model Averaging
	Logistic Regression
	Quantile Regression
	Probabilistic Forecasts in Terms of Quantiles
	New Approach Based on Tokdar and Kadane (2011)
	Discrete-Continuous Model
	Parameter Estimation


	Case Study
	Forecast and Observation Data
	Choice of Training Data 
	Example: Forecast for Astoria, 8 January 2008 
	Results for the Pacific Northwest, 2008
	Probability of Precipitation Forecasts
	Precipitation Amount Forecasts 


	Discussion
	Performance Measures for Probabilistic Forecasts
	Assessing Dichotomous Events 
	Assessing Probabilistic Forecasts 

	Alternative Models
	Homoskedastic Model Depending on the Ensemble Mean
	Heteroskedastic Model Depending on the Ensemble Mean
	Models Depending on the Ensemble Mean and Variance 


