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Abstract

Branching process models are commonly applied in seismology to model earth-

quake occurrences. For the parameter estimation, maximum likelihood estimation

(MLE) is applied where, usually, numerical maximization algorithms must be im-

plemented, as no closedform solutions are available. However, realistic models

for earthquake occurrences are highly complex and the log-likelihood functions

are often very flat which renders this procedure difficult. We propose an alter-

native parameter estimation method based on Bayesian inference. The method

involves the implementation of MCMC (Markov chain Monte Carlo) algorithms to

perform posterior approximations. We estimate the epidemic-type aftershock se-

quence (ETAS) model with both the conventional MLE method and our proposed

method, to demonstrate that the new alternative can be very accurate. As a case

study, we model earthquake occurrences in California and compare predictive per-

formance of the temporal ETAS model under maximum likelihood and Bayesian

inference.
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Zusammenfassung

Punktprozesse werden häufig in der Seismologie verwendet. Sie werden mit der

Maximum-Likelihood-Methode geschätzt. Normalerweise werden numerische Max-

imierungsalgorithmen implementiert, da keine analytischen Lösungen verfügbar

sind. Allerdings sind diese Modelle komplex und seine log-likelihood-Funktionen

sind flach. Wir schlagen eine alternative Schätzsmethode vor, die auf Bayesscher

Inferenz basiert ist. Die Methode beinhaltet MCMC-Verfahren, die a posteriori Ap-

proximationen durchführen. Wir schätzen das ETAS Modell mit beiden Methoden.

Unsere Studienregion ist der Staat Kalifornien in den USA. Ausserdem vergleichen

wir die Vorhersagefähigkeit der beiden Methoden.
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1 INTRODUCTION

1 Introduction

“All things have second birth;

The earthquake is not satisfied at once.”

William Wordsworth (1770-1850)

major English Romantic poet

Point process models have long been used to describe earthquake occurrences, see e.g. Vere-

Jones (1970, 1975). The models that are currently most common are branching process models,

which are based on the assumption that all earthquakes can trigger aftershocks. Two models of

this kind are investigated in this work: the epidemic-type aftershock sequence (ETAS) model

(Ogata, 1988, 1998) and the short-term earthquake probabilites (STEP) model (Reasenberg

and Jones, 1989, 1990). Both of them produce forecasts based on prior seismicity only. The

ETAS model assumes that aftershock sequences have an epidemic behavior, i.e. large earth-

quakes induce more aftershocks than small ones in a given interval of time. It also assumes

that the larger the mainshock event is, the longer the time period of the aftershock sequence

is (Harte (2010)). The STEP model is based on foreshock/aftershock statistics. It combines a

background (time-independent) model with aftershock rates. This model is a generic forecast

model for earthquake occurrences and it returns a description of the probability and number

of events that are likely to occur after a mainshock of a given magnitude (Gerstenberger et al.

(2005)).

Branching process models of this type are commonly fitted with maximum likelihood es-

timation (MLE). Usually, numerical maximization algorithms must be implemented, as no

closed-form solutions are available. However, these models are complex and the log-likelihood

functions are extremely flat. These effects were observed by Veen and Schoenberg (2008),

who investigated an alternative estimation method for these models based on the expectation-

maximization algorithm.

We propose an alternative parameter estimation method based on Bayesian inference. The

method involves the implementation of MCMC (Markov chain Monte Carlo) algorithms to

perform posterior approximations. We estimate the ETAS model with both the conventional

MLE method and our proposed method, to demonstrate that the new alternative can be very

efficient.

As a case study, we analyse data from the state of California in the United States, where

earthquake occurrences are very common, mainly due to the San Andreas fault. The catastro-

phe caused by the 1906 earthquake in the San Francisco region marked the beginning of the

study of California earthquakes and geology. See e.g. Stoffer (2006) for further details on the

field geology.

The remainder of this thesis is organized as follows. In section 2, we give a description

of the data set applied in our case study. In section 3, we state the definition of a marked

Hawkes process. We describe and explain the current formulation of the models outlining the

maximum likelihood estimation method and we propose a Bayesian version of the Epidemic-

Type Aftershock Sequences (ETAS) model employing the fact that the ETAS model is a marked
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1 INTRODUCTION

Hawkes process with dependent marks. In sections 4 and 5, we give a detailed description of the

two estimation methods. We describe the implementation of a Metropolis-Hastings algorithm

to estimate the parameters of the model in its two versions: the temporal and the spatio-

temporal ETAS model. In section 6, we discuss the results obtained in sections 4 and 5 to

compare the accuracy of the alternative estimation methods. In section 7, we describe the

thinning method applied to simulate the point process with a desired conditional intensity

function and present the procedure to produce earthquake forecasts under the temporal ETAS

model. In section 8, we discuss forecast verification methods for such data, the L- and N-test

and residual analysis. We also outline other evaluation methods proposed by Clements et al.

(2011). We conclude with a discussion in section 9.
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2 DATA DESCRIPTION

2 Data Description

Our data set is an earthquake catalog for the state of California, which contains the estimated

earthquake hypocenter locations and the magnitudes. It was obtained from the Advanced

National Seismic System (ANSS)1. The ranges of the observation window are [−125.7,−113.15]

degrees of longitude and [31.55, 42.95] degrees of latitude. Our full data set consists of all events

from January 1, 2006 to September 1, 2009 of magnitude greater than or equal to 3.95 on the

Richter scale, a total of 142 events. We use the 121 events that occurred between January

1, 2006 and December 31, 2008 as a training set to estimate the model parameters while the

models are evaluated on the 21 events that occurred between January 1, 2009 and September

1, 2009. The training set is shown in Figure 1.
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Figure 1: Seismicity in California during 2006-2008 with magnitude greater than or equal to
3.95 on the Richter scale. (a) The red crosses indicate the locations of the events
and the circles represent their magnitudes. The color grid shows a kernel intensity
estimate on the window. (b) Latitude of event versus occurrence time. (c) Magnitude
of event versus occurrence time.

1It was found in the Collaboratory for the Study of Earthquake Predictability (CSEP) Development website
(2012) URL: http://northridge.usc.edu/trac/csep/wiki
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3 ONE-DAY MODELS FOR EARTHQUAKE OCCURRENCES

3 One-Day Models for Earthquake Occurrences

3.1 Marked Hawkes Process

A marked point process is a stochastic process model with a point process component, which

contains the so-called marks. These marks are the information about the locations in time,

space, or space-time of events that may themselves have a stochastic structure and stochastic

dependency relations, see e.g. Daley and Vere-Jones (2003) for more details. The Hawkes

process is a cluster process, which is commonly applied not only in seismology, but also e.g.

in epidemiology and neurophysiology. A marked version of the temporal Hawkes process is

described in Rasmussen (2011) as follows.

Let X = {(ti, κi)} be a marked point process on the time line, where

ti ∈ R denotes an event of the point process,

κi ∈M denotes the corresponding mark and M denotes a measurable space called mark space.

A marked point process can be defined by its conditional intensity function, where we

condition on past events, and the mark distribution. The conditional intensity function is

given by

λ∗(t) =
E(N(dt)|Ht)

dt
, (1)

where N denotes the corresponding counting measure and dt denotes an infinitesimal interval

around t. The notation of Daley and Vere-Jones (2003) is employed, where the star is used

to indicate that the function is allowed to depend on past events and marks given by Ht :=

{(ti, κi)}ti<t. The mark distribution γ∗ is described by its density function γ given the past

Ht and the time of the point, i.e.

γ∗(κ|t) = γ(κ|t,Ht), (2)

where the star again indicates dependence on the past of the process.

The conditional intensity function of the Hawkes process is assumed to be of the form

λ∗(t) = µ(t) +
∑
ti<t

α(κi)β(t− ti, κi), (3)

where

µ(t) is a non-negative function on R called immigrant intensity with parameter vector µ =

(µ1, . . . , µnµ) ,

α(κ) is a non-negative function on M called total offspring intensity with parameter vector

α = (α1, . . . , αnα),

β(t, κ) is a density function on [0,∞) called normalised offspring intensity with parameter

vector β = (β1, . . . , βnβ ), which is allowed to depend on the mark κ.
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3 ONE-DAY MODELS FOR EARTHQUAKE OCCURRENCES

3.2 Spatio-temporal Epidemic-Type Aftershock Sequences (ETAS) Model

3.2.1 Current Formulation

The formulation of the spatio-temporal epidemic-type aftershock sequence (ETAS) model by

Ogata (1998) is in the form of its conditional intensity function; that is, the process is con-

trolled by an intensity conditional on the observation history Ht. The analysis is based on the

formulation given by

λ (t, x, y,m|Ht) = λ (t, x, y|Ht) Γ1(m), (4)

λ (t, x, y|Ht) = µ(x, y) +A
∑
i:ti<t

α(mi)g(t− ti)f(x− xi, y − yi|mi) (5)

where

µ(x, y) is the background intensity independent of time which is assumed to be a constant

over the area in our case;

A is a constant;

α(m) is the expected number of events triggered from an event of a magnitude m, given by

α(m) = exp [α2 (m−mc)] , (6)

where α2 is a constant and mc is the magnitude threshold of observed earthquakes;

g(t) is the probability density function of the occurrence times of the triggered events, given

by

g(t) =
β2 − 1

β1

(
1 +

t

β1

)−β2
, (7)

which is the modified Omori law, where β1 and β2 are constants;

f(x, y|m) is the location distribution of the triggered events, given by

f(x, y|m) =
1

2πγ2eα2(m−mc)
exp

[
− x2 + y2

2 γ2 eα2(m−mc)

]
, (8)

which is a short-range Gaussian decay, where γ2 is a constant;

Γ1(m) is the probability density of the magnitudes of all events, independent of the other

components of the model. It is given by

Γ1(m) = γ1 exp [−γ1(m−mc)] , (9)

which is the Gutenberg-Richter law, where γ1 is linked to Gutenberg-Richter’s b value

by γ1 = b log 10 and mc is again the magnitude threshold.

We notice that the definition of the location distribitution f(x, y|m) in (8) seems to indicate

that the function α(m) in (6) cancels out against the normalizing constant in the function

f(x, y|m). However, we present this formulation as it is been given by Zhuang et al. (2004).

6 Natalia Hernandez Vargas



3 ONE-DAY MODELS FOR EARTHQUAKE OCCURRENCES

Parameter Estimation The current method to estimate the parameters of the ETAS model

is to maximize the log-likelihood function given by

logL(θ) =
∑
k

log λθ (tk, xk, yk|Htk)−
∫ T

0

∫∫
S

λθ (t, x, y|Ht) dxdydt, (10)

where θ = (µ,A, α, c, p, d, β) are the parameters to be estimated and k runs over all events

in the region S and in the time interval [0, T ]. For this we minimize the neglogLik function

(negative Log Likelihood of a Point Process Model) provided in the R package PtProcess of

Harte (2010) using the nlm function (Non-Linear Minimization) of the R package stat. This

procedure is discussed in more detail in section 4.1.

3.2.2 Bayesian Version

The new proposed formulation uses the notation of Rasmussen (2011) and it is based on the

formulation implemented in the R package PtProcess in order to estimate the parameters in

a Bayesian setting. The new formulation of the conditional intensity function implemented in

this analysis is given by

λθ (t, x, y,m|Ht) = λ∗θ (t|Ht) γ∗θ (x, y,m|Ht), (11)

λ∗θ (t|Ht) = µ+ α1

∑
i:ti<t

α(mi)β(t− ti), (12)

γ∗θ (x, y,m|Ht) =
1

λ∗θ(t)

[
µ

|W |
+ α1

∑
i:ti<t

α(mi)β(t− ti)Γ2(x− xi, y − yi|mi)

]
Γ1(m), (13)

where

µ is again the background intensity independent of time which is assumed to be a constant;

α1 is a constant;

α(m) is the expected number of events triggered from an event of a magnitude m, given by

α(m) = exp [α2 (m−mc)] , (14)

where α2 is a constant and mc is the magnitude threshold;

β(t) is the probability density function of the occurrence times of the triggered events, given

by

β(t) =

(
1 +

t

β1

)−β2
, (15)

which is the modified Omori law, where β1 and β2 are constants;
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3 ONE-DAY MODELS FOR EARTHQUAKE OCCURRENCES

Γ2(x, y|m) describes the location distribution of the triggered events, given by

Γ2(x, y|m) = exp

[
− x2 + y2

2γ2 α(m)

]
, (16)

which is a short-range Gaussian decay, where γ2 is a constant and α(m) is as defined in

(14);

Γ1(m) is the probability density of magnitudes of all the events, independent of the other

components of the model, with an exponential distribution given by

Γ1(m) = γ1 exp [−γ1(m−mc)] , (17)

i.e.

m−mc ∼ Exp(γ1), (18)

which is the Gutenberg-Richter law, where γ1 is linked to the Gutenberg-Richter’s b value

by γ1 = b log 10 and mc is again the magnitude threshold;

W is the observation window.

The main difference between both formulations presented in this section is that the proposed

Bayesian version is a point process with dependent marks that treats the spatial location as

a mark, whereas the formulation proposed by Ogata (1998) sees the spatial location as a

component of the events of the point process. However, both formulations lead to the same

model, as the mark distribution defined in (13) is similar to the conditional intensity function of

the Ogata formulation in (5). We mentioned in Section 3.2.1 a possible discrepancy between the

normalizing constant of f(x, y|m) in (8) and α(m) in (6). This is not the case in the formulation

proposed by Rasmussen (2011), as the definition of the location distribution Γ2(x, y|m) in (16)

does not have a normalizing constant. This second formulation matches the formulation used

in the R package PtProcess implemented in this work.

In order to accurately analyse the model, we investigate two versions, the temporal and the

spatio-temporal ETAS model. The temporal ETAS model uses only the occurrence time and

the magnitude of each event, whereas the spatio-temporal model has also a location component

as described above.

Temporal ETAS model The formulation of the temporal ETAS model is given by (11) with-

out the spatial component:

λθ (t,m|Ht) = λ∗θ (t|Ht) γ∗θ (m|Ht), (19)

λ∗θ (t|Ht) = µ+ α1

∑
i:ti<t

α(mi)β(t− ti), (20)

γ∗θ (m|Ht) = Γ1(m), (21)

where all components are as described in (11).

8 Natalia Hernandez Vargas



3 ONE-DAY MODELS FOR EARTHQUAKE OCCURRENCES

Parameter Estimation The ETAS model is an example of a Hawkes process with dependent

marks. We consider the process a point process in time with marks that consist of the mag-

nitude m ∈ (0,∞) and the spatial location (x, y) ∈ Sx × Sy = W of the hypocenter of the

earthquake occurrence, where W is the observation window.

Let x = {(t1, x1, y1,m1), ...(tn, xn, yn,mn)} on [0, T ) × Sx × Sy × (0,∞) be a marked point

pattern for some fixed time T , and assume that no points have ocurred before time 0. Then

Daley and Vere-Jones (2003) propose that the likelihood function is given by

p (x|µ, α1, α2, β1, β2, γ1, γ2) =

[
n∏
k=1

λθ (tk, xk, yk,mk|Htk)

]
exp (−Λ∗(T )) , (22)

where λθ (tk, xk, yk,mk|Htk) is given by (11), and

Λ∗(t) =

∫ t

0
λ∗θ (s|Hs) ds

= M(t) + α1

∑
i:ti<t

α(mi)B(t− ti), (23)

where

M(t) is the integral of µ given by

M(t) =

∫ t

0
µds, (24)

B(t) is the integral of β(t) given by

B(t) =

∫ t

0
β(s) ds, (25)

α(m) is given by (14).

Thus, the log-likelihood function is given by

log p (x|µ, α1, α2, β1, β2, γ1, γ2) =

n∑
k=1

log λθ (tk, xk, yk,mk|Htk)− Λ∗(T ). (26)

Denoting the parameters by θ = (µ, α1, α2, β1, β2, γ1, γ2) and the prior by p(θ) the posterior

is given by

p (θ|x) ∝ p(θ)p (x|θ) , (27)

where p (x|θ) is the likelihood function given by (22).

The prior of each parameter ω is a Gamma distribution given by

ω ∼ Γ (aω, bω) , (28)

where aω and bω are prior parameters for ω.
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3 ONE-DAY MODELS FOR EARTHQUAKE OCCURRENCES

Metropolis-Hastings algorithm The posterior (27) has a complicated form that does not

allow us to find the mean or the maximum of the posterior for the parameters analytically.

Instead, we use a Markov chain Monte Carlo (MCMC) algorithm (Rasmussen (2011)). In this

case a Metropolis-Hastings algorithm is implemented in order to update one parameter at a

time. Truncated normal distributions are used as proposal distributions.

For updating each parameter ωk for k = 1, . . . , nω, ω̃k is drawn from a truncated normal

distribution with the current parameter value ωk as mean and some fixed standard deviation

σωk . The Hastings ratios are calculated from (27) for the parameter updates, which are given

by

Hω =
p(θ̃|x)

p(θ|x)

J(θ|θ̃)
J(θ̃|θ)

∝ p(θ̃)

p(θ)

p(x|θ̃)
p(x|θ)

J(θ|θ̃)
J(θ̃|θ)

, (29)

where θ̃ denotes the proposed parameter value and J(θ|·) denotes the proposal distribution

when θ is the current state of the chain.

Computing this ratio can be numerically unstable, so the logarithms of (29) are computed

for each parameter. For the ETAS model, these are given by

logHµ = log p (µ̃)− log p (µ) + log J(µ|µ̃)− log J(µ̃|µ)

+

n∑
i=1

log

µ̃+ α1

∑
j<i

α(mj)β(ti − tj)


−

n∑
i=1

log

µ+ α1

∑
j<i

α(mj)β(ti − tj)


+ (µ− µ̃)T, (30)

where µ̃ denotes the proposed value;

logHα1 = log p (α̃1)− log p (α1) + log J(α1|α̃1)− log J(α̃1|α1)

+

n∑
i=1

log

µ+ α̃1

∑
j<i

α(mj)β(ti − tj)


−

n∑
i=1

log

µ+ α1

∑
j<i

α(mj)β(ti − tj)


+ (α1 − α̃1)

∑
i:ti<T

α(mi)B(T − ti), (31)
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where α̃1 denotes the proposed value;

logHα2 = log p (α̃2)− log p (α2) + log J(α2|α̃2)− log J(α̃2|α2)

+
n∑
i=1

log

µ+ α1

∑
j<i

α̃(mj)β(ti − tj)


−

n∑
i=1

log

µ+ α1

∑
j<i

α(mj)β(ti − tj)


+α1

∑
i:ti<T

[α(mi)− α̃(mi)]B(T − ti), (32)

where α̃2 and α̃(·) denote the proposed value and α(·) with α̃2 inserted, respectively;

logHβ1 = log p
(
β̃1

)
− log p (β1) + log J(β1|β̃1)− log J(β̃1|β1)

+

n∑
i=1

log

µ+ α1

∑
j<i

α(mj)β̃(ti − tj)


−

n∑
i=1

log

µ+ α1

∑
j<i

α(mj)β(ti − tj)


+α1

∑
i:ti<T

α(mi)
[
B(T − ti)− B̃(T − ti)

]
, (33)

where β̃1, β̃(·) and B̃(·) denote the proposed value and β(·) and B(·) with β̃1 inserted, respec-

tively;

logHβ2 = log p
(
β̃2

)
− log p (β2) + log J(β2|β̃2)− log J(β̃2|β2)

+
n∑
i=1

log

µ+ α1

∑
j<i

α(mj)β̃(ti − tj)


−

n∑
i=1

log

µ+ α1

∑
j<i

α(mj)β(ti − tj)


+α1

∑
i:ti<T

α(mi)
[
B(T − ti)− B̃(T − ti)

]
, (34)

where β̃2, β̃(·) and B̃(·) denote the proposed value and β(·) and B(·) with β̃2 inserted, respec-
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tively;

logHγ2 = log p (γ̃2)− log p (γ2) + log J(γ2|γ̃2)− log J(γ̃2|γ2)

+
n∑
i=1

log

 µ

|W |
+ α1

∑
j<i

α(mj)β(ti − tj)Γ̃2(xi − xj , yi − yj |mj)


−

n∑
i=1

log

 µ

|W |
+ α1

∑
j<i

α(mj)β(ti − tj)Γ2(xi − xj , yi − yj |mj)

 , (35)

where γ̃2 and Γ̃2(·) denote the proposed value and Γ2(·) with γ̃2 inserted, respectively.

The parameter γ1 has a known posterior, which is a Gamma distribution with parameters

given by

γ1 ∼ Γ

(
n+ aγ1 , bγ1 +

n∑
i=1

(mi −mc)

)
, (36)

where aγ1 and bγ1 are prior parameters for γ1.
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3.3 Short-Term Earthquake Probabilities (STEP) Model

The Short-Term Earthquake Probabilities (STEP) model by Reasenberg and Jones (1989,

1990) is an aftershock process, which is defined as a nonhomogeneous Poisson process in time

with intensity N(t) given by

N(t) = K (t+ c)−p , (37)

which is the modified Omori law, where K, c and p are constants.

The magnitude distribution is given by

N(M) = A 10−bM , (38)

which is the Gutenberg-Richter relation, where M is the aftershock magnitude, and A and b

are constants.

Following these assumptions the rate of aftershocks λ with magnitude M or larger at time

t after a mainshock of magnitude Mm is given by

λ(t,M) = 10a+b (Mm−M)(t+ c)−p , (39)

where a, b, p and c are constants. The probability P of one or more earthquakes occurring in

a time interval [S, T ] is

P = 1− exp

[∫ T

S
λ(t,M) dt

]
. (40)

Parameter Estimation The model parameters θ = (a, b, p, c) are estimated separately for

each earthquake sequence with maximum likelihood method using earthquake data.

The rate of aftershocks of the STEP model given by (39) is similar to the terms of the sum

in the conditional intensity of the ETAS model given by (12). Therefore, we focus only in the

ETAS model in the following.
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4 Estimation of the Temporal ETAS Model

4.1 Maximum Likelihood Estimation of the Temporal ETAS Model

In order to compute the maximum likelihood estimator θ̂, where θ = (µ, α1, α2, β1, β2, γ1), the

mpp function (Marked Point Process Object) of the R package PtProcess is used to create the

marked point process object. The neglogLik function (Negative Log-Likelihood) of the same

R package is then used as an input function for the nlm function (Non-Linear Minimization) of

the R package stat in order to maximize the log-likelihood function. The estimated θ̂ under

MLE for the California data set is listed in Table 1 (ahead on page 16).

As described in section 3 the MLE maximizes the log-likelihood function (10) of the model.

Numerical maximization algorithms must be employed, e.g. the method proposed in the R

package PtProcess described above, as no closed form solutions are available. However, the

log-likelihood function of the ETAS model tends to be flat in the vicinity of its maximum,

which leads to convergence problems of the optimization algorithms, and the results can also

be influenced by the choice of initial values (Veen and Schoenberg (2008)).

Figure 2 shows the log-likelihood function where one component of θ is varied at a time by

up to 50% around the MLE estimate θ̂. The function is quite flat around θ̂, especially when µ,

α1 and β1 are varied, which means that these parameters are particularly difficult to estimate.

Nevertheless, the parameters α2, β2 and γ1 show clear maximums with peaked log-likelihood

functions and can therefore be estimated more precisely. Similar effects were observed by Veen

and Schoenberg (2008), who also investigated estimation procedures for this model.

Veen and Schoenberg (2008) further observed that if the log-likelihood function is extremely

flat, the choice of initial values can influence the results. Table 2 (ahead on page 20) lists the

results of performing the MLE method with three different initial values. These values are

chosen randomly in the vicinity of the MLE θ̂ listed in Table 1 (ahead on page 16).
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Figure 2: Flatness of the log-likelihood function for the temporal ETAS model when one pa-
rameter is varied at a time. Two plots are shown to improve the legibility.
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4.2 Temporal ETAS Estimation Using Bayesian Inference

The Metropolis-Hastings ratios defined in (30)-(34) and (36) are used in order to estimate the

parameters. The training data described in Section 2 is used as the observation history to cal-

culate the posterior approximations. The algorithm generates 15, 000 values (θ(1), . . . , θ(15000)),

where θ = (µ, α1, α2, β1, β2, γ1). The first 5, 000 iterations are considered burn-in and are dis-

carded. The fitted model has a conditional intensity function λθ̂ (t,m|Ht), where θ̂ are the

means of the chains obtained with the Metropolis-Hastings algorithm. The resulting chains

are shown in figures 4, 5 and 6 in section 6.1, where we analyse them further. The posterior

means θ̂ are listed in Table 1 (ahead on page 16).

In order to investigate if the performance of this method is also influenced by the choice

of its initial values, we have run the algorithm multiple times using the same random initial

values as we applied to the MLE method in section 4.1. The results are shown in Table 2

(ahead on page 20).

5 Estimation of the Spatio-temporal ETAS Model

5.1 Maximum Likelihood Estimation of the Spatio-temporal ETAS Model

The maximum likelihood estimator θ̂ is computed as explained in section 4.1 but using the

intensity function (11), where θ = (µ, α1, α2, β1, β2, γ1, γ2). The R package PtProcess provides

a trial version for the estimation of the spatio-temporal ETAS model, which has a similar

formulation as described in Section 3.2.1. The results obtained are listed in Table 3 (ahead on

page 22).

For the spatio-temporal version of the ETAS model, similar numerical maximization algo-

rithms are employed to maximize the log-likelihood function as for the temporal version even

though it has the same suboptimal features as discussed above. In Figure 3 the log-likelihood

is shown, where the parameter γ2 is varied around the estimated parameter θ̂. The function

is again flat in the vicinity of θ̂, so that the parameter value γ2 is difficult to estimate.
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Figure 3: Flatness of the log-likelihood function for the spatio-temporal ETAS model when the
parameter γ2 is varied around its MLE.
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5.2 Spatio-temporal ETAS Estimation Using Bayesian Inference

The Metropolis-Hastings ratios defined in (30)-(34) and (36) are implemented in order to

estimate the parameters for the spatio-temporal version as explained in section 4.2, as the

posterior distributions of the parameter chains obtained in the temporal case are independent

of the additional spatial parameter γ2. The ratio defined in (35) is employed to estimate

separately the parameter chain of γ2 using the values obtained in the temporal case described

in Section 4.2. Therefore, the parameter value θ̂−γ2 is the one obtained in the temporal

case, where θ−γ2 = (µ, α1, α2, β1, β2, γ1). In Table 3 (ahead on page 22) the estimated θ̂ are

listed, where θ =
(

µ
|W | , α1, α2, β1, β2, γ1, γ2

)
. The new µ is so defined, as the positions of the

background events are assumed to have an uniform distribution.

In Section 6.2 we show the results obtained with both methods. Knowing the disadvantages

of the maximum likelihood method presented in the temporal case, different initial values

are used to see if there is again an influence of the choice of initial values. However, the

results obtained with the maximum likelihood method are not as expected. We can not obtain

satisfying results no matter which initial values we choose. Table 3 (ahead on page 22) lists

three results using different initial values. This is probably because of the functions for spatio-

temporal models implemented from the R package PtProcess, as they are trial versions. This

does not allow us to compare the performance of the proposed method with the previous one.

6 Estimation Results

6.1 Estimation under the Temporal ETAS Model

The estimation results for the two methods described in section 4 are listed in Table 1. Fig-

ure 4 and Figure 5 show the traceplots of the parameter chains obtained with the Bayesian

method and their histograms, respectively. The estimated parameter values are similar to the

ones obtained with the maximum likelihood method. The log-likelihood values are also very

similar, i.e. our estimation method is indeed maximizing the log-likelihood function. The

main difference is that the estimated value of β̂1 is here significantly greater than the MLE.

The dependence of β1 on the other parameter of the modified Omori law, β2, can influence

its estimation. We can see in the traceplots of both parameters that they have a positive

correlation giving unexpectedly high values for β1 that affect the posterior mean value of the

β̂1 chain. Rasmussen (2011) sees this difficulty, too.

Table 1: Estimated parameter values obtained from fitting the temporal ETAS model to the
California data set. The values shown for the Bayesian inference are the posterior
means.

Method µ α1 α2 β1 β2 γ1 logL

MLE 0.058 3.07 1.94 0.0005 0.77 2.34 −383.94
Bayes 0.061 3.02 1.62 0.0012 0.78 2.33 −385.59
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Figure 4: Traceplots for each parameter chain for the temporal ETAS model. The red dotted
line represents the posterior mean value.
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Figure 5: Histograms of each parameter chain for the temporal ETAS model. The red dotted
line represents the posterior mean value and the blue dotted line represents the MLE
listed in Table 1.
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6.1.1 Convergence of Parameter Chains

The sample autocorrelation function, described in Hoff (2009), is computed for each parameter

chain in order to see how good the approximation is. For a generic sequence of numbers

Θ = {θ1, . . . , θS} the lag-t autocorrelation function estimates the correlation between the

elements of the sequence that are t steps apart. The autocorrelation function is given by

acft(Θ) =
1
S−t

∑S−t
s=1(θs − θ)(θs+t − θ)
1

S−1
∑S

s=1(θs − θ)2
, (41)

where S is the number of iterations. This function can be computed with the acf function of

the R package stats.

Figure 6 shows the autocorrelation function of the parameter chains. The autocorrelation

function of the parameter chain of γ1 shown in Figure 6f has an optimal form. This result is

expected for the parameter γ1, because its posterior is known so that we can obtain a direct

sample. In the other cases, the autocorrelation function shows that the chains have a high

degree of correlation, specially the chain of α1. Markov chains with such a high autocorrelation

move around the parameter space slowly, taking a long time to achieve the correct balance

among the different regions of the parameter space (Hoff (2009)). This was also expected

because of the flatness of the log-likelihood function discussed in section 4.1. Figure 2 shows

clear maximums of the parameters µ and α2 with peaked log-likelihood functions, whereas the

log-likelihood function was quite flat for the parameters α1, β1 and β2.
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Figure 6: Autocorrelation functions of each parameter chain for the temporal ETAS model.
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6.1.2 Influence of the Choice of Initial Values

Table 2 lists the results of the maximum likelihood method and the Bayesian method using

three different initial values. The Bayesian method seems to be significantly more robust

against changes in the initial values than the maximum likelihood estimation. In all cases,

the Bayesian inference method converges to an estimated θ̂, which is always very close to the

estimated maximum value listed in Table 1, whereas the estimation values obtained with the

maximum likelihood method clearly show an influence of the choice of the initial values.

Table 2: Estimated parameter values under the temporal ETAS model for the California data
set with three different initial values, where the parameter values shown as the fitted
by Bayesian inference are the mean of the posterior approximations. In the second
trial the MLE fails to converge.

Trial Method µ α1 α2 β1 β2 γ1 logL

I Initial 0.857 0.74 0.05 0.1629 0.79 0.48 −
MLE 0.106 2.82 1.78 5.4× 105 1.1× 108 2.34 −391.94

Bayes 0.061 3.04 1.64 0.0011 0.78 2.34 −385.42
II Initial 0.181 2.22 2.07 0.0254 2.10 1.33 −

MLE − − − − − − −
Bayes 0.062 2.79 1.56 0.0014 0.79 2.34 −384.83

III Initial 2.412 0.56 0.56 0.0598 1.45 1.68 −
MLE 0.058 3.07 1.94 0.0005 0.77 2.34 −383.94

Bayes 0.061 2.89 1.68 0.0012 0.79 2.34 −384.91

In the first case, the logL value obtained with the maximum likelihood method is close

to the expected maximum value, but the estimated values of β̂1 and β̂2 are illogical. The

optimization algorithm probably ignored the effect of the modified Omori law described in 15,

i.e.

β(t− ti) =

(
1 +

t− ti
β1

)−β2
β1→∞−−−−→ 1−β2 = 1. (42)

In the second case, the optimization algorithm for the maximum likelihood method fails to

converge, whereas the Bayesian method gives a good result.

The third case leads us to the previous result, where the maximum likelihood method es-

timates the presumed maximum value as proposed with the Bayesian method yielding very

similar values.

The Bayesian method shows apparently no dependency on the choice of initial values, as it

seems to return very similar values every time, even though the initial values differ significantly.

The cumulated posterior means, given by
(
1
i

∑i
j=1 θ

(j)
)
1≤i≤S

, where S the number of iterations

and θ(j) is the jth value of the paremeter chain
(
θ(1), . . . , θ(S)

)
, are calculated for all the

parameter chains to observe the convergence of the chains. Figure 7 shows the results for the

three different cases.
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Figure 7: Convergence of means of the parameter chains under the temporal ETAS model
choosing different initial values. The dotted lines represent the mean value of the
10,000 iterations.
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6.2 Estimation of the Spatio-temporal ETAS Model

The estimation results of both methods described in section 5 are listed in Table 3 using three

different initial values. Figure 8a and Figure 8b show the traceplot of the parameter chain of

γ2 obtained with the Bayesian method and its histogram in one of the cases, respectively.

Table 3: Estimated parameter values under the spatio-temporal ETAS model for the California
data set with three different initial values, where the parameter values shown as the
fitted by Bayesian inference are the mean of the posterior approximations.

Trial Method µ α1 α2 β1 β2 γ1 γ2 logL

I Initial 0.8566 0.74 0.05 0.1629 0.79 0.47 0.001 −
MLE 0.0004 2.1× 1021 2.6× 10−11 3.4× 10−29 0.73 2.34 0.001 −702.04
Bayes 0.0004 3.04 1.64 0.0011 0.77 2.34 0.035 −780.29

II Initial 0.1809 2.22 2.07 0.0254 2.10 1.33 0.199 −
MLE 0.0004 0.10 0.48 0.3309 1.8× 10−7 2.34 0.001 −773.67
Bayes 0.0004 2.79 1.56 0.0014 0.79 2.34 0.042 −783.64

III Initial 2.4121 0.56 0.56 0.0598 1.45 1.68 1.220 −
MLE 0.0004 2.3× 1084 4.5× 10−237 1.4× 10−115 0.73 2.34 0.001 −702.04
Bayes 0.0004 2.89 1.68 0.0012 0.79 2.34 0.034 −784.85

In the first and third cases, the parameter values α2 and β1 under maximum likelihood

extimation tend to zero and the parameter value α1 is much too large. The implication of

these values is significant for the model fitting. The estimated values of α2 indicate that the

optimization algorithm ignores the effects of α(m) in (14), i.e.

α(m) = exp [α2 (m−mc)]
α2→0−−−→ 1. (43)

The value α1 is a normalizing parameter that affects considerably the offspring intensity (the

summation in (12)) ignoring as well the effects of the expected number of triggered events

α(m) and the modified Omori law β(t) in (15). The effect of the modified Omori law is also

ignored because of the estimated values of β1, similar as explained in Section 6.1.2, but tending

to zero, i.e.

β(t− ti) =

(
1 +

t− ti
β1

)−β2
β1→0−−−→∞. (44)

A similar situation occurs in the second case, where the estimated value of β2 under maximum

likelihood estimation tends also to zero, i.e.

β(t− ti) =

(
1 +

t− ti
β1

)−β2
β2→0−−−→ 1. (45)

This result is probably an error in the R package PtProcess, as the functions implemented in

the spatio-temporal case are trial versions.

The Bayesian method shows again apparently no dependency on the choice of initial values,

as it seems to return similar values every time, even though the initial values differ significantly.

The log-likelihood value obtained with our proposed method is close to the probable maximum

value, i.e. the proposed estimation method is also maximizing the log-likelihood function of

the spatio-temporal ETAS model.
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Figure 8c shows the autocorrelation function of the parameter chain of γ2. This chain has

a low degree of correlation, which means that the approximation is good. This results was

expected, as the other parameter values were estimated previously.
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Figure 8: Traceplot, histogram and autocorrelation function of the parameter chain of γ2,
respectively, for the California dataset under the spatio-temporal ETAS model.
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7 Prediction under the Temporal ETAS model

Prediction of earthquake occurrences is focused on determine the probability distribution of

the time to the next event with a given magnitude. This distribution can be determined

empirically by simulation (Harte (2010)).

To simulate a point process with the fitted conditional intensity function λθ̂ (t,m|Ht) we

apply the thinning method of Ogata (1981) as implemented in the simulate function (Simulate

a Point Process) of the R package PtProcess. The method calculates an upper bound for the

intensity function, simulating a value for the time to the next possible event using a rate equal

to this upper bound. It then calculates the intensity at this simulated point. The ratio of this

rate to the upper bound is compared with a uniform random number to randomly determine

whether the simulated time is accepted or not (Harte (2010)). The result of one simulation is

shown in Figure 9.
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Figure 9: Example of one simulation. The last plot shows the magnitudes of events from the
control data set versus occurrence times. The first plot shows log λθ̂ (t,m|Ht) fitted
with the proposed method to the simulated dataset versus the occurrence time. The
second plot shows log λθ̂ (t,m|Ht) fitted with the maximum likelihood method to the
simulated dataset versus the occurrence time.

The California training data set has an observation period that finishes at midnight on

December 31, 2008 (day 1096 since January 1, 2006), and we want to determine the probability

distribution of the time to the next event with magnitude greater than or equal to 4.75. We
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7 PREDICTION UNDER THE TEMPORAL ETAS MODEL

choose this magnitude, since it is the first strong earthquake occurrence that it is registered in

the control data set (at day 82.45). The simulation stops only by meeting the given stopping

condition. 2000 simulations are performed and from each the time to the first magnitude

greater than or equal to 4.75 is recorded in order to plot a histogram of these times (in days

from January 1, 2009). The prediction results using both methods are shown in Figure 10

and 11. The 0.5, 0.8, 0.9, 0.95 and 0.99 quantiles of the empirical distributions are listed in

Table 4.

Table 4: The 0.5, 0.8, 0.9, 0.95 and 0.99 quantiles of the empirical distribution of the times to
the given event.

Method 0.50 0.80 0.90 0.95 0.99

Bayes 27.27 63.49 96.89 127.46 186.49
MLE 36.70 90.40 132.42 173.10 235.53
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Figure 10: The temporal ETAS model fitted with the proposed method to the California data
set. 2000 simulations were performed from January 1, 2009 until the first magnitude
≥ 4.75 event in each occured. The histogram represents the empirical distribution
of the times to this event. The dotted blue lines represent the 0.5, 0.8, 0.9, 0.95 and
0.99 quantiles. The gray line represents the first event registered with the given
magnitude in the control data set (day 82.45).
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Days since 1 January 2009
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Figure 11: The temporal ETAS model fitted with the MLE to the California data set. 2000
simulations were performed from January 1, 2009 until the first magnitude ≥ 4.75
event in each occured. The histogram represents the empirical distribution of the
times to this event. The dotted blue lines represent the 0.5, 0.8, 0.9, 0.95 and
0.99 quantiles. The gray line represents the first event registered with the given
magnitude in the control data set (day 82.45).
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Predictive Performance We want to compare the predictive perfomance using our different

estimation methods. We produce 218 predictions as the one shown above taking as starting

point every day from January 1, 2009 until August 6, 2009.

A useful forecast measure for comparing different methods on the same data set is the mean

absolute error (MAE) (Hyndman and Koehler (2006)). The forecast error is defined as

et = |Ft − xt| , (46)

where Ft is the median of the predictive distribution and xt is the observation at time t. Thus

the mean absolute error is given by

MAE(F, x) =
1

n

n∑
i=1

|Ft − xi| =
1

n

n∑
i=1

ei, (47)

where F is the prediction vector and x is the observation vector. The MAE values calculated

are listed in Table 5.

Scoring rules provide summary measures for the evaluation of probabilistic forecasts, by

assigning a numerical score based on the predictive distribution and on the event or value

that should predict. They measure the quality of the probabilistic forecasts in order to rank

competing prediction procedures (Gneiting and Raftery (2007)).

Gneiting and Raftery (2007) state that the restriction to predictive densities is often un-

practical, like in our case, since our predictive distributions are expressed in terms of samples.

Therefore, it is better to define scoring rules directly in terms of predictive cumulative distri-

bution functions. The continuous ranked probability score (CRPS) is defined as

CRPS(F, x) =

∫ ∞
−∞

(F (y)− 1{y≥x})
2 dy, (48)

where F is the cumulative distribution function of a probabilistc forecast.

Applications of the CRPS have been restricted by a lack of readily computable solutions to

the integral in (48). Therefore, the integral often can be evaluated in a closed form given by

CRPS(F, x) =
1

M

M∑
m=1

|xm − x| −
1

2M2

M∑
m=1

M∑
n=1

|xm − xn| , (49)

where F is again the cumulative distribution function from a forecast ensemble of size M , x is

the verifying observation and |·| denotes the Euclidean norm. We calculate this generalization

of the CRPS presented by Grimit et al. (2006) in our simulations, the results are listed in

Table 5.
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Table 5: Predictive performance for predicting number of days until the next earthquake event
of magnitude 4.75 or greater in our study region for daily forecasts from January
1, 2009 until August 6, 2009. The performance is measured by the mean absolute
error (MAE) and the mean continuous ranked probability score (CRPS). The other
two values are the MAE and CRPS of the predictions between January 1, 2009 and
March 26, 2009 and the ones between March 27, 2009 and August 6, 2009, respectively.

Method MAE CRPS

Bayes
34.24 23.17

21.67 41.81 16.88 26.96

MLE
33.41 23.02

22.02 40.28 17.79 26.18

The two methods show similar predictive performance, with the MLE method performing

slightly better on average under both the MAE and the CRPS. Both methods seem extremely

insensitive to changes in time and the daily predictions are very similar throughout the entire

test period. For the MLE method, the predictive median is always between 35 and 46 days

while the predictive median for the Bayes methods lies between 33 and 40 days. That is, the

model doesn’t seem to adapt to there being a higher or a lower chance of a large earthquake

even if such an event just happened. This might partly be due to the fact that we have used

constant parameter estimates over the test set. Furthermore, our entire data set only contains

22 events of magnitude 4.75 or greater. A larger study is thus needed to assess the robustness

of the methods. However, this small example demonstrates that forecast verification methods

for point process models may be extended beyond the currently used residual methods.
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8 Verification and Comparison

Verification methods are useful to evaluate the goodness of fit of models. Clements et al. (2011)

presents residual analysis methods for temporal and spatio-temporal point processes, which

are applied to earthquake occurrences models in California. We calculate simple, low-power

means (L-test and N-test) and residuals as proposed in Harte (2010) to evaluate the fit of both

models in the temporal case. Further methods are outlined but not implemented, as the tools

are not available in the PtProcess package.

8.1 L-test and N-test

The Likelihood-test (L-test) and the Number-test (N-test) are goodness of fit tests. The L-test

evaluates the quality of a model in the likelihood space, and the N-test compares the total

predicted rate with the observated rate. A detailed description of these methods can be found

in Schorlemmer et al. (2007).

Likelihood-test The L-test works by simulating s realizations from the fitted model. The log-

likelihood is calculated for the observed data set (lobs) and each simulation (lj , for j = 1, . . . , s).

The quantile score η is given by

η =
1

s

s∑
j=1

1{lj<lobs}, (50)

where 1{·} denotes the indicator function. If η is close to zero, then the model is considered to

be inconsistent with the data set, and can be rejected. Otherwise, the model is not rejected

and further tests are necessary (Clements et al. (2011)).

Number-test The N-test is similar to the L-test, except that the quantile score shows instead

the fraction of simulations that contain fewer points than the observed data set. This quantile

score δ is given by

δ =
1

s

s∑
j=1

1{Nj<Nobs}, (51)

where Nj is the number of points contained in the jth simulation of the model and Nobs is

the number of points contained in the observed data set. If δ is close to 0 or 1, the model is

rejected.

We apply two different methods to obtain predictions for earthquakes in California from

January 1, 2009 to September 1, 2009 under the Bayesian model. The Metropolis-Hastings

algorithm was implemented once in order to get parameter chains based on the training data

as described in section 7. We then proceeded to simulate 250 random point patterns using

the posterior means of the model parameters. In a second alternative method, we draw an

independent sample from the posterior distributions of the parameters for each simulated point

pattern. For comparison, we also simulate 250 patterns from the temporal ETAS model where

the parameter estimates are obtain with maximum likelihood estimation, see section 7.
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Table 6 shows the results implementing the two methods and the MLE. The L-test indicates

that for both methods the model can not be rejected, because the η scores are not close to

zero. According to the N-test the model evaluated with the method I is not significantly

over-predicting the total number of earthquakes, whereas the other two results have good δ

scores.

Table 6: Results of the L- and N-test for earthquake predictions in California from January
1, 2009 to September 1, 2009 under the temporal ETAS model. Method I denotes
the Bayesian method under the posterior mean and method II denotes the Bayesian
method with a random sample from the posterior distribution. Listed are the log-
likelihood of the observed data set lobs, the quantile score η, the number of observed
events Nobs and the quantile score δ.

Method lobs η Nobs δ

I −72.921 0.572 21 0.32
II −72.921 0.308 21 0.56

MLE −72.533 0.296 21 0.52

According to the L-test the model evaluated with method I has a better performance as the

other two. Nevertheless, the model evaluated with method II and the one fitted with MLE

show better results according to the N-test. This discrepancy between both tests leads us to

believe that they are not accurate. Clements et al. (2011) consider that these tests have very

low power. Therefore, they propose instead residual methods, such as the residuals presented

in Section 8.2 and the methods outlined in Section 8.3.

8.2 Residuals of Point Process Models

The R package PtProcess provides a function named residuals that calculates the residuals

of a point process with the fitted conditional intensity function λθ̂ (t,m|Ht). This method

evaluates the goodness of fit of a model calculating a so- called residual process (Harte (2010)).

Let ti be the times of the observed events. The transformed times are defined as

τi =

∫ ti

0
λθ̂ (t,m|Ht) dt, (52)

where λθ̂ (t,m|Ht) is the fitted intensity function given by (19). If the dataset is sampled from a

process with intensity λθ̂ (t,m|Ht), then the transformed time points form a stationary Poisson

process with rate parameter one, which is the residual process (Aalen and Hoem (1978)).

A simple graphical diagnostic test of the goodness of fit of the model is to plot the event

number i versus the trasformed time τi. The points should roughly follow a straight line

y = x (Harte (2010)). Significant departures from the straight line show a weakness in the

model. If the line has a slope less than one in a given interval, then the transformed times τi

are too small, which means that the fitted intensity function λθ̂ (t,m|Ht) is too small in the

given interval. In the same way, if the slope is greater than one, the fitted intensity function

λθ̂ (t,m|Ht) is too large. Figure 12 is the resulting plot implementing the fitted models to the
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California training data set.

An alternative representation of this test is to plot τi on the vertical scale. This plot is called

cusum and was devised by Page (1974). It represents the cumulative sum of the inter-event

residual times, and the substraction of i removes the mean (Harte (2010)). Therefore, when

the process is consistent, the cusum has a zero slope. A positive or negative slope means that

the fitted intensity function is either too large or too small, respectively. Figure 13 is the

cusum plot for both fitted models for the California training data set.

The results of the residual analysis show that the model fitted with the MLE method has a

better goodness of fit as the model fitted with the proposed Bayesian method. Figures 12 and

13 indicate that the model fitted with our proposed method is overestimating the data set.

This is probably because of the estimation of the modified Omori law parameter values. The

model fitted with MLE shows also subintervals, where the departures from the straight line

are quite significant. This could be a consecuence of the few points of the training data set.
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Figure 12: Residual process times for the temporal ETAS model fitted to the California data
set with both models. The black line represents the model using the proposed
Bayesian method. The blue line represents the model using the MLE method. The
red dotted line is y = x.
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Figure 13: Cusum of the residual process times for the temporal ETAS model fitted to the
California data set with both models. The black line represents the model using
the proposed Bayesian method. The blue line represents the model using the MLE
method. The red dotted line is y = 0.

32 Natalia Hernandez Vargas



8 VERIFICATION AND COMPARISON

8.3 Further Verification Methods

Clements et al. (2011) propose several methods to evaluate the fit of a point process model.

These evaluation tools include residual point process methods such as rescaling, thinning and

superposition, comparative quadrat methods such as Pearson residuals and deviance residuals,

and weighted second-order statistics to evaluate particular features of a model such as its

background rate or the degree of spatial clustering.

Rescaling, thinning and superposition Rescaled residuals are useful to assess the overall fit

of a model, as well as thinned and superimposed residuals.

Rescaled residuals are the result of rescaling the temporal coordinates of a multivariate

point process according to the integrated conditional intensity in order to form a sequence of

stationary Poisson processes.

Thinned residuals are useful to evaluate the spatial fit of a spatio-temporal point process

model and to reveal locations where the model is fitting poorly (Clements et al. (2011)). These

ones have the advantage that the coordinates of the points are not transformed as in the case

of rescaled residuals. Therefore, the resulting residuals may be easier to interpret. To calculate

thinned residuals, each point (xi, yi, ti) ∈ S is kept independently with probability

b

λ̂ (ti, xi, yi)
, (53)

where b = inf{λ̂(t, x, y) : (t, x, y) ∈ S} is the infimum of the estimated intensity over the

entire observed space-time window, S. The remaining points are the so-called thinned residual

points, which should be homogeneous Poisson with rate b if and only if the fitted model for λ

is consistent (Schoenberg (2003)).

Superposition is a residual analysis method similar to thinned residuals, but instead of

substracting points, new points are simulated to be added to the data (Clements et al.

(2011)). Points are simulated at each location (t, x, y) according to a Cox process with in-

tensity c− λ̂ (xi, yi, ti,mi), where c = supS{λ̂(x, y, t)}. If the model is consistent, the union of

the superimposed residuals and observed points are homogeneous Poisson.

However, these methods are generally unpractical when λ is spatially volatile, as these

methods have limited power when the modeled conditional intensity assumes extremely low or

high values in the observation regions, which is commonly the case for earthquake occurrences

models (Clements et al. (2011)).

Comparative quadrat methods Pixel-based approaches introduced by Baddeley et al. (2005),

such as Pearson residuals and deviance residuals, are used to compare models. They are based

on comparing the total number of point of an observation region to the number predicted by

the model.

Raw residuals are defined by Baddeley et al. (2005) as the number of observed points minus
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the number of expected points in each pixel, i.e.

R(Bi) = N(Bi)−
∫
Bi

λ̂(t, x, y) dtdxdy, (54)

where N(Bi) is the number of points in bin i. Pearson residuals are rescaled raw residuals

with mean 0 and variance approximately equal to 1. They are given by

RP (Bi) =
∑

(xi,yi)∈Bi

1√
λ̂(xi, yi)

−
∫
Bi

√
λ̂(x, y) dxdy, (55)

for all λ̂(x, y) > 0.

These residuals are a good technique to identify individual bins containing earthquake oc-

currences that require an adjustment in their forecast rates, however they generally fail to

identify other locations where the models may fit relatively well or poorly (Clements et al.

(2011)).

Weighted second-order statistics The Ripley’s K-function (Ripley (1981)) is a common tool

to detect clustering or inhibition in a point process. It is defined as the average number of

points within r of any given point divided by the overall rate λ, i.e.

K(r) = AN−2
∑

i<j, ‖xi−xj‖<r

s(xi,xj), (56)

where A is the area of the observation region, N is the total number of observed points, and

s(xi,xj)
−1 is the proportion of area of the ball centered at xi and passing through xj that

falls within the observation region.

The weighted K-function is good to test the degree of clustering in the model. The standard

estimate of the weighted K-function is defined as

KW (r) =
b∫

S λ̂0(x) dx

∑
i

λ̂0(xi)
−1
∑
i 6=j

λ̂0(xj)
−11{‖xi−xj‖≤ r}, (57)

where b = min (λ̂), 1{·} is the indicator function, and λ̂0(xi) is the conditional intensity at

point xi under a null hypothesis.

The weighted second-order statistics are especially useful for comparisons of competing

models (Clements et al. (2011)).
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9 Conclusions

We present a Bayesian method to estimate the Epidemic-Type Aftershock Sequences (ETAS)

model. The advantages of this method compared to the conventional maximum likelihood

estimation are substantial in terms of convergence and accuracy independently of the choice

of initial values.

In Section 6.1 we show the results using as a case study a California earthquake occurrence

data set, which demonstrate the good performance of the proposed method. The difficulties

in estimating the parameter values of the modified Omori law could be fixed generating more

samples with the algorithm described in Section 4.2. The advantage of convergence of our

method may be a useful way to obtain initial values for the optimization algorithms of a maxi-

mum likelihood estimation, in case numerical maximization is preferred (Veen and Schoenberg

(2008)).

In Section 6.2 we show the limited results, which can be obtained with the current tools in

the R package implemented. Although we can not compare the results with the ones obtained

with the conventional maximum likelihood method, we expect that the proposed method is

also applicable to the spatio-temporal ETAS model.

In Section 7 we show the predictive performance with both methods in the temporal case.

The two methods show similar predictive performance, with the MLE method performing

slightly better on average under both the MAE and the CRPS. Both methods seem extremely

insensitive to changes in time and the daily predictions are very similar throughout the entire

test period.

On the other hand, according to the L- and N-test in Section 8 we can not reject the

Bayesian method, but the residual analysis shows that its fit is not that accurate as the fit

of the other method. However, according to the residual process the model fitted with MLE

shows subintervals, where the departures from the straight line are quite significant. This

could be a consecuence of the number of points of the training data set. We only have 121

events in a interval of time of 1096 days, which could lead us to unexpected results in the

estimation procedures as well as in the prediction performances.

The model proposed by Ogata (1998) ignores possible spatial covariate effects. In the case

of the region of California it is known that the San Andreas fault may have an influence in the

earthquake occurrences. The San Andreas fault is a geological feature, which can be termed

as lineament. It would be of interest to predict earthquake occurences from the lineament

pattern (Baddeley et al. (2005)). The lineament pattern of this region would be a possible

spatial covariate, therefore, it should be included in the analysis. As described in Baddeley

et al. (2005), the null model would propose that the earthquake occurrences are a homogeneous

Poisson process, which means that it is assumed that there is no dependence on the lineaments.

An alternative model would propose, for example, that the density of earthquake occurrences

depends on the distance from the nearest lineament.
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