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Abstract

Divergence functions measure the difference between two probability distributions F and

G. They are widely used to assess the quality of probabilistic forecasts, where F represents

a predictive distribution function and G represents the empirical distribution function

of the events that materialize. Scoring rules are the analogue for the evaluation of a

probabilistic forecast F for a single event y. A scoring rule is proper if the forecaster

optimizes the expected score when y is drawn from the distribution F . This property

encourages honesty and careful assessments in the prediction process. Here, divergence

functions with a similar property are proposed. The Cramér-von Mises distance, the

divergence function associated with the continuous ranked probability score, is particularly

suitable for prediction assessment. In a case study, fifteen climate model projections

for four indices for climate extremes over Europe from 1961 to 1990 are compared with

corresponding re-analysis and/or observation based data sets to assess the skill of the

models in simulating climate extremes. The quality of the simulations depends on the

region, the season, and the index under consideration. For instance, the climate models

are usually better in simulating the monthly and the yearly maximum temperature than

the monthly and the yearly minimum temperature. Furthermore, weighting methods based

on proper divergence functions to combine climate models are proposed. The weighted

model combinations usually perform significantly better than any single climate model.

Zusammenfassung

Eine Divergenz-Funktion misst den Unterschied zweier Wahrscheinlichkeitsverteilungen F

und G. Sie werden verbreitet dazu eingesetzt, die Qualität probabilistischer Vorhersagen

zu beurteilen, wobei F die Vorhersageverteilung und G die empirische Verteilungsfunk-

tion der eintretenden Ereignisse darstellt. Scoring-Funktionen sind das Analogon für die

Bewertung einer probabilistischen Vorhersage F für ein einzelnes Ereignis y. Eine Scoring-

Funktion heißt korrekt, falls der Prognostiker den erwarteten Score optimiert, wenn y der

Verteilung F folgt. Diese Eigenschaft fördert die Aufrichtigkeit und sorgfältige Beurteilung

beim Aufstellen einer Prognose. Wir stellen Divergenz-Funktionen mit einer vergleichbaren

Eigenschaft vor. Die Cramér-von Mises Distanz, die mit dem continuous ranked probabi-

lity score assoziierte Divergenz-Funktion, ist für die Beurteilung von Prognosen besonders

geeignet. In einer Fallstudie werden Klimaprojektionen von fünfzehn Klimamodellen für

vier Klimaextrem-Indizes von 1961 bis 1990 in Europa mit ensprechenden, auf Reanaly-

sen und/oder Beobachtungen basierenden Datensätzen verglichen, um die Fähigkeiten und

Schwächen der Modelle bei der Simulation von Klimaextremen zu beurteilen. Die Qualität

der Simulationen ist von der Region, der Jahreszeit und dem Index abhängig. Beispiels-

weise können Klimamodelle meist die monatliche und jährliche Maximaltemperatur besser

als die Minimaltemperatur simulieren. Außerdem führen wir Gewichtungsmethoden zur

Kombination von Klimamodellen, die auf korrekten Divergenz-Funktionen basieren, ein.

Die gewichteten Kombinationen der Klimamodelle schneiden meist wesentlich besser ab

als jedes Klimamodell für sich.
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1 Introduction

In recent years, a number of severe extreme climate events with dramatic social,

economic, and environmental impact have occured. For example, in summer 2003,

an exceptional heat wave hit Europe. It was by far the hottest European summer

over the past 500 years (Luterbacher et al., 2004). As a result of the heat wave,

more than 70,000 Europeans died (Robine et al., 2008). The financial loss due to

crop failure was around US$12.3 billion. Forest fires in Portugal alone resulted in

an additional US$1.6 billion in damage. The heat wave also led to unprecedented

melting of the Alpine glaciers (Schär and Jendritzky, 2004). These huge amounts of

damage to humans and their surroundings make it necessary to learn more about

the nature of such extreme climate events and to study them in the context of

natural climate variability and anthropogenic climate change. For further examples of

extreme climate events, see e.g. Trenberth and Shea (2006) and Ulbrich et al. (2003).

The knowledge of significant future changes in the frequency and intensity of ex-

treme events would provide guidance for reducing human and financial losses. Long

data records are thus investigated for the analysis of rare and extreme events. Coupled

atmosphere-ocean general circulation models (AOGCMs) are able to provide such

long climate simulations, as they are appropriate tools to simulate past, present, and

future climate states (Sillmann and Roeckner, 2008). However, AOGCMs may not

always realistically represent climate extremes. Therefore, the ability of AOGCMs

to simulate climate extremes has to be assessed.

One method to characterize extreme events is based on indices for climate extremes

defined by an international committee to assess extremes in temperature and pre-

cipitation (Folland et al., 1999; Karl et al., 1999; Nicholls and Murray, 1999). These

indices derived from daily maximum and minimum temperature and precipitation

data describe a particular characteristic of an extreme event, such as its frequency,

amplitude, or persistence. For instance, one may use the monthly maximum tem-

perature to identify heat waves as in the example above. All indices consider only

moderate extreme events on an annual or seasonal basis. Thus, the daily data series

do not have to be very long and the indices can be readily calculated from observa-

tions, re-analysis, and model based data. This allows comparisons between extreme

index data of climate models based on hindcast simulations and the corresponding

re-analysis or observation based data set. To assess climate models with respect to
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their ability to simulate climate extremes under present climate, we propose scoring

methods that apply to the indices for climate extremes. Then, these scoring methods

can also be utilized to estimate model biases to correct future simulations.

The Intergovernmental Panel on Climate Change (IPCC) glossary definition of

climate which is the most common definition is as follows:

“Climate in a narrow sense is usually defined as the average weather,

or more rigorously, as the statistical description in terms of the mean

and variability of relevant quantities over a period of time ranging from

months to thousands or millions of years. The classical period for aver-

aging these variables is 30 years, as defined by the World Meteorological

Organization. The relevant quantities are most often surface variables

such as temperature, precipitation, and wind. Climate in a wider sense

is the state, including a statistical description, of the climate system”

(IPCC, 2007, p. 942).

Consequently, to evaluate a climate model in simulating climate extremes, the

entire distribution of our “weather” data should be considered. We therefore propose

our scoring methods within the framework of probabilistic forecasts, that is, forecasts

taking the form of probability distributions. This will firstly lead us to scoring rules

which assess the performance of a probabilistic forecast F for a single event y that

materializes. A scoring rule is proper if the forecaster optimizes the expected score

when y is drawn from the distribution F . This property is essential in scientific

and operational forecast evaluation (Gneiting and Raftery, 2007). The description of

climate above, however, invites a comparison of the predictive distribution with the

empirical distribution function of the events that materialize over the time period

under consideration. In order to realize this, divergence functions with a property

similar to the propriety of scoring rules are proposed (Thorarinsdottir et al., 2012).

For comparison, we also consider scoring methods for single-valued point forecasts,

namely scoring functions (Gneiting, 2011).

Furthermore, since weighted averages of climate models may perform better than

individual models, we present methods to combine AOGCMs by means of divergence

function values. Here, the models are weighted according to their performance in a

training period.

In Chapter 2, a theoretical framework for the evaluation of point forecasts and

probabilistic forecasts is introduced. Depending on the type of forecast, we present

various statistical measures to evaluate the predictive quality. Furthermore, we pro-

pose three weighting methods to combine climate model outputs. In Chapter 3, the
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scoring methods and the weighting methods proposed in Chapter 2 are applied to cli-

mate model simulations for four indices for climate extremes, namely the maximum

and minimum temperature value over a month and over a year. We first provide an

overview of climate models, re-analyses, and observations in general and describe the

indices for climate extremes in more detail. We then introduce the data used in this

study and show the most important results. Finally, in Chapter 4, we summarize

and discuss the results of the case study, in relation to currently employed methods

for assessing the performance of climate models.

We thank Dr. Jana Sillmann (Canadian Centre for Climate Modelling and Analy-

sis, University of Victoria, Canada) for helping with designing the research question,

for providing the data, and for helpful discussions.
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2 Theoretical background

2.1 Scores and divergence functions

We are interested in forecasts of a future event Y taking values in Ω, where Ω is

usually Rd or a subset thereof. That is, the future observation Y is a random vari-

able. To assess and compare the predictive performance of forecasters or forecasting

procedures for Y , scoring methods are needed.

Here, we distinguish between two types of forecasts. Let A denote a σ-algebra

of subsets of Ω, and let P denote a class of probability measures on pΩ,Aq, which

is referred to as an observation domain. A probabilistic forecast for Y on Ω is any

probability measure P P P . In the last few years, the view that forecasts should

be probabilistic in nature has increasingly gained ground (Dawid, 1984; Gneiting

and Raftery, 2007; Gneiting, 2008). However, single-valued point forecasts—that is,

deterministic forecasts—are also used in many situations, for reasons of communi-

cation, tradition, or decision making (Gneiting, 2011). Generally, a point forecast

may be a functional of a probabilistic forecast, such as the mean, the median, or a

quantile.

Depending on the type of forecasts, Gneiting and Raftery (2007), Gneiting (2011),

and Thorarinsdottir et al. (2012) propose various statistical measures to evaluate

their quality which we will discuss below, essentially following these papers. We take

them to be negatively oriented, that is, we prefer a forecast with a small score over one

with a larger score. Hence, a forecaster wishes to minimize the score which indicates

his loss.

2.1.1 Scoring functions

We start by considering point forecasts for the random variable Y . Let Ω � Rd

be the domain of both the point forecasts and the realizations of Y equipped with

the corresponding Borel σ-algebra A. For simplicity and clarity of presentation, we

assume here that d � 1. All the results may be extended to higher dimensions. A

scoring function is a mapping S : Ω � Ω ÝÑ r0,8q such that Spx, �q is measurable

with respect to A for each fixed value x P Ω. Then Spx, yq states the forecaster’s

loss, when he predicts x P Ω and y P Ω materializes.
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To evaluate the performance of a forecaster in providing several forecasts, the

average over the individual scores is taken. Thus, if there are k forecast cases with

corresponding point forecasts, x1, . . . , xk, and observations, y1, . . . , yk, we get

S̄ � 1

k

ķ

i�1

Spxi, yiq

as a summary measure of the predictive performance. In this study, the mean absolute

error (MAE),

MAE � 1

k

ķ

i�1

|xi � yi|,

and the mean squared error (MSE),

MSE � 1

k

ķ

i�1

pxi � yiq2,

are used. Larger forecast errors result in larger values of the MAE and the MSE.

Therefore, if there are competing point forecasters, we clearly expect similar rankings

under the MAE and the MSE.

The consistency of scoring functions plays an important role in making and eval-

uating point forecasts (Gneiting, 2011). Let P be a family of potential probability

distributions for the random variable Y . That is, the class P contains probabil-

ity measures on the measurable space pΩ,Aq. Here, the class P is often taken to

be the set of all probability measures on Ω. A statistical functional is a function

T : P ÝÑ PpΩq, where PpΩq denotes the power set of Ω.

Definition 2.1. The scoring function S is consistent for the functional T relative

to the class P if

EPSpt, Y q ¤ EPSpx, Y q (2.1)

for all probability distributions P P P , all t P T pP q, and all x P Ω. It is strictly

consistent if it is consistent with equality in (2.1) if and only if x P T pP q.

The expectations in (2.1) are well-defined, since S is a nonnegative function. They

describe the expected loss under the probabilistic forecast P P P , if the forecaster

predicts t P T pP q or x P Ω, respectively, for the random variable Y .

The following situation, for which we use the same notation as before, illustrates

the critical importance of consistency. A forecaster quotes a quantile r at level
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α P p0, 1q and y materializes. Then he will be penalized by Spr, yq. If

EPSpq, Y q ¤ EPSpr, Y q (2.2)

for all r P Ω and all probability distributions P P P with corresponding α-quantile q,

the scoring function S is consistent for the quantile functional at level α. Inequal-

ity (2.2) then implies that the expected loss is minimized for the true α-quantile.

The forecaster is thus encouraged to report his true beliefs. Consequently, scoring

functions that are consistent for a quantile functional are suitable for assessing the

quality of quantile forecasts. We refer to them as proper scoring rules for quantiles.

Let I � R be an interval, and let BpIq denote the Borel σ-algebra on I. Further-

more, let P denote the class of the Borel probability measures P on the measurable

space pI,BpIqq with finite first moment and strictly increasing distribution function.

Then, the asymmetric piecewise linear scoring function,

Sαpr, yq � p1ty ¤ ru � αqpr � yq, (2.3)

is a proper scoring rule for quantiles. That is, it is consistent for the quantile func-

tional at level α P p0, 1q relative to the class P : Let q be the unique α-quantile of the

probability measure F P P that we identify with its cumulative distribution function

(cdf) so that F pqq � α. If r   q, where r P I, then

EFSαpr, Y q � EFSαpq, Y q

�
»
I

r1ty ¤ ru � αspr � yqdF pyq

�
»
I

r1ty ¤ qu � αspq � yqdF pyq

�
»
I

r1ty ¤ rudF pyq �
»
I

q1ty ¤ qudF pyq

�
»
I

ry1ty ¤ qu � y1ty ¤ rusdF pyq � αr � αq

� rF prq � qF pqq �
» q
r

ydF pyq � αr � αq

� rF prq �
» q
r

ydF pyq � αr

¥ rF prq � r

» q
r

dF pyq � αr

� 0.
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Conversely, if r ¡ q, then

EFSpr, Y q � EFSpq, Y q

� rF prq �
» r
q

ydF pyq � αr

¥ rF prq � r

» r
q

dF pyq � αr

� 0.

If forecasts are in the form of probability distributions over future events, they can

be better characterized by considering several quantiles. Scoring rules for quantiles

are thus sometimes extended to functions S : Ωk�Ω ÝÑ r0,8q, where Spr1, . . . , rk; yq
represents the forecaster’s loss when he quotes quantiles r1, . . . , rk and y materializes.

For example, if Si is a proper scoring rule for predicting the single quantile at level

αi P p0, 1q for i � 1, . . . , k, the scoring rule

Spr1, . . . , rk; yq �
ķ

i�1

Sipri, yq

is clearly proper for predicting the quantiles at levels α1, . . . , αk. Note that, to avoid

technical complications, the elements of P often have to meet certain conditions, as

is, for instance, the case for the asymmetric piecewise linear scoring function in (2.3)

(Gneiting and Raftery, 2007, p. 370).

2.1.2 Scoring rules

Here, we consider probabilistic forecasts for a random variable Y on a general sam-

ple space Ω. Let P be a convex class of probability measures on the observation

domain pΩ,Aq. A scoring rule is a function S : P�Ω ÝÑ R̄ that is P-quasi-integrable1

in the second argument for each fixed probability measure P P P . Scoring rules mea-

sure the quality of probabilistic forecasts for a single event y. As in the case of scoring

functions, the forecaster’s loss is represented by SpP, yq when he quotes P P P and

y materializes. The following property of a scoring rule S is of high importance in

the theory of probabilistic forecasts.

1A function f : Ω ÝÑ R̄ � r�8,8s which is measurable with respect to A and is quasi-integrable
with respect to all P P P (Bauer, 1992, p. 74) is P-quasi-integrable.
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Definition 2.2. The scoring rule S is proper relative to P if

EQSpQ, Y q ¤ EQSpP, Y q (2.4)

for all probability measures P, Q P P . It is strictly proper if it is proper with equality

in (2.4) if and only if P � Q.

If S is proper, the expected loss under a probability measure Q P P is minimized if

the forecaster quotes Q. Similar as for consistent scoring functions, the forecaster is

thus encouraged to report his true beliefs if the predictive performance is measured

by a proper scoring rule. Note that the proposed definition deviates from that in

Gneiting and Raftery (2007) who take scoring rules to be positively oriented.

To evaluate a set of k forecast-observation-pairs in practical applications, average

values of proper scoring rules S,

S̄ � 1

k

ķ

i�1

SpPi, yiq,

where P1, . . . , Pk denote the forecasts and y1, . . . , yk denote the corresponding obser-

vations, can be used as a measure of the predictive performance.

Assuming P to be the class of all Borel probability measures on R enables us

to identify a probabilistic forecast F P P with its cdf F . The continuous ranked

probability score (CRPS) can be defined as

CRPSpF, yq �
» 8

�8

�
F pxq � 1tx ¥ yu�2dx, (2.5)

which we refer to as the threshold decomposition of the CRPS (Matheson and Win-

kler, 1976; Hersbach, 2000). An alternative form of the CRPS is the quantile score

representation,

CRPSpF, yq � 2

» 1

0

�p1ty ¤ F�1pαqu � αqpF�1pαq � yq�dα, (2.6)

where we write F�1pαq for the quantile at level α P p0, 1q. Since the integrand in

(2.6) equals twice the asymmetric piecewise linear scoring function Sα in (2.3) for the

quantile forecast F�1pαq, this representation confirms that determining a predictive

cdf is equivalent to determining all predictive quantiles. Laio and Tamea (2007)

show the equivalence of the threshold decomposition (2.5) and the quantile score

representation (2.6).
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If F has finite first moment, the CRPS can be written as

CRPSpF, yq � EF |X � y| � 1

2
EFEF |X �X 1|, (2.7)

where X and X 1 are independent random variables with distribution F (Gneit-

ing and Raftery, 2007). We call (2.7) the kernel score representation of the CRPS

(cf. Gneiting and Raftery, 2007, p. 368).

The CRPS is a proper scoring rule relative to the class P and a strictly proper scor-

ing rule relative to the subclass P1, that consists of the Borel probability measures

on R with finite first moment. Both the representation (2.6) and the representation

(2.7) show that the CRPS is reported in the same unit as the observation. This

fact simplifies the interpretation of the resulting scores. Furthermore, if F is a point

measure, the CRPS reduces to the absolute error. Thus, the CRPS is a generaliza-

tion of the absolute error and can be used to directly compare deterministic and

probabilistic forecasts (Gneiting and Raftery, 2007; Gneiting and Ranjan, 2011).

One might consider an alternative to the CRPS naturally induced by the kernel

score representation (2.7), say

SpP, yq � EP |X � y|,

where X denotes a random variable with distribution P . This score is not a proper

scoring rule relative to the class P1: LetX and Y, Y 1 be independent random variables

with distribution P and Q. If Q P P1, let medQ denote the median value of the

probability distribution Q. Since the scoring function Spx, yq � |x � y| is strictly

consistent for the median functional relative to the class P1 (Gneiting, 2011), the

inequality

EQ|Y 1 �medQ| ¤ EQ|Y 1 � y| (2.8)

holds for all probability measures Q P P1 and all real numbers y with inequality in

(2.8) if and only if y � medQ. If we apply the expectation, inequality (2.8) takes the

form

EQ|Y 1 �medQ|   EQEQ|Y 1 � Y | (2.9)

for all probability measures Q P P1 other than the point measure at medQ. Let us

now suppose that S is proper. Then, the inequality

EQSpQ, Y q � EQEQ|Y 1 � Y | ¤ EQSpP, Y q � EQEP |X � Y | (2.10)

9



holds for all probability measures P, Q P P1. If P is the point forecast medQ, in-

equality (2.10) contradicts inequality (2.9).

Gneiting and Raftery (2005) note that the following alternative to the threshold

decomposition of the CRPS (2.5) in terms of F�1,

SpF, yq �
» 1

0

pF�1pαq � yq2dα � EF pX � yq2,

is also not a proper scoring rule. This can be demonstrated similar to the above.

Let P2 denote the class of the Borel probability measures on R with finite second

moment. Since the scoring function Spx, yq � px � yq2 is strictly consistent for the

mean functional relative to the class P2 (Gneiting, 2011), we can use µQ instead

of medQ, where µQ denotes the mean of the probability distribution Q P P2. The

alternative derivation below is even more general.

For a Borel probability measure P on R, let X be a random variable with dis-

tribution P . Let P2n, where n is a natural number, denote the class of the Borel

probability measures P on R for which the expectation EPX2n is finite. Now let X

be a random variable with distribution P P P2n. Then the negatively oriented score

S2npP, yq � EP pX � yq2n

is not a proper scoring rule relative to the class P2n. To show this, let us suppose

that S is proper. If X and Y, Y 1 are independent random variables with distribution

P and Q, respectively, where P, Q P P2n, then

EQEQpY 1 � Y q2n ¤ EQEP pX � Y q2n. (2.11)

By applying the Binomial Theorem, we obtain

pX � Y q2n �
2ņ

k�0

�
2n

k



Xkp�Y q2n�k

�
ņ

k�1

�
2n

2k � 1



X2k�1p�Y q2n�p2k�1q

�
ņ

k�0

�
2n

2k



X2kp�Y q2n�2k

� �
ņ

k�1

�
2n

2k � 1



X2k�1Y 2pn�kq�1

�
ņ

k�0

�
2n

2k



X2kY 2pn�kq.
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If EQY 2k�1 � 0 for all k � 1, . . . , n and EPX2k ¤ EQpY 1q2k for all k � 1, . . . , n with

inequality for at least one k, inequality (2.11) becomes

ņ

k�0

�
2n

2k



EQpY 1q2kEQY 2pn�kq ¤

ņ

k�0

�
2n

2k



EPX2kEQY 2pn�kq

 
ņ

k�0

�
2n

2k



EQpY 1q2kEQY 2pn�kq,

which is the desired contradiction. This contradiction can be clearly illustrated by

the following example.

Example 2.1. Let X � N p0, σ2

4
q and Y � N p0, σ2q, and let k be a natural number.

Then

EY 2k�1 � 1?
2πσ

»
R
y2k�1e�

y2

2σ2 dy � 0,

as the integrands are odd functions, and

EY 2k � 1?
2πσ

»
R
y2ke�

y2

2σ2 dy

� � 1?
2πσ

σ2y2k�1e�
y2

2σ2

����
8

�8

� 1?
2πσ

»
R
σ2p2k � 1qy2k�2e�

y2

2σ2 dy

� σ2p2k � 1qEY 2k�2

� σ2k
k¹
i�1

r2k � p2i� 1qs.

The second equation follows from integration by parts. For the last equation, we use

EY 2 � VarY � pEY q2 � σ2. Altogether, we get

EY k �
$&
%0, if k is odd,

σk
± k

2
i�1rk � p2i� 1qs, if k is even,

and, analogously for the random variable X,

EXk �
$&
%0, if k is odd,

pσ
2
qk± k

2
i�1rk � p2i� 1qs, if k is even.
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Thus, it holds that EY k � 0 if k is odd, and EXk ¤ EY k if k is even. Due to the

proof above, inequality (2.11) is violated and S2n is therefore not a proper scoring

rule.

We have seen that the scores SpP, yq � EP |X � y| and S2pP, yq � EP pX � yq2
are not proper scoring rules relative to the class P1 or P2, respectively, where X

denotes a random variable with distribution P . However in general, the following

theorem provides a method to construct proper scoring rules from scoring functions.

Moreover, it justifies the classification of scoring functions which are consistent for

the quantile functional as proper scoring rules for quantiles.

Theorem 2.1 (Gneiting, 2011). Let Ω be a subset of Rd equipped with the corre-

sponding Borel σ-algebra A, and let S be a scoring function on Ω�Ω. Furthermore,

let P denote a convex class of probability measures on pΩ,Aq, and let T be a statis-

tical functional. Suppose that the scoring function S is consistent for the functional

T relative to the class P . For each P P P , let tP P T pP q. Then the function

R : P � Ω ÝÑ r0,8q, pP, yq ÞÑ RpP, yq � SptP , yq,

is a proper scoring rule.

Proof. Let Y be a random variable with probability distribution Q P P . If P, Q P P ,

then

EQRpP, Y q � EQSptP , Y q ¥ EQSptQ, Y q � EQRpQ, Y q.

As S is a nonnegative function, the expectations above are well-defined.

Due to the consistency of the absolute error for the median functional relative

to the class P1 (Gneiting, 2011), an application of Theorem 2.1 yields the proper

scoring rule

SAEpP, yq � |medP � y|. (2.12)

As the squared error is consistent for the mean functional relative to the class P1

(Gneiting, 2011), the function

SSEpP, yq � pµP � yq2, (2.13)

is also a proper scoring rule relative to the class P1 according by Theorem 2.1.

In the following, we will use the proper scoring rules CRPS, SAE, and SSE. To illus-

trate their properties, Figure 2.1 shows these scores as functions of the observation y,
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Figure 2.1: The proper scoring rules CRPS (solid line), SAE (dashed line), and SSE (dotted line) as

functions of the observation y, when the probabilistic forecast is the standard normal
distribution (left) or the two-piece normal distribution with mean µ � 0 and variances
σ2
1 � 1, σ2

2 � 4 (right). The densities are indicated in gray.

when the probabilistic forecast is the standard normal distribution or the two-piece

normal distribution with mean µ � 0 and variances σ2
1 � 1, σ2

2 � 4 (Gneiting and

Thorarinsdottir, 2010). Due to the symmetry of the standard normal distribution,

the mean and the median are the same, namely zero. The two-piece normal distri-

bution with mean µ � 0 and variances σ2
1 � 1, σ2

2 � 4 has a median value of about

0.64. The functions in Figure 2.1 are axially symmetric, the CRPS and the SAE with

respect to the axis passing through the median value, and the SSE with respect to

the axis passing through the mean value. The scoring rules SAE in (2.12) and SSE

in (2.13) are minimized for the median value or the mean value, respectively, as we

would expect from their formulas for fixed probabilistic forecasts. Since the absolute

error is strictly consistent for the median functional, the CRPS in (2.7) obtains its

global minimum for a fixed probabilistic forecast F in y � medF . Figure 2.1 also

shows this characteristic. Furthermore, if the quality of the forecast is evaluated us-

ing the score SSE, the forecaster’s loss increases quadratically with the deviation of

the observation from the predictive mean value. It increases linearly with the devi-

ation from the predictive median value, if the scoring rule SAE is used. The CRPS

penalizes stronger than the SAE only for small deviations of the observation from the

predictive median value.
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2.1.3 Divergence functions

Here, we consider probabilistic forecasts for a random variable Y on a general sample

space Ω � R. Throughout this section, we require that all empirical measures on the

real axis are included in the underlying convex class P of probability measures. In

contrast to the scoring rules, where the score is based on the forecast distribution

and a single observation, the predictive distribution is now compared to the empirical

distribution of a set of observations. If y1, . . . , yk are observations of the random

variable Y with true distribution function G, the empirical cumulative distribution

function (empirical cdf) is then defined as

Gkpxq � 1

k

ķ

i�1

1tx ¥ yiu.

The empirical cdf Gk estimates the true underlying cdf G.

A divergence function is a function d : P �P ÝÑ r0,8s such that dpP, P q � 0 for

all probability measures P P P . The following property of a divergence function d is

the analogue to the propriety of scoring rules.

Definition 2.3 (Thorarinsdottir et al., 2012). Let Y1, . . . , Yk be random variables

with a common distribution function G, and let Gk be the corresponding empirical

cdf. A divergence function d is n-proper if

E dpG,Gkq ¤ E dpF,Gkq (2.14)

for k � 1, . . . , n and all probability measures F, G P P .

Since d is a nonnegative function, the expectations in (2.14) are well-defined. If the

observations are drawn fromG, inequality (2.14) implies that the expected divergence

is minimized for the forecast G P P . As in the case of proper scoring rules, the

forecaster is thus encouraged to be honest and to state his true beliefs.

Divergence functions that are n-proper for all n P N can be obtained from regular

and proper scoring rules. A scoring rule S : P�Ω ÝÑ R̄ is regular relative to the class

P if EQSpP, Y q is real-valued for all P, Q P P except possibly that EQSpP, Y q � 8
if P �� Q. A function

dpP,Qq � EQSpP, Y q � EQSpQ, Y q,

where P, Q P P and S is a regular and proper scoring rule, is clearly a divergence

function. We then refer to d as a score divergence. The following theorem shows that

score divergences are n-proper for all n P N.
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Theorem 2.2 (Thorarinsdottir et al., 2012). If a divergence function d is a score

divergence, then d is n-proper for all n P N.

Proof. Let Y1, . . . , Yk be random variables with a common distribution function

G P P , and let Gk P P be the corresponding empirical cdf. As d is a score diver-

gence, there exists a regular and proper scoring rule S such that

dpF,Gkq � EGkSpF, Y q � EGkSpGk, Y q

for any k P N, where F P P and Y is a random variable with distribution Gk. Thus,

E dpF,Gkq � EEGkSpF, Y q � EEGkSpGk, Y q

� E
1

k

ķ

i�1

SpF, Yiq � EEGkSpGk, Y q

� EGSpF, Y q � EEGkSpGk, Y q

¥ EGSpG, Y q � EEGkSpGk, Y q

� EEGkSpG, Y q � EEGkSpGk, Y q

� E dpG,Gkq.

Let P consist of all Borel probability measures on R with finite first moment

including all empirical measures on R. The symmetric Cramér-von Mises distance,

dC.v.M.pF,Gkq �
» 8

�8

�
F pxq �Gkpxq

�2
dx,

is the score divergence of the CRPS (Gneiting and Raftery, 2007, p. 367). It is thus

n-proper for all n P N by Theorem 2.2.

If we further assume that the elements of P have finite second moment, the score

SpF, yq � rEFhpXq � hpyqs2,

where X is a random variable with probability distribution F and h : R ÝÑ R, is a

regular and proper scoring rule relative to P . According to Dawid (1998), its score
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divergence, which is referred to as the squared divergence, is given by

dSpF,Gkq � rEFhpXq � EGkhpY qs2, (2.15)

where Y denotes a random variable with distribution Gk. The squared divergence is

also n-proper for all n P N by Theorem 2.2. Let y1, . . . , yk denote the observations

corresponding to Gk. The squared mean value divergence,

dMVpF,Gkq �
�
µF � 1

k

ķ

i�1

yi

�2

,

is the squared divergence in (2.15) when h is the identity function. It is the score

divergence of the scoring rule SSE in (2.13).

In our application, we will use the Cramér-von Mises distance dC.v.M. and the

squared mean value divergence dMV. To illustrate these measures, results of a small

simulation study are given in Figure 2.2. Our forecaster aims to predict a normally

distributed random variable Y with mean µy and standard deviation σY based on a

training set consisting of k � 1, 000 observations. We created such an observation set

by generating 1, 000 random values from a normal distribution with mean µY and

standard deviation σY . Figure 2.2 shows the divergence functions dC.v.M. and dMV

for different values of µY and σY , when the forecaster quotes the standard normal

distribution. In Figure 2.2 (a)–(c) the mean values are µY P t�3, �2, . . . , 2, 3u with

a constant value of the standard deviation σY . The three figures are almost identical,

even if the standard deviation is predicted correctly in (b) but not in (a) and (c).

Furthermore, the divergence function dMV penalizes stronger for deviations from the

true mean value. Figures 2.2 (d)–(f) show the divergence functions dC.v.M. and dMV

for standard deviation values of σY P t0.25, 0.5, 0.75, . . . , 2u and fixed values of µY .

Here, the scores are almost constant within each plot. They are considerably lower

for the correct mean prediction, which is illustrated in Figure 2.2 (e). Note that the

exact prediction of the true mean value is more important than the exact prediction

of the true standard deviation value, particularly if the forecast verification is based

on the score dMV. To summarize, the simulation study shows that the squared mean

value divergence dMV considers only the forecast mean, as we would expect from its

formula. However, we will use this divergence function, as it might be interesting for

comparison.
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Figure 2.2: The divergence functions dC.v.M. (
) and dMV (�), when the observation set follows
a normal distribution with mean µY and standard deviation σY and the probabilistic
forecast is the standard normal distribution, for different values of µY and σY . The plots
in the top row have fixed values of σY as follows: (a) σY � 0.25, (b) σY � 1, (c) σY � 2.
The bottom row shows the measures for the following fixed values of µY : (d) µY � �3,
(e) µY � 0, (f) µY � 3.

2.2 Weighted combination of probabilistic forecasts

Now we consider probabilistic forecasts produced by several competing forecast pro-

cedures for a random variable Y on a finite interval ra, bs. The assumption Y P ra, bs
may be relaxed. However, this will always hold for our application, and we thus

make this assumption for clarity of the argumentation below. Let P denote a convex

class of Borel probability measures on the corresponding Borel σ-algebra Bpra, bsq
with finite second moment such that all empirical measures are included in P . The

forecast procedures may be compared and assessed by means of the abovementioned

measures. We discuss combinations of competing forecasts based on the rankings

achieved by the divergence functions.

Let F 1, . . . , Fm denote probabilistic forecasts for Y produced by m competing

forecast procedures. The forecasts are identified with their cdfs. Furthermore, let Gk

denote the empirical cdf corresponding to k observations of Y . We may combine
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these forecasts by finding weights w1, . . . , wm such that

F pxq �
m̧

j�1

wjF
jpxq

is a new probabilistic forecast. That is, the sum of the weights has to be equal to

1, and each weight must be nonnegative. We consider three weighting methods. The

first, hereinafter referred to as the weightsmin method, minimizes the Cramér-von

Mises distance dC.v.M.. That is, we consider

min
w

dC.v.M.pF,Gkq, (2.16)

where w denotes the vector with the weights as entries. This optimization problem

is a quadratic programming problem (QP): By applying the Binomial Formula, we

obtain

dC.v.M.pF,Gkq �
» b
a

�
m̧

j�1

wjF
jpxq �Gkpxq

�2

dx

�
m̧

j�1

m̧

l�1

wjwl

» b
a

F jpxqF lpxqdx

� 2
m̧

j�1

wj

» b
a

F jpxqGkpxqdx

�
» b
a

G2
kpxqdx.

Thus, the optimization problem (2.16) can be formulated as

min
w

dC.v.M.pF,Gkq � min
w

�
1

2
wTQw � qTw



,

where Q denotes the matrix with entries

Qij � 2

» b
a

F ipxqF jpxqdx

for i, j � 1, . . . ,m and q denotes the vector with entries

qj � �2

» b
a

F jpxqGkpxqdx

for j � 1, . . . ,m. The optimization problem (2.16) is therefore a QP under the
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constraints
°m
i�1wi � 1 and wj ¥ 0 for j � 1, . . . ,m. To solve this problem, we will

use the interior point method described in Vanderbei (1999) as implemented in the

function ipop of the R package kernlab (R Development Core Team, 2012).

Our second weighting method, hereinafter referred to as the weightsdC.v.M.
method,

is to calculate the values of the Cramér-von Mises distance dC.v.M. over a training set

and then set

wj �
1

dC.v.M.pF j ,Gkq°m
i�1

1
dC.v.M.pF i,Gkq

for j � 1, . . . ,m. The conditions for the weights are clearly met. We obtain large

weights for small values of the divergence function. Since we prefer a forecast proce-

dure with a small score over one with a large score, the forecasts we consider better

are given more weight.

The third weighting method, hereinafter referred to as the weightsdMV
method, is

similar to the second, only based on the values of the squared mean value divergence

dMV. Here, the weights are

wj �
1

dMVpF j ,Gkq°m
i�1

1
dMVpF i,Gkq

for j � 1, . . . ,m. Later, we will introduce an application of these weigthing methods

in practice and will test whether they provide better forecasts than the forecast

procedures themselves.
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3 Case study: Verification of climate models

3.1 Climate models

Climate models are essential scientific tools for studying and simulating past, present,

and future climate change. The climate system is a highly complex system that

consists of several components, such as the atmosphere and the hydrosphere. Many

processes and interactions in the climate system are governed by known laws of

physics and chemistry and can be formulated as differential equations, such as the

law of mass conversation or equations of motions. Since it is not possible to solve

these equations directly, climate researchers develop computer programs on the basis

of these equations. In order to be able to perform the frequently very complex,

large, and processing intensive models, the simulations are only carried out at evenly

distributed grid points on the earth’s surface and over atmospheric layers. In the

course of this, the earth is covered by an imaginary grid. Its mesh width is referred

to as the spatial model resolution.

Coupled atmosphere-ocean general circulation models (AOGCMs) are the mod-

els most often used to simulate past, present, and future climate states. A general

circulation model simulates the general circulation of a climate component, such as

a planetary atmosphere or ocean, using three-dimensional grids. GCMs impose dif-

ferent boundary values. For instance, to model the atmosphere, atmospheric GCMs

(AGCMs) need values of the sea surface temperature, among other things. Con-

versely, oceanic GCMs (OGCMs) that describe the ocean system need values of

atmospheric elements, such as the air temperature. As it is not always possible to

obtain the boundary conditions from observations, AGCMs and OGCMs are coupled

together to form AOGCMs (Roedel and Wagner, 2011, p. 558 ff.). Further informa-

tion on the climate and its modeling can be found in Von Storch et al. (1999) and

Roedel and Wagner (2011).

The World Climate Research Programme’s (WCRP’s) Coupled Model Intercom-

parison Project (CMIP) studies output from AOGCMs. To this end, model outputs

contributed by leading modeling centers around the world are collected and archived

by the Program for Climate Model Diagnosis and Intercomparison (PCMDI). In our

application, we use output data of 15 global climate models which is available in
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Table 3.1: The 15 CMIP3 models evaluated in this study with originating group(s), country, and
horizontal resolution in numbers of longitudes and latitudes (http://www-pcmdi.llnl.
gov/ipcc/model_documentation/ipcc_model_documentation.php).

Model Originating Group(s) and Country Resolution

CGCM3.1(T47) Centre for Climate Modelling & Analysis (Canada) 96� 48
CGCM3.1(T63) Centre for Climate Modelling & Analysis (Canada) 128� 64
CNRM-CM3 Méteo-France / Centre National de Recherches

Météorologiques (France)
128� 64

CSIRO-Mk3.0 CSIRO Atmospheric Research (Australia) 192� 96
CSIRO-Mk3.5 CSIRO Atmospheric Research (Australia) 192� 96
ECHAM5/MPI-OM Max Planck Institute for Meteorology (Germany) 192� 96
FGOALS-g1.0 LASG / Institute of Atmospheric Physics (China) 128� 60
GFDL-CM2.0 US Dept. of Commerce / NOAA / Geophysical

Fluid Dynamics Laboratory (USA)
144� 90

GFDL-CM2.1 US Dept. of Commerce / NOAA / Geophysical
Fluid Dynamics Laboratory (USA)

144� 90

GISS-AOM NASA / Goddard Institute for Space Studies (USA) 90� 60
GISS-EH NASA / Goddard Institute for Space Studies (USA) 72� 46
GISS-ER NASA / Goddard Institute for Space Studies (USA) 72� 46
MIROC3.2(hires) Center for Climate System Research (The Univer-

sity of Tokyo), National Institute for Environ-
mental Studies, and Frontier Research Center for
Global Change (JAMSTEC) (Japan)

320� 160

MIROC3.2(medres) Center for Climate System Research (The Univer-
sity of Tokyo), National Institute for Environ-
mental Studies, and Frontier Research Center for
Global Change (JAMSTEC) (Japan)

128� 64

MRI-CGCM2.3.2 Meteorological Research Institute (Japan) 128� 64

the data base of the third phase of the CMIP (CMIP3) (Meehl et al., 2007). This

data set was also used as the base for the Fourth Assessment Report (AR4) of the

Intergovernmental Panel on Climate Change (IPCC, 2007).

The 15 climate models, their originating group(s), their country of origin, and their

hoizontal resolution are listed in Table 3.1. The horizontal resolution represents an

important difference between the models. It is given in numbers of longitudes and

latitudes, which means the following: The earth is covered by an imaginary grid which

consists of 360 degrees of longitude and 180 degrees of latitude. The German model,

ECHAM5/MPI-OM, for instance, has a horizontal resolution of 192 longitudes and

96 latitudes. The 360 degrees of longitudes are therefore divided in 192 longitudes and

the 180 degrees of latitude in 96 latitudes, to result in a grid with 192� 96 � 18, 432

boxes. This corresponds to a grid mesh width of about 210 km at the equator. Here,

larger values indicate finer grids. Thus, the MIROC3.2(hires) model has the best

horizontal resolution, whereas the GISS-EH and GISS-ER models have the worst.

A detailed description and further information on the “WCRP CMIP3 multi-model

data set” can be found on the PCMDI website http://www-pcmdi.llnl.gov.
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3.2 Re-analyses and observations

In order to assess the skill of one model in providing simulations, comparison with

re-analyses and/or observational data sets is necessary (cf. Chapter 1). In a re-

analysis, observational data over an extended historical period are reprocessed and

assimilated into a fixed modern forecasting system. To this end, for each day of

the period over which suitable observations exists, observations are combined with

the results from the forecast model. The physical laws embodied in the forecast

system and knowledge of the typical errors of forecasts and observations facilitate

the interpretation of conflicting or indirect observations and the filling of gaps in

the observational coverage. Thus, a data set which can be used for meteorological

and climatological studies is produced (ECMWF, 2012). The re-analyses we use

in the following are the ERA-40 re-analysis (Uppala et al., 2005) provided by the

European Centre for Medium-Range Weather Forecasts (ECMWF) and the NCEP-1

re-analysis (Kalnay et al., 1996; Kistler et al., 2001) provided by the National Centers

for Environmental Prediction and the National Center for Atmospheric Research

(NCEP/NCAR). Both re-analyses have a horizontal resolution of 144 longitudes and

73 latitudes. It must be kept in mind that re-analyses may contain model errors

(Uppala et al., 2005). The optimal approach would thus be to compare the GCM

outputs with observations. This is difficult to achieve: Whereas model data reflect

the average of the climate conditions over each grid cell, observations are taken at

individual stations. It is, however, possible to convert global observational data into

a grid format as we discuss in Chapter 3.4, where we apply such a data set instead

of a re-analysis.

3.3 Indices for climate extremes

The Expert Team on Climate Change Detection and Indices (ETCCDI) has devel-

oped indices for extremes. As already mentioned in Chapter 1, the indices we consider

here facilitate a quantitative analysis of moderate extreme events with short return

periods, where each index describes a particular characteristic of an extreme event,

such as its frequency, amplitude, or persistence. A set of 27 indices based on daily

temperature values or daily precipitation amount were considered to be core indices

(Peterson, 2005). These include e.g. the monthly maximum value of daily maximum

temperature, the monthly minimum value of daily minimum temperature, the num-

ber of tropical nights, the monthly maximum 1-day precipitation, and the maximum

number of consecutive dry days. Further information and an exact definition of these

indices can be found on the ETCCDI website http://cccma.seos.uvic.ca/ETCCDI.
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Table 3.2: Definition of the monthly maximum value of daily maximum temperature (mtxmax) and
the monthly minimum value of daily minimum temperature (mtnmin) (http://cccma.
seos.uvic.ca/ETCCDI/list_27_indices.shtml).

Index Definition

Mtxmax Let txi be the daily maximum temperature (in �C) on day i, i � 1, . . . , n, in a
month with n days. The maximum daily maximum temperature in this month
is then mtxmax=maxi({tx1,. . . ,txnuq.

Mtnmin Let tni be the daily minimum temperature (in �C) on day i, i � 1, . . . , n, in a
month with n days. The minimum daily minimum temperature in this month
is then mtnmin=mini({tn1,. . . ,tnnuq.

The Hadley Centre for Climate Prediction and Research provides a global land-

based climate extreme data set referred to as HadEX (http://www.metoffice.

gov.uk/hadobs/hadex). The HadEX data set contains the 27 indices described in

Peterson (2005) on an annual basis for the time period 1951-2003 and at grid points

corresponding to a grid of 96 longitudes and 73 latitudes. The indices are based

on daily data from worldwide weather observation stations. For a more detailed

description of the data set and its production process, see Alexander et al. (2006).

We will concentrate on two temperature based indices, the monthly maximum

value of daily maximum temperature (mtxmax) and the monthly minimum value of

daily minimum temperature (mtnmin). As the HadEX data contains annual indices,

we also analyze the indices on a yearly basis. Here, we obtain the yearly maximum

value of daily maximum temperature (txmax) and the yearly minimum value of daily

minimum temperature (tnmin). The maximum of the maximum temperature and

the minimum of the minimum temperature are robust and plausible considering the

relatively coarse model resolution. Furthermore, they contain useful information for

climate change impact studies (Sillmann and Roeckner, 2008). The precise definition

of mtxmax and mtnmin is given in Table 3.2. Txmax and tnmin are defined similarly.

3.4 Data

In our analysis, the comparison of model and observation or re-analysis based in-

dices will be concentrated on land grid boxes in the European domain (8W-40E,

32N-72N), see Figure 3.1, during a 30-year period from 1961 to 1990. Corresponding

simulations of the daily 2 m maximum or minimum temperature, signifying temper-

ature measurements at a height of 2 m, are available from the CMIP3 data base as

well as for both re-analyses1. In the following, we will identify climate models with

1
CMIP3: http://www-pcmdi.llnl.gov,
ERA-40: http://www.ecmwf.int/research/era/do/get/era-40,
NCEP-1: http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html.
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prediction models, although this is not quite correct due to the fact that outputs of

a climate model are simulations of climate variables.

Using the data sets of daily temperature, the indices were calculated on the na-

tive model grid for each individual global climate model from Table 3.1 and the

re-analyses. Then, both these indices and the HadEX indices were remapped for

comparison via conservative remapping to a common spatial resolution. The com-

mon resolution is taken as the resolution of the ERA-40 and the NCEP-1 re-analysis,

that is, the indices were remapped to a resolution of 144 longitudes and 73 latitudes.

When comparing indices based on the HadEX data, the climate models, and the

re-analyses, it should be noted that the climate models and the re-analyses are based

on data representative for the whole grid box area, whereas the HadEX indices were

calculated for each weather observation station separately and then interpolated to

the longitude-latitude grid. The methods applied to the climate models and the

re-analyses thus imply a stronger smoothing of extremes than the method applied

to the HadEX indices. This may result in systematic differences in the probability

distributions of the data. However, we expect this effect to have less of an impact for

temperature data, which is considered here, than for precipitation data (Sillmann

and Roeckner, 2008).

3.5 Results

3.5.1 Model comparisons

To verify the climate model outputs against those based on the re-analyses or the

observations, we apply scoring functions, proper scoring rules, and the associated

divergence functions introduced in Chapter 2.1. The evaluation is made in two ways.

On the one hand, we look at each grid point separately, hereinafter referred to as the

local method, and, on the other hand, we pool data from all grid points in the study

region and ignore the locality, hereinafter referred to as the regional method.

Let x be a single data value from a climate model, and let y be the corresponding

event from a re-analysis or the HadEX data set. To compare both point forecasts, we

apply the absolute error and the squared error. We repeat this for all point forecasts

at any time over all available grid points in the test set. The resulting summary

measure of the performance assigned to a given climate model is therefore given by

the following average score,

1

m

m̧

i�1

1

n

ņ

j�1

Spxij, yijq,
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where i is the index over the individual locations in the study region and j is the

index over the available data values for each i. The number n of available values for

each i depends on the time period and the season considered, as will be seen below.

In the regional method, all locations are pooled together and, hence, i is equal to one.

Therefore, the number n also depends on which method, the local or the regional, is

used. Here, however, it is not necessary to distinguish between the regional and the

local method, since both result in the same value.

The climate indices mtxmax, mtnmin, txmax, and tnmin can be considered as

quantiles of a continuous quantity. Therefore, to compare the single extreme index

values from a climate model to the corresponding re-analysis or observation based

values, the asymmetric piecewise linear scoring function in (2.3) can also be applied.

We choose the level α as follows. For mtxmax and txmax, we set α � N� 1
2

N
, where

N is the number of days in the current month or year, respectively. Similarly, we

set α � 1
2N

for mtnmin and tnmin. We then assign each climate model the following

average score, hereinafter referred to as Sindex depending on the index considered,

1

m

m̧

i�1

1

n

ņ

j�1

Sαjpxij, yijq,

where we use the same notation as before. The local and the regional method also

result in the same value for this average score.

Let F denote the empirical cdf of extreme index values from a climate model over

a large time period. To compare F against the corresponding re-analysis or HadEX

events y, we apply the proper scoring rules CRPS, SAE, and SSE. Similar as for the

scoring functions above, we take the average score at each available grid point. The

resulting score of a given climate model is then given by these averages,

1

m

m̧

i�1

1

n

ņ

j�1

SpFi, yijq,

where i is the index over the individual locations in the study region and j is the

index over the data values used to create Fi for each i.

As before, let F denote the empirical cdf of extreme index values from a climate

model over a large time period, and let G denote the corresponding empirical cdf

based on a re-analysis or the HadEX data set. To compare the two empirical cdfs, we

apply the score divergences dC.v.M. and dMV. By repeating this over all available grid

points and taking the average, we assign each climate model the average divergence,

1

m

m̧

i�1

dpFi, Giq,
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where i is the index over the individual locations in the study region.

To summarize, the scoring functions measure how close values predicted by a model

are to the re-analysis or the observation based values. The scoring rules compare

the empirical cdf of a climate model against the single re-analysis or observation

based values. The divergence functions assess the compatibility of the model based

empirical cdfs and the re-analysis or the observation based empirical cdfs. Each

score provides a ranking of the climate models. If the score assigned to a climate

model is lower than the score of another model, it is considered to have a better

model performance. The local method provides additionally a model ranking at each

location. Thus, it can be investigated whether the model ranking is different for

distinct locations and whether a model has issues with providing reliable outputs

at some locations. The comparison of the different scoring methods further makes it

possible to see whether the same models are considered good under all three settings.

We first calculate the averages above over all available data in our data set from

1961 to 1990. Due to the huge amount of results and their similarity, we present only

the verification results for the climate model predictions of mtxmax and mtnmin

when compared to the NCEP-1 re-analysis and for the predictions of txmax and

tnmin when compared to the HadEX indices. Furthermore, only the most interesting

results are mentioned and considered in detail. The full set of verification results

averaged over the grid points is given in Appendix A. To determine the skill and

the variability of the re-analyses, we also compare the two re-analysis data sets and

assess the differences between the re-analyses and the HadEX data set.

Figure 3.1 provides an illustration of the model rankings that result from the cal-

culation of the average scores. It shows the verification results for the predictions of

mtnmin for both the regional and the local method, when compared to the NCEP-1

re-analysis (cf. Table A.6). The vertical lines, which are linearly scaled, visualize the

individual scores, and the horizontal lines illustrate the different average scores of

the individual climate models. The horizontal lines corresponding to models from

the same institution (cf. Table 3.1) have the same color. Taking all verification re-

sults into account, there is, however, no climate model that is always superior to the

other models of the same institution. The average scores for the NCEP-1 re-analysis

and the ERA-40 re-analysis are also indicated. It is important to note that a good

half of the models rank better than the ERA-40 re-analysis, in both the regional

and the local analysis. In general, it makes little difference for the rankings whether

the regional or the local method is considered. The individual scores also demon-

strate certain properties. For example, as expected, the MAE and the MSE have

similar rankings (cf. note on their definitions in Chapter 2.1.1, p. 5). Furthermore,

Figure 3.1 validates that a scoring rule and its associated divergence function yield
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Figure 3.1: Rankings of the climate models in simulating mtnmin for the regional method (top)
and the local method (bottom) when compared to the NCEP-1 re-analysis. The corre-
sponding values of the scores and divergence functions for the NCEP-1 re-analysis and
the ERA-40 re-analysis are also shown.

the same ranking. This is clear from the definition of a score divergence (see Chapter

2.1.3, p. 14) and the monotony of the expectation. Thus, the rankings of the climate

models under the CRPS and the Cramér-von Mises distance dC.v.M. or the scoring

rule SSE and the squared mean value divergence dMV, respectively, are identical. The

rankings based on the different scores are relatively constant in general other than

the ranking based on the asymmetric piecewise linear scoring function. For instance,

the FGOALS-g1.0 model and the GFDL-CM2.0 model rank among the best mod-
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els under the asymmetric piecewise linear scoring function, but their performances

are among the worst if the verification is based on the other scores. In this case,

the FGOALS-g1.0 model is by far the worst model. This might be due to its low

horizontal resolution. However, this cannot be the only reason for its bad perfor-

mance, since other models with low resolution, such as the CGCM3.1(T47) model,

perform well. In contrast to the FGOALS-g1.0 model and the GFDL-CM2.0 model,

the ERA-40 re-analysis and the MIROC3.2(medres) model rank much worse under

the asymmetric piecewise linear scoring function than under the other scores.

To explain this fact, we look at the asymmetric piecewise linear scoring function

more closely. If x is a prediction for the quantile at level α P p0, 1q and y is the “true

value”, the asymmetric piecewise linear scoring function is given by

Sαpx, yq � p1ty ¤ xu � αqpx� yq
� weightpx, y, αq|x� y|,

where weightpx, y, αq :� |1ty ¤ xu � α|. Thus, this proper scoring rule for quantiles

is a weighted version of the absolute error. If α is small, as is, for instance, the case

for mtnmin, the score is larger for an overestimating prediction than for an under-

estimating prediction with the same deviation from the “true value”. Conversely,

it is larger for an underestimating prediction than for an overestimating prediction

for quantiles at large levels, such as mtxmax. As the lower the score, the better the

prediction model, the asymmetric piecewise linear scoring function prefers overes-

timating climate models for maximum based extreme indices, and underestimating

models for minimum based indices.

To confirm this in the situation of Figure 3.1, we consider the mtnmin biases from

the NCEP-1 re-analysis for all climate models and grid boxes, and additionally the

same for the ERA-40 re-analysis. Figure 3.2 shows the corresponding box plots. If the

difference between a prediction of the NCEP-1 re-analysis and a climate model or the

ERA-40 re-analysis, respectively, for mtnmin is negative, the value of the NCEP-1

re-analysis is overestimated. If it is positive, the value is underestimated. Thus, the

FGOALS-g1.0 model and the GFDL-CM2.0 model usually underestimate the true

mtnmin values, whereas the ERA-40 re-analysis and the MIROC3.2(medres) model

usually yield an overestimate. The FGOALS-g1.0 model and the GFDL-CM2.0 model

thus rank much better under the asymmetric piecewise linear scoring function than

under the MAE and the MSE (see Figure 3.1), since the absolute errors caused by un-

derestimating are given less weight. The opposite applies to the ERA-40 re-analysis

and the MIROC3.2(medres) model. This seems to be a bad property. Nevertheless,

there may be situations for which it is worse to overestimate the minimum temper-
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Figure 3.2: Box plots of the mtnmin biases from the NCEP-1 re-analysis for the ERA-40 re-analysis
and all climate models at all grid boxes. The median is indicated with a bold line. The
box marks the interquartile range; the lines mark the 5%-95% range. The points are the
maximum or the minimum bias, respectively (Knutti et al., 2010, p. 2745).

ature than to underestimate it and vice versa for the maximum temperature. For

instance, if people have to be warned from a certain temperature on, it is better

to warn them to soon than too late. Thus, the asymmetric piecewise linear scoring

function may only be used at specific locations or at certain times of the year, and,

hence, we omit this score.

The rankings of the MAE and the MSE in Figure 3.1 are also illustrated by Figure

3.2. The larger the biases of a model, the larger its MAE and its MSE (cf. note

on their definitions in Chapter 2.1.1, p. 5). Since the FGOALS-g1.0 model has the

greatest biases, it is the worst model under both scores. Conversely, the ERA-40

re-analysis has the smallest biases and ranks best (see Figure 3.1).

The characteristics of each climate variable, such as surface temperature, differ

between the seasons. Thus, similarly to the local and regional method, we consider

both yearly predictions, as in Figure 3.1, and seasonal predictions. Since the seasonal

predictions for mtxmax have the most interesting consequences in summer (June–

August) and for mtnmin in winter (December–February), we will focus on these

seasons. In the following, we consider in more detail the verification results of the

climate models and the ERA-40 re-analysis for mtxmax and mtnmin when compared

locally to the NCEP-1 re-analysis under the Cramér-von Mises distance dC.v.M.. Ta-

ble 3.3 shows the results for the predictions for mtxmax in the summer months and

for mtnmin in the winter months. The results for the predictions of both indices in

all months are also stated for comparison. The scores of the climate models for the
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yearly predictions are smaller for mtxmax than for mtnmin. The same also applies

for individual seasons. The climate models are therefore usually better in predicting

mtxmax than mtnmin. When comparing the different seasons and the entire year, the

performances of the climate models in simulating mtxmax are worst in the summer

months. The same holds for mtnmin in the winter months. Consequently, the climate

models have problems in simulating particularly low or high temperatures. The dif-

ferences between the model performances are also greater when considering the most

extreme temperatures, as the range of the model scores is greater for mtxmax in

summer and for mtnmin in winter than that of the model scores based on all pre-

dictions. This also becomes clear if we compare the mean of the model scores to the

corresponding smallest score of a single climate model. Furthermore, the ERA-40

re-analysis is considered as a prediction model and compared to the NCEP-1 re-

analysis. It ranks in each case among the best models, but only ranks as the very

best for mtxmax in the summer months. The largest divergence between the two

re-analyses appears when simulating mtnmin in the winter months. To summarize

the consequences of Table 3.3, the quality of a climate model in simulating extreme

indices depends both on the season under consideration and on the index itself. The

latter dependence is also shown by the fact that the rankings of the climate models

are quite different depending on the index. For instance, the MIROC3.2(hires) model

ranks among the best models in predicting mtxmax, whereas it performs among the

worst in predicting mtnmin.

The GFDL-CM2.1 model is the best model for the winter and the yearly predic-

tions of mtnmin averaged over all grid points under the Cramér-von Mises distance

dC.v.M. (see Table 3.3). In order to investigate whether the performance of a climate

model also depends on the region, we consider the results of the situation above

at each location. Figure 3.3 illustrates the corresponding scores at each location in

our test set. We see that the model has problems at the same locations in winter

as over the entire year even if the performance for the latter is clearly better. The

GFDL-CM2.1 model is better in simulating mtnmin in Central Europe than in Great

Britian, Italy, or Norway. The worst performance takes place in Turkey and in the

northern part of the East-European plain.

To summarize, the index and region under consideration influence the quality

of a climate model and its simulations. Concerning the latter point, it is difficult

to specify results which are universally valid. Instead, the rankings of the climate

models in simulating an extreme index differ at the individual grid boxes (cf. also

Chapter 3.5.2). However, all climate models have more or less problems in simulating

extreme indices at grid points whose location is associated with a permanent extreme

weather situation, such as high wind, heat, or cold.
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Table 3.3: Verification results for the predictions of the climate models and the ERA-40 re-analysis
for both mtxmax and mtnmin over the entire year when compared locally to the NCEP-1
re-analysis under the Cramér-von Mises distance dC.v.M.. Furthermore, the results for the
predictions of mtxmax in the summer months and for the predictions of mtnmin in the
winter months are also shown. In each case, the best climate model is indicated in bold
and the mean of all climate models is stated.

Mtxmax Mtnmin

Forecast Summer All the year Winter All the year

NCEP-1 0.000 0.000 0.000 0.000
ERA-40 0.855 0.182 1.965 0.656

CGCM3.1(T47) 1.842 0.323 1.108 0.401
CGCM3.1(T63) 1.329 0.270 1.690 0.649
CNRM-CM3 1.331 0.452 2.024 0.415
CSIRO-Mk3.0 2.504 0.562 3.357 0.700
CSIRO-Mk3.5 0.883 0.265 3.656 1.053
ECHAM5/MPI-OM 1.001 0.176 1.287 0.390
FGOALS-g1.0 2.892 0.794 16.844 4.042
GFDL-CM2.0 1.820 0.441 2.456 0.839
GFDL-CM2.1 0.994 0.239 0.971 0.322
GISS-AOM 4.861 0.897 3.353 0.939
GISS-EH 1.813 0.405 2.034 0.752
GISS-ER 2.474 0.545 1.944 0.580
MIROC3.2(hires) 1.005 0.156 4.488 1.210
MIROC3.2(medres) 1.259 0.291 2.854 0.789
MRI-CGCM2.3.2 0.888 0.295 1.963 0.480

meanmodels 1.793 0.407 3.335 0.904

Winter All the year

0

2

4

6

8

Figure 3.3: Location-specific results for the predictions of the GFDL-CM2.1 model for mtnmin in
the winter months (left) and for all the year (right) at land grid points over Europe when
compared to the NCEP-1 re-analysis under the Cramér-von Mises distance dC.v.M..
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Table 3.4: Verification results for the predictions of the climate models, the ERA-40 re-analysis,
and the NCEP-1 re-analysis for both txmax and tnmin when compared locally to the
HadEX indices under the Cramér-von Mises distance dC.v.M. and the squared mean value
divergence dMV. In each case, the best climate model is indicated in bold and the mean
of all climate models is stated.

Txmax Tnmin

Forecast dC.v.M. dMV dC.v.M. dMV

HadEX 0.000 0.0 0.000 0.0
ERA-40 1.768 12.8 1.379 17.2
NCEP-1 1.620 13.9 2.303 28.4

CGCM3.1(T47) 3.648 38.0 3.993 64.4
CGCM3.1(T63) 2.897 28.4 5.109 91.8
CNRM-CM3 3.292 33.9 2.950 39.4
CSIRO-Mk3.0 4.456 51.7 4.922 89.0
CSIRO-Mk3.5 2.038 20.8 3.512 48.6
ECHAM5/MPI-OM 2.227 20.8 0.963 9.9
FGOALS-g1.0 3.660 38.2 21.552 729.0
GFDL-CM2.0 2.987 29.5 5.695 98.0
GFDL-CM2.1 2.065 18.4 2.207 31.7
GISS-AOM 7.451 93.4 2.779 38.6
GISS-EH 3.640 40.4 2.958 41.0
GISS-ER 4.515 59.4 2.957 42.3
MIROC3.2(hires) 1.398 10.0 4.155 58.8
MIROC3.2(medres) 2.875 33.8 2.764 35.6
MRI-CGCM2.3.2 2.337 18.7 1.571 17.1

meanmodels 3.299 35.7 4.539 95.7

Using HadEX indices as the realized values gives us a feeling for how reliable the

re-analyses are. Table 3.4 shows the predictive performance of the climate models,

the ERA-40 re-analysis, and the NCEP-1 re-analysis for txmax and tnmin when

compared locally to the HadEX indices under the divergence functions dC.v.M. and

dMV. Note that the set of grid points differs slightly from that under the monthly

indices, cf. Figure 3.4. When comparing Table 3.3 and Table 3.4, the Cramér-von

Mises distance dC.v.M. classifies the same models as good, average, or bad for mtxmax

or txmax. Conversely, the rankings corresponding to mtnmin or tnmin differ consid-

erably. For instance, the CGCM3.1(T47) model is among the best for mtnmin, but

ranks quite poorly for tnmin. The performance of the GISS-AOM model is much

better than the average for tnmin, whereas the model ranks significantly worse for

mtnmin. Particularly because of the different rankings for mtnmin in the winter

months, the NCEP-1 re-analysis might not be able to capture the indices based on

minimum temperatures reliably. The same also holds for the ERA-40 re-analysis (re-

sults not shown). In general, the two re-analysis data sets perform very similarly

when compared to the HadEX indices, see also Tables A.7 and A.8 in the Appendix,

with the ERA-40 re-analysis performing slightly better. Furthermore, the re-analyses
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are usually less skillful than the best performing models, see e.g. Table 3.4.

The rankings of the climate models for txmax and tnmin are quite similar under the

divergence functions dC.v.M. and dMV (Table 3.4). The German model, ECHAM5/MPI-

OM, ranks among the best models and is the best in simulating tnmin. To gain an

even deeper insight into these divergence functions, Figure 3.4 shows the verification

results of this model at each location under the situation of Table 3.4. The spatial per-

formance patterns obtained under the two divergence functions are very similar even

though the magnitudes of the values differ substantially between the two measures.

Thus, both divergences result in the same evaluation of the ECHAM5/MPI-OM

model in simulating txmax and tnmin at each location. The scores imply that tnmin

is well captured by the model in most regions. The few locations evaluated as bad

are mainly located in Southern or Northern Europe. The simulation of txmax de-

teriorates with increasing northern latitude and only functions properly in Central

Europe. Sillmann and Roeckner (2008) achieve the same results even if the compar-

ison is carried out on the basis of 53-year time series (1951-2003).

The exact score values corresponding to Figure 3.4 are listed in Table 3.5 for the

grid boxes that include Heidelberg (Germany), Moscow (Russia), and Oslo (Nor-

way). The average score over all grid points is also documented for both verification

methods and both indices. The scores for Moscow are far below average, whereas the

model performance for Oslo is significantly worse. Moreover, the ECHAM5/MPI-OM

model is much better in simulating tnmin in Heidelberg than in many another loca-

tions, but it only shows average performance in simulating txmax. In comparison to

Moscow and Oslo, Heidelberg ranks between them, but closer to Moscow. Figure 3.5

illustrates the occurrence of these score values. The Cramér-von Mises distance dC.v.M.

depends on the difference between both underlying cdfs, and the squared mean value

divergence dMV is based on the difference between their means (cf. their definitions

in Chapter 2.1.3, p. 15 f.). The smaller these differences, the lower the values of

the measures. To validate this, the empirical cdf of the ECHAM5/MPI-OM model

predictions for txmax and tnmin and the corresponding empirical cdf based on the

HadEX data set are plotted for the grid boxes that include the three cities above.

The mean values of the model and the HadEX data set are also illustrated for each

grid box. The empirical distributions for tnmin are closer together than for txmax.

The same holds for the mean values. Therefore, the scores are lower for tnmin. Since

the differences for both indices are smallest by far in Moscow, there the model per-

forms relatively well. The empirical cdfs and the means corresponding to Oslo diverge

significantly from each other, particularly for txmax, and, hence, induce the large

scores from Table 3.5. This could be because the overall temperature range is largest

in Oslo.
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Figure 3.4: Location-specific results for the predictions of the ECHAM5/MPI-OM model for txmax
(left) and tnmin (right) at land grid points over Europe when compared to the HadEX
indices under the Cramér-von Mises distance dC.v.M. (top) and the squared mean value
divergence dMV (bottom).

Table 3.5: Verification results for the predictions of the ECHAM5/MPI-OM model for txmax and
tnmin at the grid boxes that include Heidelberg, Moscow, and Oslo when compared to
the HadEX indices under the Cramér-von Mises distance dC.v.M. and the squared mean
value divergence dMV. Furthermore, the respective mean of the scores over all grid points
is stated.

Txmax Tnmin

Location dC.v.M. dMV dC.v.M. dMV

Heidelberg 2.022 14.0 0.276 3.0
Moscow 0.799 5.0 0.136 1.1
Oslo 4.906 50.5 2.189 33.6

meanloc 2.227 20.8 0.963 9.9
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Figure 3.5: Empirical cdfs (solid lines) based on the txmax (left) and tnmin (right) predictions of
the ECHAM5/MPI-OM model (red) and the corresponding HadEX values (blue) for
the grid boxes that include Heidelberg, Moscow, and Oslo. The mean value of each data
set is indicated with a dashed line. Note the different scales of the temperature axes for
txmax and tnmin.

3.5.2 Combining model outputs

To combine the outputs of the climate models, we apply the weighting methods

introduced in Chapter 2.2. The weights are usually calculated based on past data

output of climate models and are then used to obtain a new cdf for future data.

However, in order to evaluate the new cdf and thus to test the functionality of our

approach, we divide the time period for which data is available in a training period

and an out-of-sample test period.
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Let F j
tp and F j

pp denote the empirical cdfs of extreme index values from the climate

model j, j � 1, . . . , 15, over the training period or the test (or prediction) period,

respectively, and let Gtp and Gpp denote the corresponding empirical cdfs based

on a re-analysis or the HadEX data set. The weights of the individual weighting

methods are calculated from the empirical cdfs F j
tp and Gtp. Thus, for instance, the

weightsdC.v.M.
method assigns model j the weight

wj �
1

dC.v.M.pF
j
tp,Gtpq°15

i�1
1

dC.v.M.pF
i
tp,Gtpq

.

The empirical cdfs from the individual climate models over the test period are then

weighted to result in the new cdf

15̧

j�1

wjF
j
pppxq.

To evaluate this probabilistic forecast for the test period, it is compared against

corresponding data based on the re-analyses or the observations. That is, we use the

scoring rules SAE and SSE as well as the Cramér-von Mises distance dC.v.M. and assign

each weighting method the corresponding average score as described in the previous

section. For instance, the summary measure based on the Cramér-von Mises distance

dC.v.M. is given by

1

m

m̧

i�1

dC.v.M.

�
15̧

j�1

wijF
j
pp,i, Gpp,i

�
,

where i is the index over the individual locations in the study region. As in the

previous section, the local and the regional method are used. The index i is therefore

only relevant when the local method is applied, otherwise i is equal to one.

In order to take all available data into account as test data, we perform a cross-

validation study over the available data from 1961 to 1990 where we use each decade

as the test period in turn. For each decade, we proceed as described above and then

we average over the decadal results.

Table 3.6 provides an overview of weights obtained from the individual weighting

methods. The weights are based on the mtnmin data for the years 1961 to 1980.

The results for the local method are the averages of the weights over the individual

grid points. The weights provide a ranking of the models over the training data. In

contrast to the scores, the greater the value of the weight, the better the model. The

rankings for the weightsdC.v.M.
and the weightsdMV

method are quite similar. Due to

their definition (see Chapter 2.2, p. 19), the weightsdC.v.M.
method yields the same
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Table 3.6: Weights of the weighting methods weightsmin, weightsdC.v.M.
, and weightsdMV

for mtnmin
based on the comparison of all available predictions of the climate models for 1961 to
1980 against the corresponding data of the NCEP-1 re-analysis. The results for both the
regional and the local method, in which the weights are averaged over the individual grid
points, are shown. In each case, the largest weight is indicated in bold.

weightsmin weightsdC.v.M.
weightsdMV

Model Regional Local Regional Local Regional Local

CGCM3.1(T47) 0.277 0.126 0.109 0.109 0.018 0.103
CGCM3.1(T63) 0.000 0.039 0.040 0.064 0.006 0.057
CNRM-CM3 0.000 0.031 0.098 0.076 0.203 0.128
CSIRO-Mk3.0 0.000 0.055 0.080 0.074 0.320 0.083
CSIRO-Mk3.5 0.000 0.008 0.019 0.031 0.004 0.025
ECHAM5/MPI-OM 0.317 0.166 0.065 0.109 0.009 0.066
FGOALS-g1.0 0.000 0.014 0.004 0.015 0.001 0.038
GFDL-CM2.0 0.098 0.075 0.020 0.046 0.003 0.024
GFDL-CM2.1 0.000 0.068 0.072 0.103 0.017 0.090
GISS-AOM 0.000 0.061 0.029 0.058 0.005 0.024
GISS-EH 0.000 0.061 0.078 0.075 0.093 0.092
GISS-ER 0.109 0.144 0.152 0.090 0.283 0.089
MIROC3.2(hires) 0.000 0.012 0.012 0.018 0.002 0.005
MIROC3.2(medres) 0.000 0.015 0.026 0.050 0.006 0.039
MRI-CGCM2.3.2 0.199 0.122 0.196 0.080 0.031 0.138

ranking of the climate models as the ranking under the Cramér-von Mises distance

dC.v.M., and similar for the weightsdMV
method. Thus, it is confirmed once again that

the divergence functions dC.v.M. and dMV yield similar model rankings for our data

set. In the regional setting, the weightsdC.v.M.
and the weightsdMV

method assign all

climate models positive weights, while the weightsmin method does this only for a

handful of models. However, when we look at the average local weights, this is no

longer the case.

Table 3.7 lists the weights obtained from the local weightsmin method at the grid

boxes that include Heidelberg, Moscow, and Oslo. Here, the weights of the individual

climate models differ considerably for the different grid boxes. The local results

for the weightsmin method are thus only due to averaging over the individual grid

points. Similar effects can be observed for the other two weighting methods. Since the

regional method ignores the locality, we expect better results from the local method

in general.

We check this assumption on the basis of the yearly predictions for mtnmin when

compared to the NCEP-1 re-analysis. The verification results of the weighted model

combinations averaged over the decadal results are shown in Table 3.8. To test

whether our weighting methods yield better predictions—in form of a cdf—than the

individual climate models or the ERA-40 re-analysis, these results are also stated.

The values of the average decadal scores for the individual models and the ERA-40
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Table 3.7: Weights of the weightsmin method for mtnmin at the grid boxes that include Heidelberg,
Moscow, and Oslo based on the comparison between all available predictions of the
climate models for 1961 to 1980 in these grid boxes and the corresponding data of the
NCEP-1 re-analysis. For each location, the largest weight is indicated in bold.

Model Heidelberg Moscow Oslo

CGCM3.1(T47) 0.506 0.000 0.000
CGCM3.1(T63) 0.000 0.206 0.000
CNRM-CM3 0.000 0.000 0.000
CSIRO-Mk3.0 0.000 0.000 0.000
CSIRO-Mk3.5 0.000 0.000 0.000
ECHAM5/MPI-OM 0.263 0.000 0.037
FGOALS-g1.0 0.000 0.000 0.000
GFDL-CM2.0 0.037 0.000 0.000
GFDL-CM2.1 0.000 0.000 0.000
GISS-AOM 0.000 0.519 0.000
GISS-EH 0.194 0.000 0.000
GISS-ER 0.000 0.275 0.769
MIROC3.2(hires) 0.000 0.000 0.000
MIROC3.2(medres) 0.000 0.000 0.000
MRI-CGCM2.3.2 0.000 0.000 0.194

re-analysis are quite similar to those calculated for the entire 30-year period, see

Table A.6. The results of Figure 3.1 therefore also apply here. This fact may indicate

that the comparative performance of the climate models and the NCEP-1 re-analysis

varies only very little across the decades of 1961 to 1990, at least on average. The

weighted model combinations usually perform significantly better than any single

climate model and are also competitive with the ERA-40 re-analysis. The good per-

formance of the weighted model combinations is especially pronounced when the

local method is applied for evaluation, in particular when only seasonal predictions

are considered.

Table 3.9 shows the corresponding results for the summer months and the winter

months only. For simplicity, we only list the individual scores of the best performing

models. The weightsmin method is usually the best weighting method, and, under

the Cramér-von Mises distance dC.v.M., this method yields an overall predictive per-

formance which substantially outperforms all the other prediction methods. As the

Cramér-von Mises distance dC.v.M. compares the entire cdfs, this indicates that the

overall shape of the climate distribution is best captured by the weightsmin method.

In the following, since the local method also yields the more interesting results, we

consider location-specific verification results corresponding to Table 3.8 and Table 3.9

under the Cramér-von Mises distance dC.v.M.. The results of the weighted model com-

bination based on the weightsmin method, and the ERA-40 re-analysis for the summer

months, the winter months, and over the entire year are shown in Figure 3.6. In addi-

tion, the corresponding scores for the CNRM-CM3 model, the best performing model
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Table 3.8: Verification results for the weighted combinations of the climate model predictions for
mtnmin over the entire year averaged over decadal results when compared to the NCEP-1
re-analysis under the scoring rules SAE and SSE and under the Cramér-von Mises dis-
tance dC.v.M.. The results are stated for the weighting methods weightsmin, weightsdC.v.M.

,
and weightsdMV

as well as for the regional and the local method. Furthermore, the cor-
responding results for the individual models and the ERA-40 re-analysis are shown. In
each case, the best climate model is indicated in bold and the mean of all climate models
is stated.

Regional Local

Forecast SAE SSE dC.v.M. SAE SSE dC.v.M.

NCEP-1 9.73 144.9 0.000 8.34 99.7 0.000
ERA-40 10.04 161.3 0.364 8.96 120.0 0.678

weightsmin 9.74 145.2 0.021 8.39 100.4 0.060
weightsdC.v.M.

9.74 145.2 0.029 8.41 100.7 0.087
weightsdMV

9.75 145.2 0.074 8.44 100.6 0.134

CGCM3.1(T47) 9.80 148.4 0.089 8.72 111.0 0.437
CGCM3.1(T63) 9.92 154.3 0.234 8.92 117.5 0.678
CNRM-CM3 9.74 146.3 0.132 8.65 106.8 0.450
CSIRO-Mk3.0 9.81 145.2 0.136 8.91 119.8 0.731
CSIRO-Mk3.5 10.21 162.9 0.536 9.23 126.1 1.081
ECHAM5/MPI-OM 9.92 152.5 0.172 8.75 111.2 0.423
FGOALS-g1.0 11.23 268.1 2.409 14.03 292.9 4.073
GFDL-CM2.0 10.07 167.1 0.486 8.97 127.7 0.873
GFDL-CM2.1 9.81 147.8 0.128 8.55 106.9 0.352
GISS-AOM 10.15 159.1 0.389 9.08 120.8 0.967
GISS-EH 9.75 145.5 0.131 8.99 119.9 0.779
GISS-ER 9.75 145.2 0.062 8.92 115.7 0.605
MIROC3.2(hires) 10.47 181.5 0.842 9.23 139.5 1.239
MIROC3.2(medres) 10.14 157.2 0.416 8.94 121.0 0.817
MRI-CGCM2.3.2 9.76 147.6 0.065 8.66 109.0 0.510

meanmodels 10.04 161.9 0.415 9.24 129.7 0.934

in summer (see Table 3.9(a)), and for the GFDL-CM2.1 model, the best performing

model in winter (see Table 3.9(b)), are illustrated. The GFDL-CM2.1 model also has

the best model performance over the entire year averaged over the individual grid

points under the Cramér-von Mises distance dC.v.M. (see Table 3.8). The weighted

model combinations based on the weightsmin method usually outperform the other

methods at every location. Individual climate models show very different location-

specific predictive performances. For instance, the GFDL-CM2.1 model has problems

in simulating mtnmin for the summer months in Central Europe, while the perfor-

mance of the CNRM-CM3 model is worse in the Mediterranean region. It is therefore

not clear which of these models one should prefer. To this end, model combination

seems to be a good approach and, in fact, our weighting methods improve the results

significantly.
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Table 3.9: Verification results for the weighted combinations of the climate model predictions for
mtnmin in (a) the summer months and (b) the winter months averaged over decadal
results when compared to the NCEP-1 re-analysis under the scoring rules SAE and SSE

and under the Cramér-von Mises distance dC.v.M.. The results are stated for the weighting
methods weightsmin, weightsdC.v.M.

, and weightsdMV
as well as for the regional and the

local method. Furthermore, the corresponding results for the best performing models
and the ERA-40 re-analysis are shown. In each case, the best climate model is indicated
in bold and the mean of all 15 climate models is stated.

(a) Summer

Regional Local

Forecast SAE SSE dC.v.M. SAE SSE dC.v.M.

NCEP-1 3.55 21.0 0.000 1.71 4.8 0.000
ERA-40 4.11 29.2 0.418 3.41 16.3 1.321

weightsmin 3.57 21.2 0.033 1.83 5.4 0.105
weightsdC.v.M.

3.56 21.5 0.059 1.85 5.6 0.130
weightsdMV

3.61 21.3 0.077 1.84 5.5 0.139

CNRM-CM3 3.56 22.0 0.074 2.66 10.5 0.685
CSIRO-Mk3.0 3.55 21.3 0.038 2.51 10.7 0.709
MRI-CGCM2.3.2 3.65 21.1 0.100 2.96 12.9 0.948

meanmodels 4.25 28.6 0.519 3.64 19.8 1.541

(b) Winter

Regional Local

Forecast SAE SSE dC.v.M. SAE SSE dC.v.M.

NCEP-1 9.13 112.9 0.000 2.94 15.2 0.000
ERA-40 9.98 135.9 0.678 5.59 46.1 2.086

weightsmin 9.21 113.4 0.051 3.24 17.6 0.250
weightsdC.v.M.

9.16 113.3 0.101 3.26 17.7 0.280
weightsdMV

9.38 113.9 0.196 3.32 18.2 0.324

CNRM-CM3 10.45 114.5 0.415 5.72 46.8 2.181
GFDL-CM2.1 9.19 114.5 0.111 4.44 30.4 1.120
GISS-EH 9.18 115.2 0.201 5.66 49.1 2.208
GISS-ER 9.18 115.5 0.171 5.39 46.0 2.078

meanmodels 11.17 155.9 1.191 7.10 91.6 3.489
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Figure 3.6: Location-specific results for the predictions of the CNRM-CM3 model, the GFDL-CM2.1
model, the weightsmin method, and the ERA-40 re-analysis for mtnmin in the summer
months, the winter months, and over the entire year at land grid points over Europe
averaged over the decadal results when compared to the NCEP-1 re-analysis under the
Cramér-von Mises distance dC.v.M..
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4 Discussion

We propose evaluation methods for the performance of climate models that directly

assess the divergence of the predictive climate distribution from the corresponding ob-

servations and apply those to descriptive indices for climate extremes. To determine

the performance of 15 global climate models with respect to their ability to simu-

late climate extremes, four indices, the monthly maximum value of daily maximum

temperature (mtxmax), the monthly minimum value of daily minimum temperature

(mtnmin), the yearly maximum value of daily maximum temperature (txmax), and

the yearly minimum value of daily minimum temperature (tnmin), over Europe from

1961 to 1990 were compared with corresponding re-analysis and/or observation based

data sets.

The quality of the climate models in simulating extreme indices depends on the

index, the season, and the region under consideration. Different seasons and regions

can only, of course, be considered for the monthly indices or the local method, respec-

tively. The models are usually better in simulating the maximum temperature based

indices than the minimum temperature based indices, and they are least skillful in

the seasons in which the indices are more extreme. For instance, the model perfor-

mances in simulating mtxmax are worst in the summer months. That is, the models

seem to have problems with simulating particularly low or high temperatures. Indi-

vidual climate models show very different location-specific predictive performances,

and large divergences generally appear at grid points with a permanent extreme

weather situation, such as high wind, heat, or cold, including, for instance, coastal

regions, the Mediterranean region, or Scandinavia. When comparing to a re-analysis

data set, the second re-analysis data set performs as well as the best climate models.

However, it is only rarely better than all models, contrary to expectation, since both

re-analyses represent the same observations. The same holds when both re-analyses

and climate model outputs are compared to the observation based indices. Further-

more, the disparity in the verification rankings of the climate models when compared

to the re-analysis on one hand and the observation based indices on the other hand

may indicate that the re-analyses are not able to capture the minimum temperature

based indices reliably. To fully capture the implications of our results, a more detailed

analysis is needed taking the physical and numerical assumptions of each model into

account.
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A similar comparison has e.g. been attempted by Kiktev et al. (2003) and Sillmann

and Roeckner (2008). Sillmann and Roeckner (2008) compare txmax and tnmin

values of the ECHAM5/MPI-OM model for 1951 to 2003 with the corresponding

HadEX values by displaying global maps of time averages and calculating time series

for three European regions. Their findings are consistent with our results (cf. Chapter

3.5.1, p. 33). However, it is difficult to get an overall view of the model performance by

visually comparing two maps or two functions, respectively. Since the squared mean

value divergence dMV measures the difference between the prediction mean and the

observed mean, its application yields a summary score for the model performance

with respect to the ability to simulate the mean of the indices. This is exactly what

Sillmann and Roeckner (2008) examine by comparing the maps, and, due to the

current definition of climate (cf. Chapter 1), this may also be important. However,

to take the local performance into account, the local method should be applied.

Kiktev et al. (2003) compare model and observation based trend estimates of the

indices as well as model based and gridded observed indices. For the latter, the au-

thors use a Kolmogorov-Smirnov test. One disadvantage of this approach is the low

sensitivity at the tails of the distributions. The test statistic is also not n-proper

for all n P N, only asymptotically proper (Thorarinsdottir et al., 2012). Therefore,

it is not appropriate to rank the models this way, and the Cramér-von Mises dis-

tance dC.v.M. would be more appropriate. Furthermore, to objectively compare the

similarity between the patterns of observed and model trends, the authors estimate

the probability distribution function of measures of pattern similarity, including the

centered pattern correlation and the uncentered pattern correlation, by a bootstrap

technique. Different ensembles are then ranked based on these correlations. However,

in our experience, rankings based on correlations differ substantially from those of

the other scoring methods, and there is no obvious reason why the similarity is really

measured.

In climate research in general, there seems to be a lack of accepted standard

measures of climate model performance. Gleckler et al. (2008) use a version of the

root mean squared error to assess CMIP3 20th century simulations without taking

the full predictive distribution into account. Salazar et al. (2011) use a Bayesian

approach to obtain full predictive distributions and compare these to observations

using proper scoring rules such as the CRPS. This comparison will yield the same

model rankings as the Cramér-von Mises distance dC.v.M.. However, an advantage

of the divergence functions is that the resulting divergences are equal to zero if the

two distributions are equal which does not necessarily hold for proper scoring rules.

This simplifies comparability of different verification methods. Perkins et al. (2007)

adopt the natural approach to compare climate model density distributions and the
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corresponding observation based density distributions (cf. Chapter 1). A skill score

that measures the similarity between two probability density functions is proposed

and used for the evaluation of climate model simulations over Australia from 1961

to 2000. The metric calculates the cumulative minimum value of two distributions of

each binned value and sum up the values over the number of bins used to calculate

the probability density functions. It is not clear whether this comparison procedure

yields a proper divergence function or not.

In addition to model verification, we propose three weighting methods based on

the divergence functions dC.v.M. and dMV to combine outputs from climate models.

The weighted model combinations usually perform significantly better than any sin-

gle climate model. The weightsmin method is usually the best weighting method,

and, under the Cramér-von Mises distance dC.v.M., it substantially outperforms all

the other prediction and weighting methods. A common approach is to combine the

models within a Bayesian framework. However, this methodology assumes a certain

parametric model for the model output which is often taken as the normal distribu-

tion for temperature, see e.g. Kallache et al. (2010).

44



Bibliography

Alexander, L. V., X. Zhang, T. C. Peterson, J. Caesar, B. Gleason, A. M. G. K. Tank,

M. Haylock, D. Collins, B. Trewin, F. Rahimzadeh, A. Tagipour, K. R. Kumar,

J. Revadekar, G. Griffiths, L. Vincent, D. B. Stephenson, J. Burn, E. Aguilar,

M. Brunet, M. Taylor, M. New, P. Zhai, M. Rusticucci, and J. L. Vazquez-Aguirre

(2006). Global observed changes in daily climate extremes of temperature and

precipitation. Journal of Geophysical Research - Atmospheres 111, D05109.

Bauer, H. (1992). Maß- und Integrationstheorie (2 ed.). Berlin: Walter de Gruyter.

Dawid, A. P. (1984). Statistical theory: The prequential approach. Journal of the

Royal Statistical Society Series A 147, 278–292.

Dawid, A. P. (1998). Coherent measures of discrepancy, uncertainty and dependence,

with applications to Bayesian predictive experimental design. Technical Report

139, Department of Statistical Science, University College London.

ECMWF (2012). From weather to climate. http://www.ecmwf.int/about/

corporate_brochure/leaflets/Weather-climate-English.pdf. Last accessed

July 18, 2012.

Folland, C., C. Miller, D. Bader, M. Crowe, P. Jones, N. Plummer, M. Richman,

D. Parker, J. Rogers, and P. Scholefield (1999). Workshop on indices and indicators

for climate extremes, Asheville, NC, USA, 3–6 June 1997. Breakout group C:

Temperature indices for climate extremes. Climatic Change 42, 31–43.

Gleckler, P. J., K. E. Taylor, and C. Doutriaux (2008). Performance metrics for

climate models. Journal of Geophysical Research 113, D06104.

Gneiting, T. (2008). Editorial: Probabilistic forecasting. Journal of the Royal Sta-

tistical Society Series A 171, 319–321.

Gneiting, T. (2011). Making and evaluating point forecasts. Journal of the American

Statistical Association 106, 746–762.

Gneiting, T. and A. E. Raftery (2005). Strictly proper scoring rules, prediction,

and estimation. Technical Report 463R, Department of Statistics, University of

Washington.

45



Gneiting, T. and A. E. Raftery (2007). Strictly proper scoring rules, prediction, and

estimation. Journal of the American Statistical Association 102, 359–378.

Gneiting, T. and R. Ranjan (2011). Comparing density forecasts using threshold- and

quantile-weighted scoring rules. Journal of Business and Economic Statistics 29,

411–422.

Gneiting, T. and T. L. Thorarinsdottir (2010). Predicting inflation: Professional

experts versus no-change forecasts. arXiv:1010.2318v1.

Hersbach, H. (2000). Decomposition of the continuous ranked probability score for

ensemble prediction systems. Weather and Forecasting 15, 559–570.

IPCC (2007). Climate change 2007: The physical science basis. Contribution of

working group I to the Fourth Assessment Report of the Intergovernmental Panel

on Climate Change. Solomon, S. et al. (eds.), Cambridge University Press.

Kallache, M., E. Maksimovich, P. Michelangeli, and P. Naveau (2010). Multimodel

combination by a Bayesian hierarchical model: Assessment of ice accumulation

over the oceanic Artic region. Journal of Climate 23, 5421–5436.

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell,

S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Hig-

gins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds,

R. Jenne, and D. Joseph (1996). The NCEP/NCAR 40-year reanalysis project.

Bulletin of the American Meteorological Society 77, 437–471.

Karl, T. R., N. Nicholls, and A. Ghazi (1999). CLIVAR/GCOS/WMO Workshop

on indices and indicators for climate extremes. Workshop summary. Climatic

Change 42, 3–7.

Kiktev, D., D. Sexton, L. Alexander, and C. Folland (2003). Comparison of modeled

and observed trends in indices of daily climate extremes. Journal of Climate 16,

3560–3571.

Kistler, R., E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah,

W. Ebisuzaki, M. Kanamitsu, V. Kousky, H. van den Dool, R. Jenne, and M. Fior-

ino (2001). The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and

documentation. Bulletin of the American Meteorological Society 82, 247–268.

Knutti, R., R. Furrer, C. Tebaldi, J. Cermak, and G. A. Meehl (2010). Challenges

in combining projections from multiple climate models. Journal of Climate 23,

2739–2758.

46



Laio, F. and S. Tamea (2007). Verification tools for probabilistic forecasts of contin-

uous hydrological variables. Hydrology and Earth System Sciences 11, 1267–1277.

Luterbacher, J., D. Dietrich, E. Xoplaki, M. Grosjean, and H. Wanner (2004). Eu-

ropean seasonal and annual temperature variability, trends, and extremes since

1500. Science 303, 1499–1503.

Matheson, J. E. and R. L. Winkler (1976). Scoring rules for continuous probability

distributions. Management Science 22, 1087–1096.

Meehl, G., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. Mitchell, R. Stouffer,

and K. Taylor (2007). The WCRP CMIP3 multi-model dataset: a new era in

climate change research. Bulletin of the American Meteorological Society 88, 1383–

1394.

Nicholls, N. and W. Murray (1999). Workshop on indices and indicators for climate

extremes, Asheville, NC, USA, 3–6 June 1997. Breakout group B: Precipitation.

Climatic Change 42, 23–29.

Perkins, S. E., A. J. Pitman, N. J. Holbrook, and J. McAneny (2007). Evaluation

of the AR4 climate models’ simulated daily maximum temperature, minimum

temperature, and precipitation over Australia using probability density functions.

Journal of Climate 20, 4356–4376.

Peterson, T. C. (2005). Climate change indices. World Meteorological Organization

Bulletin 54, 83–86.

R Development Core Team (2012). R: A language and environment for statistical

computing. Vienna, Austria: R Foundation for Statistical Computing.

Robine, J.-M., S. L. K. Cheung, S. L. Roy, H. V. Oyen, C. Griffiths, J.-P. Michel, and

F. R. Herrmann (2008). Death toll exceeded 70,000 in Europe during the summer

of 2003. Comptes Rendus Biologies 331, 171 – 178.

Roedel, W. and T. Wagner (2011). Physik unserer Umwelt: Die Atmosphäre (4 ed.).
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Hoskins, L. Isaksen, P. A. E. M. Janssen, R. Jenne, A. P. Mcnally, J.-F. Mahfouf, J.-

J. Morcrette, N. A. Rayner, R. W. Saunders, P. Simon, A. Sterl, K. E. Trenberth,

A. Untch, D. Vasiljevic, P. Viterbo, and J. Woollen (2005). The ERA-40 re-

analysis. Quarterly Journal of the Royal Meteorological Society 131, 2961–3012.

Vanderbei, R. J. (1999). LOQO: An interior point code for quadratic programming.

Optimization Methods and Software 11, 451–484.

Von Storch, H., S. Güss, and M. Heimann (1999). Das Klimasystem und seine

Modellierung: Eine Einführung. Berlin: Springer.
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A Verification tables

In our case study, only a small part of the verification results could be investigated in

detail. For completeness and comparison, the full set of verification results averaged

over the grid boxes for the climate model predictions of mtxmax and mtnmin when

compared to the NCEP-1 re-analysis and for the model predictions of txmax and

tnmin when compared to the HadEX indices are presented in the following tables.

Moreover, the corresponding scores for the re-analyses and, when considering the

annual indices, also for the HadEX data are stated. In addition to the results for

the predictions over the entire year, the results for the predictions of the monthly

indices in the summer months (June–August) and in the winter months (December–

February) are shown. As explained in Chapter 3.5, the comparisons were performed

both regionally and locally. These results can also be found in the tables. In each

case, the best climate model is indicated in bold and the mean over the average

scores of the individual models is given.

A.1 Individual climate models

In this section, the verification results for the individual climate models when sim-

ulating the four extreme indices under the scoring functions MAE and MSE, under

the proper scoring rules CRPS, SAE, and SSE, and under the divergence functions

dC.v.M. and dMV are shown. All available data in our dataset for land grid boxes in

the European domain from 1961 to 1990 were considered for calculation. Note that

the sets of grid points for the monthly and annual indices over which is averaged

differ slighty (cf. Chapter 3.5.1, p. 32).
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Table A.1: Verification results for the climate predictions for mtxmax in the summer months.

(a) Regional

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

NCEP-1 0.00 0.0 4.18 5.73 56.4 0.000 0.0

ERA-40 2.53 11.8 4.32 5.86 59.3 0.140 2.9

CGCM3.1(T47) 4.83 36.8 4.42 5.73 56.9 0.243 0.5

CGCM3.1(T63) 4.34 29.3 4.34 5.74 56.6 0.157 0.2

CNRM-CM3 4.10 25.6 4.43 6.34 60.5 0.254 4.0

CSIRO-Mk3.0 5.15 38.9 4.96 6.95 78.5 0.778 22.1

CSIRO-Mk3.5 3.72 22.4 4.30 5.97 57.6 0.125 1.1

ECHAM5/MPI-OM 3.70 22.0 4.35 5.94 60.9 0.166 4.5

FGOALS-g1.0 5.82 48.8 4.87 7.47 61.8 0.690 5.4

GFDL-CM2.0 5.04 37.6 4.72 6.78 70.7 0.544 14.2

GFDL-CM2.1 4.20 26.8 4.38 6.20 60.4 0.204 3.9

GISS-AOM 7.33 69.6 6.39 9.24 107.3 2.213 50.9

GISS-EH 4.81 37.6 4.37 5.74 56.5 0.190 0.1

GISS-ER 5.50 46.2 4.45 5.79 61.3 0.269 4.8

MIROC3.2(hires) 3.56 19.9 4.24 5.79 57.3 0.065 0.9

MIROC3.2(medres) 4.44 32.7 4.30 5.83 57.1 0.119 0.6

MRI-CGCM2.3.2 3.45 19.0 4.31 5.94 59.0 0.128 2.5

meanmodels 4.67 34.2 4.59 6.36 64.2 0.410 7.7

(b) Local

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

NCEP-1 0.00 0.0 1.47 2.07 7.2 0.000 0.0

ERA-40 2.53 11.8 2.32 3.00 15.8 0.855 8.7

CGCM3.1(T47) 4.83 36.8 3.31 4.45 29.5 1.842 22.3

CGCM3.1(T63) 4.34 29.3 2.80 3.81 21.8 1.329 14.7

CNRM-CM3 4.10 25.6 2.80 3.73 20.5 1.331 13.4

CSIRO-Mk3.0 5.15 38.9 3.97 4.85 36.2 2.504 29.1

CSIRO-Mk3.5 3.72 22.4 2.35 3.21 16.6 0.883 9.4

ECHAM5/MPI-OM 3.70 22.0 2.47 3.32 17.5 1.001 10.3

FGOALS-g1.0 5.82 48.8 4.36 5.61 43.2 2.892 36.1

GFDL-CM2.0 5.04 37.6 3.29 4.50 27.7 1.820 20.5

GFDL-CM2.1 4.20 26.8 2.46 3.43 17.1 0.994 9.9

GISS-AOM 7.33 69.6 6.33 7.23 67.9 4.861 60.8

GISS-EH 4.81 37.6 3.28 4.43 29.7 1.813 22.6

GISS-ER 5.50 46.2 3.94 5.15 38.5 2.474 31.3

MIROC3.2(hires) 3.56 19.9 2.47 3.30 16.9 1.005 9.7

MIROC3.2(medres) 4.44 32.7 2.73 3.72 23.5 1.259 16.3

MRI-CGCM2.3.2 3.45 19.0 2.36 3.10 16.0 0.888 8.8

meanmodels 4.67 34.2 3.26 4.26 28.2 1.793 21.0
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Table A.2: Verification results for the climate predictions for mtxmax in the winter months.

(a) Regional

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

NCEP-1 0.00 0.0 4.15 6.07 56.1 0.000 0.0

ERA-40 1.57 4.2 4.21 6.08 56.2 0.060 0.1

CGCM3.1(T47) 2.90 13.5 4.22 6.08 56.3 0.074 0.2

CGCM3.1(T63) 2.86 13.6 4.25 6.11 56.9 0.099 0.8

CNRM-CM3 3.95 29.0 4.44 6.45 66.3 0.292 10.1

CSIRO-Mk3.0 2.91 16.8 4.19 6.09 57.4 0.044 1.3

CSIRO-Mk3.5 3.82 22.8 4.58 6.79 64.7 0.433 8.6

ECHAM5/MPI-OM 2.86 14.3 4.22 6.16 56.3 0.071 0.2

FGOALS-g1.0 6.29 83.6 4.83 6.19 73.6 0.679 17.5

GFDL-CM2.0 3.08 16.9 4.20 6.13 56.2 0.049 0.1

GFDL-CM2.1 3.13 16.7 4.30 6.44 57.2 0.149 1.1

GISS-AOM 3.08 17.5 4.26 6.12 56.3 0.111 0.2

GISS-EH 3.41 21.8 4.26 6.12 58.4 0.114 2.3

GISS-ER 3.38 20.5 4.28 6.07 58.8 0.131 2.7

MIROC3.2(hires) 2.43 10.3 4.21 6.11 56.3 0.058 0.2

MIROC3.2(medres) 2.97 16.8 4.20 6.14 56.1 0.056 0.0

MRI-CGCM2.3.2 4.05 27.7 4.56 6.26 64.9 0.415 8.8

meanmodels 3.41 22.8 4.33 6.22 59.7 0.185 3.6

(b) Local

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

NCEP-1 0.00 0.0 1.21 1.69 5.4 0.000 0.0

ERA-40 1.57 4.2 1.52 2.12 7.7 0.307 2.3

CGCM3.1(T47) 2.90 13.5 1.62 2.24 7.9 0.414 2.5

CGCM3.1(T63) 2.86 13.6 1.67 2.31 8.5 0.461 3.1

CNRM-CM3 3.95 29.0 2.66 3.65 22.2 1.449 16.8

CSIRO-Mk3.0 2.91 16.8 1.72 2.36 10.5 0.508 5.1

CSIRO-Mk3.5 3.82 22.8 2.63 3.55 17.9 1.423 12.5

ECHAM5/MPI-OM 2.86 14.3 1.63 2.24 9.2 0.414 3.8

FGOALS-g1.0 6.29 83.6 3.99 5.49 61.2 2.775 55.8

GFDL-CM2.0 3.08 16.9 1.63 2.25 9.0 0.416 3.6

GFDL-CM2.1 3.13 16.7 1.93 2.66 11.6 0.716 6.2

GISS-AOM 3.08 17.5 1.97 2.63 12.4 0.754 7.0

GISS-EH 3.41 21.8 2.15 2.92 15.9 0.938 10.5

GISS-ER 3.38 20.5 2.15 2.93 15.0 0.936 9.6

MIROC3.2(hires) 2.43 10.3 1.53 2.12 7.6 0.316 2.2

MIROC3.2(medres) 2.97 16.8 1.70 2.35 10.3 0.487 4.9

MRI-CGCM2.3.2 4.05 27.7 2.76 3.68 22.6 1.549 17.2

meanmodels 3.41 22.8 2.11 2.89 16.1 0.904 10.7
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Table A.3: Verification results for the climate predictions for mtxmax over the entire year.

(a) Regional

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

NCEP-1 0.00 0.0 6.71 9.77 137.6 0.000 0.0

ERA-40 2.00 7.6 6.75 9.77 137.9 0.042 0.3

CGCM3.1(T47) 3.84 24.1 6.80 9.95 137.8 0.091 0.2

CGCM3.1(T63) 3.72 22.5 6.81 9.98 138.2 0.098 0.6

CNRM-CM3 4.13 27.8 6.91 10.07 145.4 0.200 7.9

CSIRO-Mk3.0 4.18 28.2 6.99 10.15 148.3 0.280 10.7

CSIRO-Mk3.5 3.49 19.6 6.79 9.80 140.2 0.077 2.7

ECHAM5/MPI-OM 3.18 16.8 6.75 9.81 138.1 0.039 0.5

FGOALS-g1.0 5.49 52.5 6.87 9.78 140.0 0.158 2.4

GFDL-CM2.0 4.20 28.7 6.93 10.09 145.1 0.219 7.5

GFDL-CM2.1 3.62 21.3 6.78 9.86 138.6 0.072 1.1

GISS-AOM 4.85 37.6 7.15 10.13 151.9 0.438 14.3

GISS-EH 4.00 27.1 6.79 9.90 139.4 0.077 1.8

GISS-ER 4.39 31.1 6.89 10.16 143.9 0.177 6.3

MIROC3.2(hires) 3.09 15.9 6.71 9.77 137.6 0.006 0.0

MIROC3.2(medres) 3.79 24.7 6.74 9.80 137.6 0.030 0.0

MRI-CGCM2.3.2 3.71 22.3 6.79 9.80 141.0 0.077 3.4

meanmodels 3.98 26.7 6.84 9.94 141.5 0.136 4.0

(b) Local

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

NCEP-1 0.00 0.0 5.21 8.03 86.0 0.000 0.0

ERA-40 2.00 7.6 5.39 8.13 89.6 0.182 3.6

CGCM3.1(T47) 3.84 24.1 5.53 8.31 90.7 0.323 4.7

CGCM3.1(T63) 3.72 22.5 5.48 8.29 89.8 0.270 3.8

CNRM-CM3 4.13 27.8 5.66 8.46 97.6 0.452 11.6

CSIRO-Mk3.0 4.18 28.2 5.77 8.50 99.3 0.562 13.3

CSIRO-Mk3.5 3.49 19.6 5.47 8.17 91.7 0.265 5.7

ECHAM5/MPI-OM 3.18 16.8 5.38 8.11 89.1 0.176 3.0

FGOALS-g1.0 5.49 52.5 6.00 8.52 103.2 0.794 17.2

GFDL-CM2.0 4.20 28.7 5.65 8.45 95.9 0.441 9.8

GFDL-CM2.1 3.62 21.3 5.45 8.22 89.6 0.239 3.5

GISS-AOM 4.85 37.6 6.10 8.47 104.0 0.897 18.0

GISS-EH 4.00 27.1 5.61 8.31 95.4 0.405 9.4

GISS-ER 4.39 31.1 5.75 8.50 99.1 0.545 13.1

MIROC3.2(hires) 3.09 15.9 5.36 8.10 88.9 0.156 2.9

MIROC3.2(medres) 3.79 24.7 5.50 8.33 92.7 0.291 6.6

MRI-CGCM2.3.2 3.71 22.3 5.50 8.16 92.3 0.295 6.3

meanmodels 3.98 26.7 5.61 8.33 94.6 0.407 8.6
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Table A.4: Verification results for the climate predictions for mtnmin in the summer months.

(a) Regional

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

NCEP-1 0.00 0.0 2.56 3.55 21.0 0.000 0.0

ERA-40 2.92 12.9 2.98 4.12 29.2 0.417 8.2

CGCM3.1(T47) 3.00 13.9 2.86 4.13 25.0 0.303 3.9

CGCM3.1(T63) 3.85 21.7 3.24 4.62 31.4 0.682 10.4

CNRM-CM3 2.77 12.4 2.62 3.55 21.8 0.063 0.8

CSIRO-Mk3.0 2.65 11.9 2.59 3.55 21.1 0.030 0.1

CSIRO-Mk3.5 4.03 24.0 3.18 4.30 32.7 0.619 11.7

ECHAM5/MPI-OM 2.73 12.3 2.75 3.78 25.1 0.194 4.1

FGOALS-g1.0 4.83 35.7 3.08 3.71 22.2 0.517 1.2

GFDL-CM2.0 4.65 29.3 3.85 5.97 40.0 1.290 19.0

GFDL-CM2.1 3.38 17.1 3.08 4.63 26.7 0.518 5.7

GISS-AOM 2.54 10.4 2.66 3.67 23.0 0.097 2.0

GISS-EH 4.79 37.8 3.19 4.01 32.5 0.626 11.5

GISS-ER 3.65 21.4 2.82 3.70 23.1 0.260 2.1

MIROC3.2(hires) 5.14 31.8 4.15 5.73 47.2 1.586 26.2

MIROC3.2(medres) 4.04 23.2 3.38 4.75 35.0 0.822 14.0

MRI-CGCM2.3.2 2.91 13.4 2.66 3.64 21.0 0.095 0.0

meanmodels 3.66 21.1 3.07 4.25 28.5 0.513 7.5

(b) Local

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

NCEP-1 0.00 0.0 1.22 1.75 5.0 0.000 0.0

ERA-40 2.92 12.9 2.50 3.40 16.3 1.272 11.3

CGCM3.1(T47) 3.00 13.9 2.13 2.90 12.9 0.910 7.9

CGCM3.1(T63) 3.85 21.7 2.73 3.66 19.2 1.510 14.2

CNRM-CM3 2.77 12.4 1.83 2.62 10.2 0.603 5.2

CSIRO-Mk3.0 2.65 11.9 1.87 2.49 10.6 0.645 5.5

CSIRO-Mk3.5 4.03 24.0 3.02 4.02 22.6 1.796 17.6

ECHAM5/MPI-OM 2.73 12.3 2.01 2.72 11.9 0.784 6.9

FGOALS-g1.0 4.83 35.7 3.43 4.60 31.4 2.206 26.4

GFDL-CM2.0 4.65 29.3 3.60 4.65 27.7 2.376 22.7

GFDL-CM2.1 3.38 17.1 2.41 3.26 15.1 1.185 10.1

GISS-AOM 2.54 10.4 1.91 2.61 10.6 0.687 5.5

GISS-EH 4.79 37.8 3.71 4.80 36.2 2.487 31.1

GISS-ER 3.65 21.4 2.66 3.61 19.6 1.436 14.6

MIROC3.2(hires) 5.14 31.8 4.11 5.31 32.2 2.888 27.1

MIROC3.2(medres) 4.04 23.2 2.99 4.06 22.1 1.765 17.1

MRI-CGCM2.3.2 2.91 13.4 2.11 2.94 12.8 0.886 7.8

meanmodels 3.66 21.1 2.70 3.62 19.7 1.477 14.7
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Table A.5: Verification results for the climate predictions for mtnmin in the winter months.

(a) Regional

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

NCEP-1 0.00 0.0 6.13 9.13 113.1 0.000 0.0

ERA-40 5.08 37.2 6.79 9.98 136.0 0.665 22.9

CGCM3.1(T47) 6.03 62.1 6.23 9.16 115.7 0.103 2.6

CGCM3.1(T63) 6.72 74.0 6.35 9.24 121.0 0.223 7.9

CNRM-CM3 6.55 70.0 6.52 10.46 114.0 0.396 0.9

CSIRO-Mk3.0 8.10 107.2 6.88 9.35 115.6 0.747 2.6

CSIRO-Mk3.5 8.38 101.0 7.25 11.54 138.2 1.124 25.2

ECHAM5/MPI-OM 5.40 45.9 6.38 9.49 121.8 0.256 8.7

FGOALS-g1.0 21.93 633.9 15.78 28.01 550.5 9.651 437.4

GFDL-CM2.0 7.29 84.7 6.90 9.72 140.8 0.771 27.7

GFDL-CM2.1 5.89 57.0 6.22 9.15 114.2 0.094 1.1

GISS-AOM 7.49 81.0 7.02 10.71 142.1 0.890 29.0

GISS-EH 6.19 62.3 6.31 9.16 114.8 0.186 1.7

GISS-ER 6.13 58.8 6.29 9.17 115.4 0.163 2.3

MIROC3.2(hires) 8.35 100.6 8.03 11.74 177.8 1.909 64.7

MIROC3.2(medres) 7.12 78.3 6.90 10.84 125.9 0.771 12.9

MRI-CGCM2.3.2 5.68 49.4 6.52 9.58 128.3 0.391 15.3

meanmodels 7.82 111.1 7.31 11.15 155.7 1.178 42.7

(b) Local

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

NCEP-1 0.00 0.0 2.16 3.07 16.1 0.000 0.0

ERA-40 5.08 37.2 4.12 5.61 46.5 1.965 30.4

CGCM3.1(T47) 6.03 62.1 3.27 4.48 33.4 1.108 17.3

CGCM3.1(T63) 6.72 74.0 3.85 5.31 44.1 1.690 28.0

CNRM-CM3 6.55 70.0 4.18 5.73 46.2 2.024 30.1

CSIRO-Mk3.0 8.10 107.2 5.52 7.56 83.0 3.357 66.8

CSIRO-Mk3.5 8.38 101.0 5.81 7.48 75.0 3.656 58.9

ECHAM5/MPI-OM 5.40 45.9 3.45 4.73 33.9 1.287 17.7

FGOALS-g1.0 21.93 633.9 19.00 21.85 604.9 16.844 588.8

GFDL-CM2.0 7.29 84.7 4.62 6.44 61.5 2.456 45.3

GFDL-CM2.1 5.89 57.0 3.13 4.36 30.0 0.971 13.9

GISS-AOM 7.49 81.0 5.51 7.01 67.8 3.353 51.6

GISS-EH 6.19 62.3 4.19 5.59 48.1 2.034 32.0

GISS-ER 6.13 58.8 4.10 5.40 46.0 1.944 29.8

MIROC3.2(hires) 8.35 100.6 6.65 8.18 91.4 4.488 75.2

MIROC3.2(medres) 7.12 78.3 5.01 6.41 60.9 2.854 44.7

MRI-CGCM2.3.2 5.68 49.4 4.12 5.32 41.7 1.963 25.6

meanmodels 7.82 111.1 5.49 7.06 91.2 3.335 75.1
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Table A.6: Verification results for the climate predictions for mtnmin over the entire year.

(a) Regional

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

NCEP-1 0.00 0.0 6.78 9.73 145.0 0.000 0.0

ERA-40 4.20 27.1 7.14 10.04 161.3 0.360 16.4

CGCM3.1(T47) 4.82 43.3 6.86 9.79 148.0 0.081 3.1

CGCM3.1(T63) 5.52 52.8 7.01 9.92 154.3 0.230 9.4

CNRM-CM3 4.50 37.9 6.90 9.74 145.9 0.122 1.0

CSIRO-Mk3.0 5.19 54.8 6.91 9.81 145.1 0.131 0.1

CSIRO-Mk3.5 5.94 56.9 7.31 10.21 162.9 0.532 18.0

ECHAM5/MPI-OM 4.23 30.2 6.94 9.92 152.2 0.163 7.3

FGOALS-g1.0 13.03 302.2 9.18 11.23 268.1 2.405 123.2

GFDL-CM2.0 5.89 56.1 7.26 10.07 167.0 0.481 22.0

GFDL-CM2.1 4.49 34.5 6.90 9.81 147.7 0.121 2.7

GISS-AOM 5.10 44.6 7.16 10.16 159.0 0.384 14.1

GISS-EH 5.30 46.5 6.91 9.75 145.5 0.128 0.5

GISS-ER 4.85 39.2 6.84 9.75 145.2 0.061 0.2

MIROC3.2(hires) 6.29 59.2 7.61 10.47 181.4 0.836 36.4

MIROC3.2(medres) 5.34 46.8 7.19 10.14 157.2 0.411 12.2

MRI-CGCM2.3.2 4.23 29.8 6.84 9.76 147.5 0.059 2.6

meanmodels 5.65 62.3 7.19 10.03 161.8 0.410 16.8

(b) Local

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

NCEP-1 0.00 0.0 5.49 8.35 99.9 0.000 0.0

ERA-40 4.20 27.1 6.15 8.97 120.1 0.656 20.2

CGCM3.1(T47) 4.82 43.3 5.89 8.72 110.5 0.401 10.6

CGCM3.1(T63) 5.52 52.8 6.14 8.92 117.4 0.649 17.5

CNRM-CM3 4.50 37.9 5.91 8.64 106.3 0.415 6.4

CSIRO-Mk3.0 5.19 54.8 6.19 8.89 119.6 0.700 19.7

CSIRO-Mk3.5 5.94 56.9 6.54 9.22 126.1 1.053 26.2

ECHAM5/MPI-OM 4.23 30.2 5.88 8.71 110.9 0.390 11.0

FGOALS-g1.0 13.03 302.2 9.53 13.97 292.8 4.042 192.9

GFDL-CM2.0 5.89 56.1 6.33 8.95 127.5 0.839 27.5

GFDL-CM2.1 4.49 34.5 5.81 8.54 106.7 0.322 6.8

GISS-AOM 5.10 44.6 6.43 9.09 120.7 0.939 20.8

GISS-EH 5.30 46.5 6.24 8.97 119.8 0.752 19.9

GISS-ER 4.85 39.2 6.07 8.90 115.7 0.580 15.8

MIROC3.2(hires) 6.29 59.2 6.70 9.21 139.4 1.210 39.5

MIROC3.2(medres) 5.34 46.8 6.28 8.95 120.8 0.789 20.9

MRI-CGCM2.3.2 4.23 29.8 5.97 8.65 108.9 0.480 9.0

meanmodels 5.65 62.3 6.40 9.22 129.5 0.904 29.6
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Table A.7: Verification results for the climate predictions for txmax.

(a) Regional

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

HadEX 0.00 0.0 2.55 3.61 21.0 0.000 0.0

ERA-40 3.10 13.6 3.10 4.25 30.1 0.553 9.1

NCEP-1 3.16 16.9 2.78 3.73 22.3 0.231 1.3

CGCM3.1(T47) 5.77 46.8 3.31 3.68 21.0 0.760 0.0

CGCM3.1(T63) 5.01 36.2 3.09 3.61 21.0 0.545 0.0

CNRM-CM3 5.23 40.9 3.53 5.13 30.6 0.987 9.7

CSIRO-Mk3.0 6.14 56.5 4.32 6.26 56.4 1.770 35.4

CSIRO-Mk3.5 4.13 29.1 2.80 3.68 21.0 0.253 0.0

ECHAM5/MPI-OM 4.09 26.7 3.22 4.17 31.4 0.678 10.4

FGOALS-g1.0 5.47 44.0 3.43 5.66 24.7 0.888 3.7

GFDL-CM2.0 5.35 40.7 3.55 5.20 38.1 1.008 17.1

GFDL-CM2.1 4.46 29.8 3.13 4.24 26.4 0.584 5.4

GISS-AOM 9.04 97.8 6.79 10.15 99.3 4.245 78.3

GISS-EH 5.75 49.1 3.18 3.62 21.7 0.636 0.7

GISS-ER 6.72 69.1 3.38 3.91 30.2 0.831 9.2

MIROC3.2(hires) 3.07 14.6 2.60 3.63 21.0 0.056 0.0

MIROC3.2(medres) 5.05 42.3 3.08 4.02 21.0 0.539 0.0

MRI-CGCM2.3.2 3.98 23.0 3.25 4.42 29.6 0.706 8.7

meanmodels 5.28 43.1 3.51 4.76 32.9 0.966 11.9

(b) Local

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

HadEX 0.00 0.0 0.79 1.11 2.1 0.000 0.0

ERA-40 3.10 13.6 2.55 3.21 14.9 1.768 12.8

NCEP-1 3.16 16.9 2.41 3.08 15.9 1.620 13.9

CGCM3.1(T47) 5.77 46.8 4.43 5.43 40.0 3.648 38.0

CGCM3.1(T63) 5.01 36.2 3.68 4.65 30.5 2.897 28.4

CNRM-CM3 5.23 40.9 4.08 4.96 36.0 3.292 33.9

CSIRO-Mk3.0 6.14 56.5 5.24 6.05 53.7 4.456 51.7

CSIRO-Mk3.5 4.13 29.1 2.82 3.57 22.9 2.038 20.8

ECHAM5/MPI-OM 4.09 26.7 3.01 3.85 22.9 2.227 20.8

FGOALS-g1.0 5.47 44.0 4.45 5.28 40.3 3.660 38.2

GFDL-CM2.0 5.35 40.7 3.77 4.96 31.6 2.987 29.5

GFDL-CM2.1 4.46 29.8 2.85 3.85 20.5 2.065 18.4

GISS-AOM 9.04 97.8 8.24 9.02 95.4 7.451 93.4

GISS-EH 5.75 49.1 4.43 5.54 42.5 3.640 40.4

GISS-ER 6.72 69.1 5.30 6.37 61.5 4.515 59.4

MIROC3.2(hires) 3.07 14.6 2.18 2.83 12.0 1.398 10.0

MIROC3.2(medres) 5.05 42.3 3.66 4.72 35.8 2.875 33.8

MRI-CGCM2.3.2 3.98 23.0 3.12 3.89 20.8 2.337 18.7

meanmodels 5.28 43.1 4.09 5.00 37.8 3.299 35.7
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Table A.8: Verification results for the climate predictions for tnmin.

(a) Regional

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

HadEX 0.00 0.0 5.71 8.45 98.4 0.000 0.0

ERA-40 3.44 20.5 5.92 8.65 105.9 0.203 7.4

NCEP-1 4.87 34.3 5.88 8.77 102.1 0.166 3.7

CGCM3.1(T47) 7.84 89.4 6.73 9.97 128.9 1.012 30.4

CGCM3.1(T63) 8.91 119.0 7.19 10.92 151.3 1.474 52.9

CNRM-CM3 6.45 62.3 6.33 8.46 101.0 0.613 2.6

CSIRO-Mk3.0 8.51 113.9 7.03 8.61 118.7 1.317 20.3

CSIRO-Mk3.5 7.31 76.4 6.55 9.60 104.6 0.839 6.1

ECHAM5/MPI-OM 4.17 27.7 5.75 8.48 99.5 0.036 1.1

FGOALS-g1.0 25.31 755.1 19.35 31.63 725.8 13.639 627.4

GFDL-CM2.0 9.25 117.2 7.87 11.88 173.8 2.152 75.4

GFDL-CM2.1 5.87 53.2 6.31 9.19 116.4 0.598 18.0

GISS-AOM 6.09 57.5 6.28 9.17 110.8 0.561 12.3

GISS-EH 6.24 58.0 6.39 8.97 113.7 0.676 15.3

GISS-ER 6.16 57.1 6.34 9.07 114.3 0.630 15.9

MIROC3.2(hires) 7.03 73.6 6.98 10.16 142.7 1.268 44.3

MIROC3.2(medres) 5.86 53.0 6.30 9.11 100.2 0.584 1.7

MRI-CGCM2.3.2 4.31 29.4 5.87 8.53 104.6 0.157 6.2

meanmodels 7.95 116.2 7.42 10.92 160.4 1.704 62.0

(b) Local

Forecast MAE MSE CRPS SAE SSE dC.v.M. dMV

HadEX 0.00 0.0 1.65 2.39 9.0 0.000 0.0

ERA-40 3.44 20.5 3.02 4.07 26.2 1.379 17.2

NCEP-1 4.87 34.3 3.95 5.10 37.4 2.303 28.4

CGCM3.1(T47) 7.84 89.4 5.64 7.19 73.4 3.993 64.4

CGCM3.1(T63) 8.91 119.0 6.75 8.48 100.8 5.109 91.8

CNRM-CM3 6.45 62.3 4.60 5.98 48.5 2.950 39.4

CSIRO-Mk3.0 8.51 113.9 6.57 8.01 98.0 4.922 89.0

CSIRO-Mk3.5 7.31 76.4 5.16 6.52 57.6 3.512 48.6

ECHAM5/MPI-OM 4.17 27.7 2.61 3.54 18.9 0.963 9.9

FGOALS-g1.0 25.31 755.1 23.20 25.28 738.0 21.552 729.0

GFDL-CM2.0 9.25 117.2 7.34 9.02 107.1 5.695 98.0

GFDL-CM2.1 5.87 53.2 3.85 5.34 40.7 2.207 31.7

GISS-AOM 6.09 57.5 4.42 5.47 47.6 2.779 38.6

GISS-EH 6.24 58.0 4.60 5.81 50.0 2.958 41.0

GISS-ER 6.16 57.1 4.60 5.88 51.3 2.957 42.3

MIROC3.2(hires) 7.03 73.6 5.80 6.92 67.9 4.155 58.8

MIROC3.2(medres) 5.86 53.0 4.41 5.47 44.7 2.764 35.6

MRI-CGCM2.3.2 4.31 29.4 3.22 4.10 26.2 1.571 17.1

meanmodels 7.95 116.2 6.18 7.53 104.7 4.539 95.7
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A.2 Weighted model combinations

In this section, extended verification results of the cross-validation study for the

weighted model combinations are presented. The first two tables show the weights

of the weighting methods weightsmin, weightsdC.v.M.
, and weightsdMV

for mtxmax and

mtnmin based on the comparison between all available predictions of the climate

models in the years 1961 to 1980 against the corresponding data of the NCEP-1

re-analysis. These tables also include the weights for mtxmax in the summer months

and for mtnmin in the winter months. The largest weight under each verification

method is indicated in bold.

The verification results for the weighted model combinations and the individual

climate models averaged over decadal results under the scoring rules SAE and SSE

and under the Cramér-von Mises distance dC.v.M. are stated in the further Tables.

To obtain the weights for each decade, we used the remaining two decades of data

as training set. To solve the minimization problem of the weightsmin method, the

function ipop of the R package kernlab was applied (cf. Chapter 2.2, p. 19). The

implemented interior point method did not converge at one grid box for the time

period 1971 to 1990 and at another grid box for the time period 1961 to 1970 and 1981

to 1990 for the model predictions of mtxmax in the winter months. In these cases,

we set each weight at the grid box in question as the average of the corresponding

weights over the other grid boxes.
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Table A.9: Weights for the predictions of the climate models for mtxmax in the summer months
and over the entire year for 1961-1980.

(a) Regional

weightsmin weightsdC.v.M.
weightsdMV

Model Summer Year Summer Year Summer Year

CGCM3.1(T47) 0.000 0.000 0.047 0.034 0.068 0.080

CGCM3.1(T63) 0.000 0.000 0.069 0.030 0.118 0.015

CNRM-CM3 0.000 0.000 0.051 0.015 0.017 0.001

CSIRO-Mk3.0 0.000 0.000 0.018 0.012 0.003 0.001

CSIRO-Mk3.5 0.000 0.000 0.090 0.038 0.039 0.002

ECHAM5/MPI-OM 0.112 0.035 0.086 0.093 0.017 0.014

FGOALS-g1.0 0.000 0.000 0.017 0.021 0.008 0.003

GFDL-CM2.0 0.000 0.000 0.031 0.018 0.006 0.001

GFDL-CM2.1 0.000 0.000 0.080 0.054 0.022 0.007

GISS-AOM 0.000 0.000 0.006 0.008 0.001 0.000

GISS-EH 0.000 0.000 0.055 0.046 0.537 0.006

GISS-ER 0.000 0.000 0.053 0.020 0.023 0.001

MIROC3.2(hires) 0.531 0.756 0.154 0.463 0.039 0.043

MIROC3.2(medres) 0.000 0.038 0.106 0.105 0.065 0.826

MRI-CGCM2.3.2 0.357 0.170 0.135 0.044 0.036 0.002

(b) Local

weightsmin weightsdC.v.M.
weightsdMV

Model Summer Year Summer Year Summer Year

CGCM3.1(T47) 0.038 0.027 0.051 0.058 0.060 0.081

CGCM3.1(T63) 0.045 0.043 0.062 0.056 0.052 0.091

CNRM-CM3 0.053 0.035 0.061 0.036 0.058 0.021

CSIRO-Mk3.0 0.016 0.024 0.029 0.043 0.014 0.020

CSIRO-Mk3.5 0.130 0.149 0.114 0.072 0.102 0.079

ECHAM5/MPI-OM 0.076 0.115 0.089 0.117 0.083 0.117

FGOALS-g1.0 0.045 0.024 0.046 0.032 0.048 0.048

GFDL-CM2.0 0.026 0.015 0.044 0.041 0.065 0.030

GFDL-CM2.1 0.017 0.099 0.064 0.098 0.093 0.091

GISS-AOM 0.015 0.028 0.021 0.027 0.012 0.029

GISS-EH 0.051 0.063 0.065 0.085 0.067 0.075

GISS-ER 0.043 0.023 0.055 0.047 0.043 0.030

MIROC3.2(hires) 0.195 0.167 0.107 0.127 0.093 0.162

MIROC3.2(medres) 0.069 0.051 0.092 0.081 0.122 0.066

MRI-CGCM2.3.2 0.183 0.138 0.101 0.079 0.088 0.058
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Table A.10: Weights for the predictions of the climate models for mtnmin in the winter months
and over the entire year for 1961-1980.

(a) Regional

weightsmin weightsdC.v.M.
weightsdMV

Model Winter Year Winter Year Winter Year

CGCM3.1(T47) 0.589 0.277 0.153 0.109 0.026 0.018

CGCM3.1(T63) 0.000 0.000 0.115 0.040 0.018 0.006

CNRM-CM3 0.000 0.000 0.053 0.098 0.657 0.203

CSIRO-Mk3.0 0.000 0.000 0.027 0.080 0.033 0.320

CSIRO-Mk3.5 0.000 0.000 0.017 0.019 0.004 0.004

ECHAM5/MPI-OM 0.411 0.317 0.080 0.065 0.012 0.009

FGOALS-g1.0 0.000 0.000 0.002 0.004 0.000 0.001

GFDL-CM2.0 0.000 0.098 0.021 0.020 0.003 0.003

GFDL-CM2.1 0.000 0.000 0.178 0.072 0.046 0.017

GISS-AOM 0.000 0.000 0.023 0.029 0.004 0.005

GISS-EH 0.000 0.000 0.132 0.078 0.142 0.093

GISS-ER 0.000 0.109 0.109 0.152 0.036 0.283

MIROC3.2(hires) 0.000 0.000 0.010 0.012 0.002 0.002

MIROC3.2(medres) 0.000 0.000 0.029 0.026 0.009 0.006

MRI-CGCM2.3.2 0.000 0.199 0.053 0.196 0.007 0.031

(b) Local

weightsmin weightsdC.v.M.
weightsdMV

Model Winter Year Winter Year Winter Year

CGCM3.1(T47) 0.088 0.126 0.103 0.109 0.143 0.103

CGCM3.1(T63) 0.067 0.039 0.089 0.064 0.091 0.057

CNRM-CM3 0.089 0.031 0.068 0.076 0.070 0.128

CSIRO-Mk3.0 0.023 0.055 0.037 0.074 0.032 0.083

CSIRO-Mk3.5 0.004 0.008 0.025 0.031 0.053 0.025

ECHAM5/MPI-OM 0.134 0.166 0.111 0.109 0.099 0.066

FGOALS-g1.0 0.017 0.014 0.014 0.015 0.007 0.038

GFDL-CM2.0 0.082 0.075 0.068 0.046 0.064 0.024

GFDL-CM2.1 0.041 0.068 0.095 0.103 0.088 0.090

GISS-AOM 0.091 0.061 0.079 0.058 0.089 0.024

GISS-EH 0.120 0.061 0.087 0.075 0.080 0.092

GISS-ER 0.098 0.144 0.084 0.090 0.071 0.089

MIROC3.2(hires) 0.013 0.012 0.012 0.018 0.006 0.005

MIROC3.2(medres) 0.035 0.015 0.056 0.050 0.045 0.039

MRI-CGCM2.3.2 0.097 0.122 0.070 0.080 0.063 0.138
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Table A.11: Verification results for the weighted combinations of the climate model predictions for
mtxmax and the corresponding results for the predictions of the individual climate
models and the ERA-40 re-analysis.

(a) Summer

Regional Local

Forecast SAE SSE dC.v.M. SAE SSE dC.v.M.

NCEP-1 5.71 56.1 0.000 1.96 6.4 0.000

ERA-40 5.85 59.3 0.154 3.01 15.7 0.952

weightsmin 5.73 56.5 0.022 2.17 7.8 0.193

weightsdC.v.M.
5.75 56.6 0.061 2.20 8.0 0.231

weightsdMV
5.76 56.8 0.154 2.24 8.1 0.262

CGCM3.1(T47) 5.75 56.7 0.258 4.46 29.5 1.966

CGCM3.1(T63) 5.73 56.4 0.169 3.83 21.9 1.448

CNRM-CM3 6.32 60.1 0.260 3.70 20.4 1.450

CSIRO-Mk3.0 6.94 78.3 0.789 4.86 36.1 2.625

CSIRO-Mk3.5 5.99 57.4 0.140 3.24 16.8 1.017

ECHAM5/MPI-OM 5.93 60.7 0.172 3.31 17.3 1.100

FGOALS-g1.0 7.46 61.7 0.700 5.61 43.1 3.008

GFDL-CM2.0 6.79 71.0 0.566 4.54 28.2 1.962

GFDL-CM2.1 6.19 60.3 0.214 3.47 17.3 1.135

GISS-AOM 9.24 107.1 2.227 7.24 67.9 4.996

GISS-EH 5.79 56.9 0.224 4.45 30.3 1.968

GISS-ER 5.80 61.5 0.297 5.19 39.2 2.641

MIROC3.2(hires) 5.79 57.1 0.076 3.32 16.7 1.109

MIROC3.2(medres) 5.81 56.8 0.123 3.72 23.2 1.368

MRI-CGCM2.3.2 5.92 58.8 0.137 3.10 15.8 0.996

meanmodels 6.36 64.0 0.424 4.27 28.2 1.919
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(b) Winter

Regional Local

Forecast SAE SSE dC.v.M. SAE SSE dC.v.M.

NCEP-1 6.07 56.1 0.000 1.63 5.1 0.000

ERA-40 6.09 56.2 0.065 2.13 7.6 0.353

weightsmin 6.08 56.2 0.030 1.76 5.7 0.115

weightsdC.v.M.
6.07 56.3 0.034 1.75 5.7 0.118

weightsdMV
6.11 56.1 0.041 1.79 5.9 0.156

CGCM3.1(T47) 6.08 56.3 0.082 2.25 8.1 0.493

CGCM3.1(T63) 6.11 57.0 0.106 2.32 8.5 0.530

CNRM-CM3 6.43 66.2 0.297 3.64 22.3 1.524

CSIRO-Mk3.0 6.08 57.3 0.050 2.40 10.7 0.588

CSIRO-Mk3.5 6.80 64.7 0.438 3.51 17.8 1.494

ECHAM5/MPI-OM 6.17 56.3 0.078 2.28 9.4 0.496

FGOALS-g1.0 6.20 73.7 0.690 5.53 61.9 2.878

GFDL-CM2.0 6.13 56.2 0.056 2.31 9.1 0.492

GFDL-CM2.1 6.43 57.1 0.157 2.67 11.7 0.788

GISS-AOM 6.12 56.3 0.114 2.63 12.4 0.825

GISS-EH 6.13 58.4 0.122 2.94 16.1 1.028

GISS-ER 6.07 58.8 0.134 2.93 15.0 1.001

MIROC3.2(hires) 6.11 56.3 0.065 2.13 7.8 0.389

MIROC3.2(medres) 6.14 56.1 0.059 2.36 10.3 0.553

MRI-CGCM2.3.2 6.27 65.0 0.425 3.69 22.9 1.645

meanmodels 6.22 59.7 0.192 2.91 16.3 0.981
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(c) All the year

Regional Local

Forecast SAE SSE dC.v.M. SAE SSE dC.v.M.

NCEP-1 9.76 137.4 0.000 8.02 85.7 0.000

ERA-40 9.77 137.8 0.046 8.13 89.5 0.201

weightsmin 9.77 137.6 0.010 8.06 86.3 0.049

weightsdC.v.M.
9.79 137.7 0.014 8.10 86.8 0.075

weightsdMV
9.78 137.6 0.017 8.11 86.4 0.103

CGCM3.1(T47) 9.95 137.7 0.094 8.30 90.6 0.348

CGCM3.1(T63) 9.99 138.1 0.102 8.29 89.8 0.297

CNRM-CM3 10.08 145.3 0.202 8.47 97.5 0.477

CSIRO-Mk3.0 10.14 148.2 0.284 8.50 99.2 0.587

CSIRO-Mk3.5 9.80 140.2 0.082 8.17 91.7 0.292

ECHAM5/MPI-OM 9.81 138.0 0.042 8.12 89.0 0.199

FGOALS-g1.0 9.78 140.0 0.162 8.52 103.3 0.824

GFDL-CM2.0 10.09 145.2 0.227 8.47 96.0 0.473

GFDL-CM2.1 9.86 138.5 0.076 8.22 89.5 0.265

GISS-AOM 10.13 151.8 0.442 8.48 103.9 0.923

GISS-EH 9.90 139.5 0.087 8.32 95.6 0.439

GISS-ER 10.16 143.9 0.183 8.50 99.2 0.575

MIROC3.2(hires) 9.77 137.5 0.010 8.10 88.9 0.179

MIROC3.2(medres) 9.79 137.5 0.032 8.33 92.5 0.312

MRI-CGCM2.3.2 9.80 140.8 0.081 8.16 92.2 0.320

meanmodels 9.94 141.5 0.140 8.33 94.6 0.434
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Table A.12: Verification results for the weighted combinations of the climate model predictions for
mtnmin and the corresponding results for the predictions of the individual climate
models and the ERA-40 re-analysis.

(a) Summer

Regional Local

Forecast SAE SSE dC.v.M. SAE SSE dC.v.M.

NCEP-1 3.55 21.0 0.000 1.71 4.8 0.000

ERA-40 4.11 29.2 0.418 3.41 16.3 1.321

weightsmin 3.57 21.2 0.033 1.83 5.4 0.105

weightsdC.v.M.
3.56 21.5 0.059 1.85 5.6 0.130

weightsdMV
3.61 21.3 0.077 1.84 5.5 0.139

CGCM3.1(T47) 4.14 25.1 0.310 2.92 13.0 0.976

CGCM3.1(T63) 4.63 31.6 0.694 3.68 19.5 1.589

CNRM-CM3 3.56 22.0 0.074 2.66 10.5 0.685

CSIRO-Mk3.0 3.55 21.3 0.038 2.51 10.7 0.709

CSIRO-Mk3.5 4.29 32.9 0.630 4.01 23.0 1.872

ECHAM5/MPI-OM 3.77 25.1 0.197 2.73 12.0 0.840

FGOALS-g1.0 3.71 22.3 0.519 4.62 31.5 2.261

GFDL-CM2.0 5.98 40.0 1.294 4.67 27.8 2.433

GFDL-CM2.1 4.65 26.8 0.523 3.29 15.2 1.249

GISS-AOM 3.67 23.1 0.102 2.65 10.6 0.743

GISS-EH 4.01 32.5 0.628 4.82 36.2 2.536

GISS-ER 3.71 23.1 0.264 3.62 19.9 1.501

MIROC3.2(hires) 5.72 47.2 1.590 5.32 32.2 2.941

MIROC3.2(medres) 4.75 35.1 0.826 4.09 22.3 1.827

MRI-CGCM2.3.2 3.65 21.1 0.100 2.96 12.9 0.948

meanmodels 4.25 28.6 0.519 3.64 19.8 1.541
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(b) Winter

Regional Local

Forecast SAE SSE dC.v.M. SAE SSE dC.v.M.

NCEP-1 9.13 112.9 0.000 2.94 15.2 0.000

ERA-40 9.98 135.9 0.678 5.59 46.1 2.086

weightsmin 9.21 113.4 0.051 3.24 17.6 0.250

weightsdC.v.M.
9.16 113.3 0.101 3.26 17.7 0.280

weightsdMV
9.38 113.9 0.196 3.32 18.2 0.324

CGCM3.1(T47) 9.24 116.1 0.125 4.63 34.7 1.299

CGCM3.1(T63) 9.26 121.2 0.235 5.37 44.6 1.836

CNRM-CM3 10.45 114.5 0.415 5.72 46.8 2.181

CSIRO-Mk3.0 9.35 115.6 0.752 7.51 82.9 3.487

CSIRO-Mk3.5 11.54 138.4 1.137 7.52 75.4 3.803

ECHAM5/MPI-OM 9.50 121.7 0.261 4.74 33.8 1.411

FGOALS-g1.0 28.00 550.4 9.664 21.90 605.4 17.019

GFDL-CM2.0 9.76 141.3 0.792 6.55 62.2 2.667

GFDL-CM2.1 9.19 114.5 0.111 4.44 30.4 1.120

GISS-AOM 10.71 142.0 0.894 7.01 67.8 3.469

GISS-EH 9.18 115.2 0.201 5.66 49.1 2.208

GISS-ER 9.18 115.5 0.171 5.39 46.0 2.078

MIROC3.2(hires) 11.70 177.7 1.917 8.17 91.3 4.625

MIROC3.2(medres) 10.90 126.0 0.784 6.46 61.5 3.008

MRI-CGCM2.3.2 9.58 128.8 0.411 5.37 42.5 2.121

meanmodels 11.17 155.9 1.191 7.10 91.6 3.489
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(c) All the year

Regional Local

Forecast SAE SSE dC.v.M. SAE SSE dC.v.M.

NCEP-1 9.73 144.9 0.000 8.34 99.7 0.000

ERA-40 10.04 161.3 0.364 8.96 120.0 0.678

weightsmin 9.74 145.2 0.021 8.39 100.4 0.060

weightsdC.v.M.
9.74 145.2 0.029 8.41 100.7 0.087

weightsdMV
9.75 145.2 0.074 8.44 100.6 0.134

CGCM3.1(T47) 9.80 148.4 0.089 8.72 111.0 0.437

CGCM3.1(T63) 9.92 154.3 0.234 8.92 117.5 0.678

CNRM-CM3 9.74 146.3 0.132 8.65 106.8 0.450

CSIRO-Mk3.0 9.81 145.2 0.136 8.91 119.8 0.731

CSIRO-Mk3.5 10.21 162.9 0.536 9.23 126.1 1.081

ECHAM5/MPI-OM 9.92 152.5 0.172 8.75 111.2 0.423

FGOALS-g1.0 11.23 268.1 2.409 14.03 292.9 4.073

GFDL-CM2.0 10.07 167.1 0.486 8.97 127.7 0.873

GFDL-CM2.1 9.81 147.8 0.128 8.55 106.9 0.352

GISS-AOM 10.15 159.1 0.389 9.08 120.8 0.967

GISS-EH 9.75 145.5 0.131 8.99 119.9 0.779

GISS-ER 9.75 145.2 0.062 8.92 115.7 0.605

MIROC3.2(hires) 10.47 181.5 0.842 9.23 139.5 1.239

MIROC3.2(medres) 10.14 157.2 0.416 8.94 121.0 0.817

MRI-CGCM2.3.2 9.76 147.6 0.065 8.66 109.0 0.510

meanmodels 10.04 161.9 0.415 9.24 129.7 0.934
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Table A.13: Verification results for the weighted combinations of the climate model predictions
for txmax and the corresponding results for the predictions of the individual climate
models and the re-analyses.

Regional Local

Forecast SAE SSE dC.v.M. SAE SSE dC.v.M.

HadEX 3.60 21.0 0.000 1.06 1.9 0.000

ERA-40 4.26 30.1 0.557 3.23 14.8 1.862

NCEP-1 3.72 22.7 0.252 3.16 16.7 1.826

weightsmin 3.64 21.0 0.067 1.56 3.8 0.410

weightsdC.v.M.
3.68 21.7 0.233 1.94 7.7 0.711

weightsdMV
3.72 21.1 0.517 1.86 6.5 0.658

CGCM3.1(T47) 3.73 21.1 0.768 5.44 40.4 3.794

CGCM3.1(T63) 3.60 21.0 0.550 4.61 30.6 3.035

CNRM-CM3 5.16 30.7 0.995 4.95 36.5 3.454

CSIRO-Mk3.0 6.28 56.4 1.776 6.06 54.0 4.585

CSIRO-Mk3.5 3.76 21.3 0.277 3.67 23.6 2.211

ECHAM5/MPI-OM 4.22 31.4 0.687 3.90 23.1 2.361

FGOALS-g1.0 5.64 24.7 0.894 5.29 40.5 3.778

GFDL-CM2.0 5.17 38.3 1.019 4.98 32.2 3.139

GFDL-CM2.1 4.27 26.4 0.592 3.99 21.5 2.272

GISS-AOM 10.20 99.3 4.253 9.06 95.7 7.590

GISS-EH 3.65 21.9 0.649 5.59 43.0 3.801

GISS-ER 3.90 30.4 0.842 6.48 62.6 4.723

MIROC3.2(hires) 3.63 21.0 0.065 2.85 12.3 1.525

MIROC3.2(medres) 4.02 21.1 0.546 4.78 36.4 3.052

MRI-CGCM2.3.2 4.42 29.6 0.712 3.89 21.0 2.459

meanmodels 4.78 33.0 0.975 5.04 38.2 3.452
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Table A.14: Verification results for the weighted combinations of the climate model predictions
for tnmin and the corresponding results for the predictions of the individual climate
models and the re-analyses.

Regional Local

Forecast SAE SSE dC.v.M. SAE SSE dC.v.M.

HadEX 8.39 97.5 0.000 2.13 7.8 0.000

ERA-40 8.60 105.4 0.219 4.01 25.9 1.598

NCEP-1 8.77 101.7 0.201 5.12 37.6 2.601

weightsmin 8.45 98.2 0.044 2.56 9.8 0.359

weightsdC.v.M.
8.45 98.4 0.092 2.59 10.6 0.407

weightsdMV
8.50 98.7 0.236 2.64 10.6 0.435

CGCM3.1(T47) 10.07 128.4 1.057 7.34 73.9 4.452

CGCM3.1(T63) 10.94 151.6 1.524 8.53 102.3 5.458

CNRM-CM3 8.56 100.8 0.674 6.12 50.0 3.363

CSIRO-Mk3.0 8.58 118.1 1.347 8.08 97.9 5.227

CSIRO-Mk3.5 9.62 104.6 0.885 6.52 58.2 3.798

ECHAM5/MPI-OM 8.47 99.0 0.055 3.50 18.5 1.194

FGOALS-g1.0 31.76 725.0 13.680 25.29 738.4 21.900

GFDL-CM2.0 11.93 172.9 2.186 8.96 106.8 6.059

GFDL-CM2.1 9.13 115.7 0.613 5.35 40.3 2.475

GISS-AOM 9.14 110.1 0.580 5.47 47.5 3.030

GISS-EH 9.02 114.1 0.728 5.87 50.8 3.277

GISS-ER 9.04 114.2 0.665 5.97 51.3 3.269

MIROC3.2(hires) 10.08 142.1 1.283 6.89 67.6 4.430

MIROC3.2(medres) 9.10 100.0 0.608 5.38 44.7 3.030

MRI-CGCM2.3.2 8.55 104.6 0.195 4.16 26.6 1.852

meanmodels 10.93 160.1 1.739 7.56 105.0 4.854
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