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Zusammenfassung

In der vorliegenden Arbeit schlagen wir ein Bayessches Modell vor, das probabilistis-

che Vorhersagen für die stetige Größe Temperatur hervorbringt. Für die Vorhersagen

werden Normalverteilungen benutzt, mit einem Erwartungswert, der linear ist in einer

unbekannten Parametermenge, und mit einer unbekannten Varianz. Dabei ist der Er-

wartungswert ein gewichteter Durchschnitt von deterministischen Vorhersagen eines

Ensembles. Die Ungewissheit und Unkenntnis der Parameter wird abgebildet, indem

Wahrscheinlichkeitsverteilungen gebildet werden. Erste Vorstellungen über diese Werte

werden in die Priori-Verteilungen des Erwartungswertes und der Varianz einbezogen.

Nach Berücksichtigung von Trainingsdaten werden unsere Annahmen über Parameter-

schätzungen aufdatiert, was zu korrigierten Posteriori-Verteilungen führt. Mit deren

Hilfe erstellen wir ein Vorhersagemodell und erzeugen Vorhersagen für Testdaten. Bei der

Anwendung unserer Bayesschen Methode auf das University of Washington Mesoscale

Ensemble über dem nordamerikanischen Pazifischen Nordwesten erhalten wir kalibrierte

Vorhersagen und gute Ergebnisse.
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Abstract

In this study, we propose a Bayesian model which produces probabilistic forecasts for

the continuous weather variable temperature. The predictive distributions are Gaussian

with a mean that is linear in an unknown parameter set, and an unknown variance.

Furthermore, the mean is a bias-corrected weighted average of deterministic ensemble

forecasts. The uncertainty and ignorance of the parameters is expressed by forming

probability distributions. Prior beliefs are included in our prior distributions for the

mean and variance. After considering training data, our assumptions of the parameter

estimates are improved leading to posterior distributions. With their help, we build

a predictive model to create forecasts for the test data. When applying our Bayesian

method to the University of Washington mesoscale ensemble over the North American

Pacific Northwest, we obtain calibrated forecasts and good performance under proper

scoring rules.
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1 Introduction

In Numerical Weather Prediction (NWP) methods, forecast models produce determin-

istic predictions for weather quantities. The model system depends on the initial or

boundary conditions which are given by an estimate of the current state of the atmo-

sphere, and even if the measurements do not vary significantly, the resulting predictions

may be very different due to the different representation of the atmospheric processes.

Furthermore, the equations of the atmospheric model are nontrivial and the solutions

of the physical processes are approximated, leading to deficient forecasts (Britannica,

2012). The approximations in the numerics and the input data tend to result in predic-

tions that are not completely accurate. An ensemble consists of multiple NWPs for a

single variable. The future atmospheric states are here generated with differing initial

conditions, and may result from one or several models. Forecasting using ensembles

usually leads to improvement, since the prediction uncertainty is included.

Statistical postprocessing techniques then link the results of the numerical forecasts to

statistical models resulting in improved predictions. One such method is the Model Out-

put Statistics (MOS) technique of Glahn and Lowry (1972), where regression equations

produce forecasts of surface weather variables.

We concentrate on daily prediction of the continuous weather quantity temperature,

and our method, which is an extension of the Ensemble Model Output Statistics (EMOS)

method of Gneiting et al. (2005), yields probabilistic forecasts in form of full predictive

distributions within a fully Bayesian framework.

The remainder of this thesis is organized as follows. In Chapter 2, we summarize other

postprocessing methods that have also dealt with temperature forecasts and outline our

Bayesian approach. A detailed description of our method follows in the next Chapter,

where we also state how the skill of the models can be measured. In Chapter 4, our results

are reported, where we have applied our Bayesian approach and competing forecasting

procedures to make temperature forecasts over the North-American Pacific Northwest

in the year 2008 using the University of Washington Mesoscale Ensemble (UWME).

Finally, conclusions are provided in Chapter 5.
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2 Probabilistic forecasts for temperature

2.1 EMOS

The postprocessing technique Ensemble Model Output Statistics (EMOS) (Gneiting

et al., 2005) uses an ensemble consisting of distinguishable forecasts for some univariate

weather quantity such as surface temperature or sea pressure. The method is used to

correct for forecast bias and underdispersion of the ensemble, and it is based on multiple

linear regression. Its probabilistic forecasts have Gaussian predictive distributions, which

are the EMOS forecasts.

The mean of the predictive distribution is a weighted average of the ensemble member

forecasts, corrected for bias. That is, let the ensemble be X = {X1, . . . , Xm}, then the

mean is modeled as

µ = a+ b1X1 + . . .+ bmXm,

where a is a bias-correction, and b1, . . . , bm are regression coefficients, which show the

skill of the members over a training set. The variance depends linearly on the ensemble

variance and takes the spread-skill relationship into account. If c and d are nonnegative

numbers, and S2 denotes the ensemble variance, the variance has the form

σ2 = c+ dS2.

For the weather variable Y , it follows that

Y |X ∼ N
(
µ, σ2

)
.

To find the EMOS coefficients, the authors introduce the method of minimum Con-

tinuous Ranked Probability Score (CRPS) estimation which is applied to the training

data. Furthermore, a variant of the technique is used, EMOS+, where the coefficients

are constrained to be nonnegative. In the first step of EMOS+, the coefficients of the

EMOS model are estimated by optimizing the CRPS. If all coefficients are nonnegative,

then both the EMOS and the EMOS+ forecasts are the same. However, if one or several
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values are negative, then these regression coefficients are set to zero. The CRPS opti-

mum now has to be found using the reduced ensemble. This procedure is repeated until

all estimated parameters are nonnegative. In each step, the ensemble variance has to be

calculated anew using the remaining ensemble members.

The authors state that the removed ensemble members of the model EMOS+ are less

useful relative to the included members over the training period. However, the EMOS

and EMOS+ forecasts were found to be equally skillful.

2.2 Ensemble BMA

Raftery et al. (2005) propose an alternative ensemble postprocessing method. Their

method, Bayesian Model Averaging (BMA), combines predictive distributions from dif-

ferent competing models. In this approach, the predictive probability distribution func-

tion (PDF) of the weather quantity (temperature or sea level pressure) is a weighted

average of PDFs based on individual forecasts.

The weights are the estimated posterior probabilities of the competing ensemble mem-

bers and show the predictive performance of each member relative to the other members

over the training set. Small values of the weights indicate that the corresponding en-

semble member was less useful for the training period.

A future observation is denoted by y, and yT is the training data. If K different

models M1, . . . ,MK are considered, then the predictive PDF for y is

p(y) =
K∑
k=1

p(y|Mk) p(Mk|yT ),

where p(y|Mk) is the PDF conditionally on model Mk, and p(Mk|yT ) denotes the pos-

terior probability of model Mk given the training data set yT . Model Mk conditions y

on ensemble member fk and its PDF is a normal distribution with mean ak + bkfk, and

variance σ2:

y|fk ∼ N
(
ak + bkfk, σ

2
)
.

Then the BMA model is

p(y|f1, . . . , fk) =
K∑
k=1

wkN
(
ak + bkfk, σ

2
)
,

where wk is the posterior probability that fk is the best forecast depending on how it

performed in the training set, and which is estimated using maximum likelihood. This
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method produces calibrated and sharp predictive PDF.

2.3 A Bayesian approach to ensemble BMA

A Bayesian approach to the statistical postprocessing of temperature forecasts was pro-

posed by Narzo and Cocchi (2010). Here, the ensemble members are exchangeable. That

is, the system produces ensemble members that are viewed as random replications of the

same data-generating process.

Let the observations be denoted by yt, and the K forecast ensemble members by

Xt = {Xtk, k = 1, . . . ,K}. A latent process selects a member from the ensemble and

a Bayesian hierarchical model is used to relate an observation with just this ensemble

member and not the full ensemble.

In the first level, a distribution for observed values is conditioned on the selected

deterministic forecast. That is, a chosen ensemble member xt on day t can be related

to yt: The distribution is Gaussian, with a mean that is a linear function of the forecast

xts, where the index s denotes a particular station. This results in

yts|xts ∼ N
(
αs + βxts, σ

2
y

)
,

where β is a common slope for all stations, αs is a station-specific intercept, and σ2
y is a

common error variance. The intercept αs is normally distributed, so that

αs ∼ N
(
α0, σ

2
α

)
.

In the second level, the selection process with the outcome of one of the K ensemble

members is modeled on each day t.

Given training data, a predictive probability distribution of new data can produce

forecasts.

2.4 This study: BEMOS

To adopt a Bayesian statistical method, beliefs about unknown parameters are formed

by assigning probabilities to them, expressing the uncertainty about the true parameter

values. The application of Bayes’ Theorem leads to an update of those beliefs using

the given information. This growing knowledge about the parameters is called Bayesian

inference.
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Let the parameter θ contained in the parameter set Θ express the unknown properties

of a quantity we are interested in. For every θ ∈ Θ the prior distribution p(θ) expresses

the belief that θ is the true value. For every θ ∈ Θ and every dataset y of the sample

space, the sampling model p(y|θ) characterizes the results of the set y under the assump-

tion that θ is true. The information from the observed data is then used to update the

uncertainty about θ, so that for every θ ∈ Θ the posterior distribution p(θ|y) expresses

the updated belief about θ. To obtain the posterior distribution, Bayes’ Theorem yields

p(θ|y) =
p(y|θ) p(θ)

p(y)
∝ p(y|θ) p(θ).

In our method, the sample model for the data depends on covariates consisting of

an eight-member ensemble forecast, and we want to formulate a prediction model for

temperature. For that reason, training data y will be used to estimate parameters in a

regression model similar to the EMOS model in Chapter 2.1 and after that, the model

is assessed using a test dataset ỹ. The predictive distribution of the new observations is

conditioned on the observed data and has the following form:

p(ỹ|y) =

∫
p(ỹ, θ|y) dθ

=

∫
p(ỹ|θ) p(θ|y) dθ.

As the sample model is Gaussian, the weather quantity ỹ has a Gaussian predictive

distribution, with a mean that is linear in the ensemble members and a variance σ2,

so that the unknown parameter set θ consists of the regression coefficients and σ2.

We assess the performance of our Bayesian ensemble model output statistics (BEMOS)

for forecasting temperature 48-h ahead using the University of Washington mesoscale

ensemble over the North-American Pacific Northwest in 2008 and compare the results

to the EMOS method of Gneiting et al. (2005).
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3 Methods

3.1 BEMOS

In our study, we largely follow Hoff (2009). We consider both the so-called g-prior

and other weakly informative prior for the regression coefficients and show how samples

from the posterior distributions may be obtained using Gibbs sampling. Finally, we

discuss model uncertainty, where a Bayesian model selection procedure over all possible

regression models is presented.

3.1.1 Linear regression

We provide a brief overview of linear regression analysis, which is the basis of our

Bayesian approach. In a regression model, we deal with a set of explanatory variables or

regressors x = (x1, . . . , xp). The distribution of a random variabe Y depends on this set

and we write p(y|x), which denotes the conditional distribution of Y given x. A linear

regression model is characterized by the assumption that the expectation of Y given x

is linear in a parameter set β = (β1, . . . , βp), that is,

E[Y |x] =

∫
y p(y|x) dy = β1x1 + · · ·+ βpxp = βTx.

Additionally, the first variable x1 is often set as x1 = 1, so that β1 corresponds to a

bias-correction term.

In a normal linear regression model, Y varies around the mean E[Y |x] with an in-

dependent error term that follows a normal distribution. For i = 1, . . . , n the random

variable Yi can be expressed as follows:

εi
iid∼ N (0, σ2),

Yi = βTxi + εi.

This characterization leads to the joint probability density of n observations, arranged in

the n-dimensional vector y = (y1, . . . , yn)T . The conditions x1, . . . ,xn are summarized
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as rows of an n× p matrix X and we write

p(y1, . . . , yn|x1, . . . ,xn,β, σ
2) =

n∏
i=1

p(yi|xi,β, σ2)

= (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
i=1

(yi − βTxi)
2

)

= (2πσ2)−n/2 exp

(
− 1

2σ2
(y−Xβ)T (y−Xβ)

)
= p(y|X,β, σ2).

The expression in the exponent,
∑n

i=1 (yi − βTxi)
2, is the sum of squared residuals and

will be referred to as SSR(β) .

With this notation, y conditional on X,β and σ2 follows a multivariate normal dis-

tribution,

y|X,β, σ2 ∼ Nn(Xβ, σ2I),

where I is the n× n identity matrix and

Xβ =


β1x1,1 + · · ·+ βpx1,p

...

β1xn,1 + · · ·+ βpxn,p

 =


E[Y1|β,x1]

...

E[Yn|β,xn]

 .

The parameters to be estimated are thus θ = (β, σ2).

3.1.2 Bayesian parameter estimation

For computational convenience, we aim to define the prior distributions for the param-

eters β and σ2 in such a way that the joint posterior distribution p(β, σ2|y,X) may be

approximated using a Gibbs sampler.

If the prior density of β is a multivariate normal distribution,

β ∼ Np(β0,Σ0),

then it is a conjugate prior leading to a multivariate normal posterior distribution as

well. This will be shown in the following.

The posterior of β is proportional to p(β) p(y|X,β, σ2), and only the terms depending
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on β need to be considered. For the sampling density of the data, we write:

p(y|X,β, σ2) = (2πσ2)−n/2 exp

(
− 1

2σ2
SSR(β)

)
= (2πσ2)−n/2 exp

(
− 1

2σ2
(y−Xβ)T (y−Xβ)

)
∝ exp

(
− 1

2σ2
(yTy− 2βTXTy + βTXTXβ)

)
∝ exp

(
− 1

2σ2
(−2βTXTy + βTXTXβ)

)
.

Similar results hold for the prior distribution p(β) and it follows for the full conditional

posterior dstribution for β that

p(β|y,X, σ2) ∝p(β) p(y|X,β, σ2)

∝ exp

(
−1

2
(−2βTΣ−1

0 β0 + βTΣ−1
0 β)− 1

2σ2
(−2βTXTy + βTXTXβ)

)
= exp

(
−1

2
[βT (Σ−1

0 + XTX/σ2)β − 2βT (Σ−1
0 β0 + XTy/σ2)]

)
.

As a consequence, we see that the posterior distribution is proportional to a multivariate

normal density, i. e. β|y,X, σ2 ∼ Np(m,V), where

m = E[β|y,X, σ2] = (Σ−1
0 + XTX/σ2)−1(Σ−1

0 β0 + XTy/σ2),

V = Var[β|y,X, σ2] = (Σ−1
0 + XTX/σ2)−1.

For the prior distribution for σ2, we choose an inverse-gamma distribution,

1

σ2
∼ Γ

(
ν0

2
,
ν0σ

2
0

2

)
,

which results in the full conditional posterior

p( 1
σ2 |y,X,β) ∝ p( 1

σ2 ) p(y|X,β, σ2)

∝
(

1

σ2

) ν0
2
−1

exp

(
− 1

σ2

ν0σ
2
0

2

)
×
(

1

σ2

)n/2
exp

(
− 1

σ2

SSR(β)

2

)
=

(
1

σ2

) ν0+n
2
−1

exp

(
− 1

σ2

ν0σ
2
0 + SSR(β)

2

)
.
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This distribution is also an inverse-gamma density, that is,

1

σ2
|y,X,β ∼ Γ

(
ν0 + n

2
,
ν0σ

2
0 + SSR(β)

2

)
.

With the knowledge of the full conditional posterior distributions for the parameters

β and σ2, the joint posterior distribution p(β, σ2|y,X) may be approximated using a

Gibbs sampler. In this process, each parameter is updated individually according to its

full conditional posterior distribution, where the samples may potentially be dependent.

Given the latest values (β(s), σ2(s)), the parameters are updated in the following way:

1. Update of β:

(i) compute V = Var[β|y,X, σ2(s)] and m = E[β|y,X, σ2(s)]

(ii) sample β(s+1) ∼ Np (m,V)

2. Update of σ2:

(i) compute SSR(β(s+1))

(ii) sample
(

1
σ2

)(s+1) ∼ Γ
(
ν0+n

2 ,
ν0σ2

0+SSR(β(s+1))
2

)
.

3.1.3 g-prior distribution

A weakly informative prior distribution for regression coefficients is the so-called g-prior

(Zellner, 1986), with

β ∼ Np(β0, gσ
2(XTX)−1),

where g > 0. Such a construction simplifies the terms m and V of the multivariate

normal posterior distribution for β, where now it holds that

Var[β|y,X, σ2] = ( 1
gσ2X

TX + 1
σ2X

TX)−1

=
g

g + 1
σ2(XTX)−1,

E[β|y,X, σ2] = ( 1
gσ2X

TX + 1
σ2X

TX)−1( 1
gσ2X

TXβ0 + 1
σ2X

Ty)

=
1

g + 1
β0 +

g

g + 1
(XTX)−1XTy.

Under the g-prior, the marginal posterior density of σ2 conditional on y and X may be

calculated explicitly. As a prior for σ2, we still take the inverse-gamma distribution,

1

σ2
∼ Γ

(
ν0

2
,
ν0σ

2
0

2

)
.
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The marginal posterior density is proportional to p(σ2) p(y|X, σ2), where

p(y|X, σ2) =

∫
p(y|X,β, σ2) p(β|X, σ2) dβ.

The integrand is

p(y|X,β, σ2) p(β|X, σ2) =(2πσ2)−n/2 exp

(
− 1

2σ2
(y−Xβ)T (y−Xβ)

)
×

|2πgσ2(XTX)−1|−1/2 exp

(
− 1

2gσ2
(β − β0)TXTX(β − β0)

)
,

where the exponents can be rewritten as follows:

− 1

2σ2

[
(y−Xβ)T (y−Xβ) + (β − β0)TXTX(β − β0)/g

]
=− 1

2σ2

[
yTy− 2yTXβ + βTXTXβ + (βTXTXβ − 2βTXTXβ0 + βT0 X

TXβ0)/g
]
.

Ignoring the terms in the brackets depending on y, and rearranging the remaining ex-

pressions, we obtain

g + 1

g

[
βTXTXβ − 2βTXTXβ0/(g + 1) + βT0 X

TXβ0/(g + 1)2
]

− g + 1

g
βT0 X

TXβ0/(g + 1)2 +
1

g
βT0 X

TXβ0

=
g + 1

g
(β − 1

g+1β0)TXTX(β − 1
g+1β0) +

1

g + 1
βT0 X

TXβ0.

It follows for the exponent that

− 1

2σ2

[
yTy− 2yTXβ +

g + 1

g
(β − 1

g+1β0)TXTX(β − 1
g+1β0) +

1

g + 1
βT0 X

TXβ0

]
=− 1

2σ2
yTy− 1

2
(β − m̃)TV−1(β − m̃) +

1

2
mTV−1m +

1

σ2(g + 1)
yTXβ0

− 1

2σ2(g + 1)
βT0 X

TXβ0,

where

m̃ =
1

g + 1
β0 +

g

g + 1
(XTX)−1XTy =

1

g + 1
β0 + m and V =

g

g + 1
σ2(XTX)−1.
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Inserting this term into the integrand of p(y|X, σ2) results in

p(y|X,β, σ2) p(β|X, σ2)

=

[
|2πV|−1/2 exp[−1

2
(β − m̃)TV−1(β − m̃)]

]
×
[
(2πσ2)−n/2 exp

(
− 1

2σ2
yTy

)]
×
[
(1 + g)−p/2 exp

(
1

2
mTV−1m +

1

σ2(g + 1)
yTXβ0 −

1

2σ2(g + 1)
βT0 X

TXβ0

)]
.

This expression has to be integrated with respect to β, where only the first term depends

on β. The term that depends on β is the multivariate normal density with mean m̃ and

variance V, and it thus integrates to 1. Therefore, only the latter two terms remain. As

a consequence,

p(y|X, σ2) =

∫
p(y|X,β, σ2) p(β|X, σ2) dβ

=

[
(2πσ2)−n/2 exp

(
− 1

2σ2
yTy

)]
× (1 + g)−p/2

× exp

(
1

2
mTV−1m +

1

σ2(g + 1)
yTXβ0 −

1

2σ2(g + 1)
βT0 X

T
0 Xβ0

)
=(2π)−n/2(1 + g)−p/2(σ2)−n/2 exp

(
− 1

2σ2
SSRg

)
,

where SSRg is

SSRg = yTy− σ2mTV−1m− 2

g + 1
yTXβ0 +

1

g + 1
βT0 X

TXβ0

= yT (I− g

g + 1
X(XTX)−1XT )y− 2

g + 1
yTXβ0 +

1

g + 1
βT0 X

TXβ0.

Therefore, the posterior distribution of σ2 is given by

p( 1
σ2 |y,X) ∝ p( 1

σ2 ) p(y|X, σ2)

∝
(

1

σ2

) ν0
2
−1

exp

(
− 1

σ2

ν0σ
2
0

2

)
×
(

1

σ2

)n/2
exp

(
− 1

σ2

SSRg

2

)
=

(
1

σ2

) ν0+n
2
−1

exp

(
− 1

σ2

ν0σ
2
0 + SSRg

2

)
,
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which is also proportional to an inverse-gamma density with

1

σ2
|y,X ∼ Γ

(
ν0 + n

2
,
ν0σ

2
0 + SSRg

2

)
.

As the posterior of σ2 does not depend on β, we may sample from the joint posterior dis-

tribution p(σ2,β|y,X) with a Monte Carlo approximation. A sample (σ2,β) is obtained

by

1. sampling 1
σ2 |y,X ∼ Γ

(
ν0+n

2 ,
ν0σ2

0+SSRg
2

)
2. then sampling β|y,X, σ2 ∼ N

(
1
g+1β0 + g

g+1(XTX)−1XTy, g
g+1σ

2(XTX)−1
)
.

This is a generalization of the model discussed in Hoff (2009) who only considers

β0 = 0. In our case study, each ensemble member is a priori equally likely, so that

β0 = (0, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8).

3.1.4 Weakly informative prior

As a further option, we propose a weakly informative prior for β of the form

β|σ2 ∼ Np
(
β0,

σ2

n0
Ip
)
.

Similar to the g-prior, the factors of the multivariate normal posterior distribution m

and V are simplified compared to the multivariate prior in Section 3.1.2. Here, we obtain

Var[β|y,X, σ2] = (n0
σ2 Ip + 1

σ2X
TX)−1

= σ2(n0Ip + XTX)−1 =: σ2Σ̃,

E[β|y,X, σ2] = (n0
σ2 Ip + 1

σ2X
TX)−1(n0

σ2 Ipβ0 + 1
σ2X

Ty)

= Σ̃(n0β0 + XTy) =: β̃.

The prior distribution for σ2 continues to be the inverse-gamma distribution,

1

σ2
∼ Γ

(
ν0

2
,
ν0σ

2
0

2

)
.
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For σ2, the marginal posterior density is proportional to p(σ2) p(y|X, σ2), where here

p(y|X, σ2) =

∫
p(y|X,β, σ2) p(β|X, σ2) dβ

=

∫
(2πσ2)−n/2 exp

(
− 1

2σ2
(y−Xβ)T (y−Xβ)

)
×

|2π σ2

n0
Ip|−1/2 exp

(
− n0

2σ2
(β − β0)T (β − β0)

)
dβ.

Rearranging the exponents in the integrand results in

− 1

2σ2

[
(y−Xβ)T (y−Xβ) + n0(β − β0)T (β − β0)

]
=− 1

2σ2

[
yTy− 2yTXβ + βTXTXβ + n0β

Tβ − 2n0β
Tβ0 + n0β

T
0 β0

]
=− 1

2σ2

[
yTy− 2yTXβ + βT (n0Ip + XTX)β − 2n0β

Tβ0 + n0β
T
0 β0

]
=− 1

2σ2

[
yTy− 2yTXβ + βT Σ̃−1β − 2n0β

Tβ0 + n0β
T
0 β0

]
=− 1

2σ2

[
yTy + (β − β̃)T Σ̃−1(β − β̃)− β̃

T
Σ̃−1β̃ + n0β

T
0 β0

]
,

where

Σ̃ = (n0Ip + XTX)−1 and β̃ = Σ̃(n0β0 + XTy).

Inserting this term into the integrand of p(y|X, σ2), we get

p(y|X,β, σ2) p(β|X, σ2)

=

[
|2πσ2Σ̃|−1/2 exp

(
− 1

2σ2
(β − β̃)T Σ̃−1(β − β̃)

)]
×
[
(2πσ2)−n/2|σ2Σ̃|1/2|σ2

n0
Ip|−1/2 exp

(
− 1

2σ2
[yTy− β̃

T
Σ̃−1β̃ + n0β

T
0 β0]

)]
.

Only the first term of this expression depends on β and as it is the multivariate normal

density with mean β̃ and variance σ2Σ̃, merely the second term is left,

p(y|X, σ2) =

∫
p(y|X,β, σ2)p(β|X, σ2) dβ

= (2πσ2)−n/2n
p/2
0 |Σ̃|

1/2 exp

(
− 1

2σ2
[yTy− β̃

T
Σ̃−1β̃ + n0β

T
0 β0]

)
= (2π)−n/2n

p/2
0 |Σ̃|

1/2(σ2)−n/2 exp

(
− 1

2σ2
SSRn0

)
,

13



where SSRn0 is given by

SSRn0 = yTy− β̃
T

Σ̃−1β̃ + n0β
T
0 β0.

Then, the marginal posterior distribution for σ2 is

p( 1
σ2 |y,X) ∝ p( 1

σ2 ) p(y|X, σ2)

∝
(

1

σ2

) ν0
2
−1

exp

(
− 1

σ2

ν0σ
2
0

2

)
×
(

1

σ2

)n/2
exp

(
− 1

σ2

SSRn0

2

)
=

(
1

σ2

) ν0+n
2
−1

exp

(
− 1

σ2

ν0σ
2
0 + SSRn0

2

)
,

which is proportional to an inverse-gamma density, and it holds that

1

σ2
|y,X ∼ Γ

(
ν0 + n

2
,
ν0σ

2
0 + SSRn0

2

)
.

As in the previous section, the posterior of σ2 does not depend on β. Hence, we obtain

samples (σ2,β) from the joint posterior distribution p(σ2,β|y,X) with a Monte Carlo

approximation by

1. sampling 1
σ2 |y,X ∼ Γ

(
ν0+n

2 ,
ν0σ2

0+SSRn0
2

)
2. then sample β|y,X, σ2 ∼ N

(
β̃, σ2Σ̃

)
.

3.2 Incorporating model uncertainty

In the models introduced above, our random variable Y depends on regressors summa-

rized in x. However, it may occur that not every explanatory variable relates to the

variable y. Hence, we want to consider all 2p−1 possible regression models for y based

on different sets of regressor variables (all models include a bias-correction term). In the

Bayesian procedure, the prior distribution includes the information that each regression

coefficient other than the bias-correction term equals zero with positive probability. For

j = 2, . . . , p, the coefficient is given by

βj = mjbj , mj ∈ {0, 1}, bj ∈ R,

14



while for j = 1, the coefficient is β1 = m1b1 = b1 since m1 = 1. The regression equation

for i = 1, . . . , n becomes

yi =β1xi1 + β2xi2 + . . .+ βpxip + εi

=b1 +m2b2xi2 + · · ·+mpbpxip + εi.

Then M = (m1, . . . ,mp) specifies each of the possible regression models and indicates

which of the variables are included in the model by the non-zero entries. Given a prior

distribution p(M), the posterior probability for each model is

p(M|y,X) =
p(M) p(y|X,M)∑
M̃ p(M̃) p(y|X,M̃)

∝ p(M) p(y|X,M),

and if each model M is given an equal prior weight, we obtain

p(M|y,X) =
p(y|X,M)∑
M̃ p(y|X,M̃)

.

We need to determine the marginal probability p(y|X,M), which can be evaluated by

integrating the joint distribution of y,β and σ2 conditional on each model M with

respect to the parameters β and σ2,

p(y|X,M) =

∫∫
p(y,β, σ2|X,M) dβ dσ2

=

∫∫
p(y|β, σ2,X,M) p(β|σ2,X,M) p(σ2) dβ dσ2

=

∫ (∫
p(y|β, σ2,X,M) p(β|σ2,X,M) dβ

)
p(σ2) dσ2

=

∫
p(y|σ2,X,M) p(σ2) dσ2.

For simplicity, we use the weakly informative prior for β discussed in the previous section

(whereas Hoff (2009) used the g-prior distribution). For each modelM and j = 1, . . . , p,

let pM sum up the variables, where mj = 1, so that pM =
∑p

j=1mj . Then XM defines

the respective n× pM matrix and accordingly, βM is a vector of length pM.

Therefore, the corresponding prior distribution for β is

βM|XM, σ2 ∼ NpM(βM0 , σ
2

n0
IpM).
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The marginal probability p(y|σ2,X,M) is known as it can be computed in the same

way as shown in the previous two sections. With the following prior distribution for σ2,

1

σ2
∼ Γ

(
ν0

2
,
ν0σ

2
0

2

)
,

it follows that

p(y|σ2,X,M) p( 1
σ2 ) =(2π)−n/2

(
1

σ2

)n/2
exp

(
− 1

σ2

SSRMn0

2

)
× npM/2

0 |Σ̃M|1/2

×
(
ν0σ

2
0

2

)ν0/2
Γ(ν02 )−1

(
1

σ2

)ν0/2−1

exp

(
− 1

σ2

ν0σ
2
0

2

)
,

where

SSRMn0
= yTy− (β̃

M
)T Σ̃−1

M β̃
M

+ n0(βM0 )TβM0

Σ̃M = (n0IpM + XT
MXM)−1

β̃
M

= Σ̃M(n0β
M
0 + XT

My).

Inserting this part into the integrand of the marginal probability results in

p(y|X,M) =

∫
p(y|σ2,X,M) p(σ2) dσ2

=(2π)−n/2n
pM/2
0 |Σ̃M|1/2

(
ν0σ

2
0

2

)ν0/2
Γ(ν02 )−1

×
∫ (

1

σ2

)(ν0+n)/2−1

exp

(
− 1

σ2

ν0σ
2
0 + SSRMn0

2

)
dσ2

=(2π)−n/2n
pM/2
0 |Σ̃M|1/2

(
ν0σ

2
0

2

)ν0/2
Γ(ν02 )−1 × Γ((ν0 + n)/2)

([ν0σ2
0 + SSRMn0

]/2)(ν0+n)/2

=π−n/2
Γ((ν0 + n)/2)

Γ(ν0/2)
n
pM/2
0 |Σ̃M|1/2

(ν0σ
2
0)ν0/2

(ν0σ2
0 + SSRMn0

)(ν0+n)/2
,

where the third equation follows after adding a normalizing constant to the unnormalised

density in the integrand.

If n0 is assigned a small number, then the prior for β is flat. Furthermore, for larger

model dimensions pM, the likelihood decreases under this model. Therefore, models

with more explanatory variables are penalized.

We now average over all possible models with a different set of regressors, so that the
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distribution for new data ỹ is

p(ỹ|y) =

2p−1∑
l=1

p(ỹ|Ml) p(Ml|y),

where p(ỹ|Ml) denotes the posterior distribution under model Ml, and p(Ml|y) is the

posterior probability of this model. The latter terms sum up to 1, and are the weights

of the selected model.

3.3 Reference method

As a reference method, we investigate a simple method that pools all ensemble members

and operates with their mean value only. The probabilistic forecasts results from a

Gaussian distribution with parameters β and σ2,

Yi ∼ N
(
β + x̄i, σ

2
)
,

where x̄i =
∑p−1

j=1 xij denotes the mean of the ensemble members for i = 1, . . . , n. The

priors are set in the following way,

β|σ2 ∼ N
(

0,
σ2

n0

)
,

1

σ2
∼ Γ

(
ν0

2
,
ν0σ

2
0

2

)
.

Similar computations as in the previous sections lead to the following posteriors,

1

σ2
∼ Γ

ν0 + n

2
,
ν0σ

2
0 +

∑n(yi − x̄i)
2 − (

∑n yi−x̄i)2
n0+n

2

 ,

β|σ2 ∼ N
(∑n yi − x̄i

n0 + n
,

σ2

n0 + n

)
.

Similar as before, these posteriors provide us with a Monte Carlo sample from the joint

posterior distribution p(σ2, β|y,X).

The predictive distribution of a future value ỹ is conditioned on the observed data
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used for estimating the parameters and has the form

p(ỹ|X̃,y,X) =

∫
p(ỹ,β, σ2|X̃,y,X) dβ dσ2

=

∫
p(ỹ|X̃,β, σ2) p(β, σ2|y,X) dβ dσ2.

First, we obtain S samples from the joint posterior distribution p(σ2,β|y,X), which

are then used to get S samples of the Gaussian distribution p(ỹ|X̃,β, σ2) with the

corresponding posterior parameters β and σ2. That way, we gain a sample from the

predictive distribution.

3.4 Assessment of predictive performance

As we are now able to obtain forecasts for new data ỹ from the predictive distribution,

the next step is to ascertain how precise our forecasts are and to assess their skill.

Our probabilistic forecasts should maximize the sharpness of our predictive distribu-

tions subject to calibration (Gneiting et al., 2007). Calibration associates the forecasting

distributions and the verifying observations. To assess calibration, we will consider so-

called Probability Integral Transform (PIT) histograms (Dawid, 1984; Gneiting et al.,

2007). If y denotes the future value and F is the predictive cumulative distribution

function, then the PIT value is F (y). For calibrated forecasts, the histogram of the

PIT values over the test set should resemble the uniform distribution. For the ensem-

ble forecasts, a verification rank histogram is used to assess calibration. The histogram

shows the relative frequencies of the ranks of the observed values when pooled within the

ordered ensemble (Anderson, 1996; Hamill and Colucci, 1997). If the distribution of the

ensemble predictions equals the distribution of the observations, a uniform histogram

should emerge.

Moreover, we obtain the coverage of the prediction intervals to measure the forecast

effectiveness. As our ensemble consists of eight ensemble members, the coverage of

the 77.8%(= 100 × (8 − 1)/(8 + 1)) central prediction interval is examined, i. e. the

proportion of the verifying observations that is within the 77.8% prediction interval.

This corresponds to the proportion of observations that lie within the range of the raw

ensemble forecast.

Sharpness relates to the spread of the forecast distributions, and to evaluate this, we

provide the average width of the prediction intervals. Shorter intervals are preferred for

more accurate predictions, subject to calibration.
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Another option to measure the forecasting performance are proper scoring rules (Gneit-

ing and Raftery, 2007). Deterministic forecasts can be evaluated by the Mean Absolute

Error (MAE). For k = 1, . . . ,K observations of the test data set, let the forecast ŷk be

deterministic, and the observation denoted by yk, then the MAE is

MAE =
1

K

K∑
k=1

|yk − ŷk|.

Here, the determistic forecast is the median of the predictive distribution, i. e. the

median of our sample of S values from the posterior predictive distribution.

A proper scoring rule for predictive density functions is the Continuous Ranked Prob-

ability Score (CRPS), which covers both calibration and sharpness (Matheson and Win-

kler, 1976; Hersbach, 2000; Gneiting and Raftery, 2007). If F denotes the predictive

cumulative distribution function and y the observed value, then the CRPS is

crps(F, y) =

∫ ∞
−∞

[F (x)− I(x ≥ y)]2 dx

= E|X − y| − 1

2
E|X −X ′|,

where X and X ′ are independent variables with distribution F (Gneiting and Raftery,

2007). We divide our set of S forecasts in half with S/2 samples xs and S/2 samples

x′s, where s = 1, . . . , S/2. Then the mean of the difference between xs and the verifying

observation y is used as an approximation of E|X − y|. The other term of the score is

calculated likewise. That it,

crps(F, y) ≈ 1

S/2

S/2∑
s=1

|xs − y| −
1

S

S/2∑
s=1

|xs − x′s|.

For the test set we report the average CRPS, given by

CRPS =
1

K

K∑
k=1

crps(Fk, yk).

Both the MAE and the CRPS are negatively oriented and report values in the same

units as the observation. When comparing the predictive perfomance of competing

model forecasts, we thus aim to minimize the scores over the test set.
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4 Case study

4.1 Description of the data

We apply the methods described in the previous chapter, to produce 48-h-ahead forecasts

of surface temperature over the North American Pacific Northwest. Observations were

available at 50 stations in the time period from January 1st, 2007 to December 31st, 2008,

where the year 2008 was used as test period to evaluate the predictive performance of the

various forecasting methods, bringing about a total of 14485 observations. The ensemble

consists of the eight-member University of Washington Mesoscale Ensemble (UWME),

see Eckel and Mass (2005). The forecasts are obtained with the fifth-generation Penn-

sylvania State University-National Center for Atmospheric Research Mesoscale Model

with varying initial and boundary conditions, see Table 1. If there are less than eight

ensemble members available or the verifying observations are absent, then this particular

day is removed from the data set. Therefore, the training period often consisted of more

days than the corresponding calendar time frame.

Furthermore, Table 2 shows that the ensemble member forecasts are highly correlated,

so models including various ensemble members may be similarly skillfull.

Next, we have to decide upon the stations which should be included in the training

set. One possibility is to select data from all stations for estimating the parameters, so

Table 1: The Centers that provide the initial and boundary conditions for the eight-
member University of Washington Mesoscale Ensemble.

1 AVN, National Centers for Environmental Prediction
2 CMCG, Canadian Meteorological Centre
3 ETA, National Centers for Environmental Prediction
4 GASP, Australian Bureau of Meteorology
5 JMA, Japan Meteorological Agency
6 NGPS, Fleet Numerical Meteorological & Oceanographic Center
7 TCWB, Taiwan Central Weather Bureau
8 UKMO, Met Office
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Table 2: Correlations between the ensemble temperature forecasts.

AVN CMCG ETA GASP JMA NGPS TCWB UKMO

AVN 1.00 0.93 0.92 0.92 0.91 0.92 0.93 0.92
CMCG 0.93 1.00 0.92 0.92 0.93 0.91 0.92 0.93
ETA 0.92 0.92 1.00 0.92 0.92 0.92 0.91 0.92
GASP 0.92 0.92 0.92 1.00 0.92 0.92 0.92 0.91
JMA 0.91 0.93 0.92 0.92 1.00 0.92 0.92 0.93
NGPS 0.92 0.91 0.92 0.92 0.92 1.00 0.92 0.92
TCWB 0.93 0.92 0.91 0.92 0.92 0.92 1.00 0.92
UKMO 0.92 0.93 0.92 0.91 0.93 0.92 0.92 1.00

that on each day, the forecasts at every station are computed using the same, regionally

estimated parameters. This method is referred to as the regional method, where we have

291 test days in total. Our study also considers a local, station-specific approach, where

the parameters are estimated at each station separately by using only the observations

of this particular station for training. We refer to this as the local model.

4.2 Choice of prior distribution

In Chapter 3, we discussed three possible choices for the prior distribution of our BEMOS

method. In the regional setting, the conjugate prior distribution in Chapter 3.1.2 and

the g-prior in Chapter 3.1.3 yield comparable predictive performance. However, the

prior distribution in Chapter 3.1.2 requires a Markov chain Monte Carlo approximation

with a Gibbs sampler to obtain samples from the posterior predictive distributions. This

method is thus computationally extremely intensive and in that respect not comparable

to alternative methods such as EMOS (Gneiting et al., 2005) and BMA (Raftery et al.,

2005).

In the local setting, the weakly informative prior in Chapter 3.1.4 yields significantly

better predictive performance than the g-prior discussed in Chapter 3.1.3. For these

reasons, we focus on the weakly informative prior in the following and especially discuss

the choice of the prior parameter n0.

4.3 Choice of training period

To find a forecast on day j, we choose a training period of n days, consisting of the days

j−(n+1), . . . , j−2, as we are aiming to predict the observation two days ahead. We have
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Figure 1: Different length of the training period for temperature forecasts under the
regional method: (a) Mean Absolute Error, (b) Continuous Ranked Probability
Score, (c) Coverage of the 77.8% intervals, (d) Width of the 77.8% prediction
intervals; (◦) BEMOS (n0 = 0.01), (�) EMOS, (�) EMOS+.

to determine an appropriate choice of n. For this, we examine periods of 20, 25, . . . , 55, 60

days in the regional case. We consider the models EMOS, EMOS+ and BEMOS with

the weakly informative prior discussed in Chapter 3.1.4. Here, n0 is set to 0.01, which

corresponds to a high variability of the coefficients β and a flat prior distribution. As

one can see in Figure 1, the MAE and the mean CRPS decrease at first, increase after

a training time of 30 days, and decrease again. We also see that the BEMOS method

covers the 77.8% prediction interval quite well for all training days, whereas the EMOS
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methods show a worse coverage. Finally, the last graph shows the average width of the

prediction intervals which increases if more days are included in the training period. The

intervals of the BEMOS method are slightly wider than the intervals of the competing

models. On the whole, each graph shows that all three methods are not sensitive to

changes in the length of the training period as the values are nearly constant. Based on

these results, we use a sliding window of 30 days for the regional methods.
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Figure 2: Different length of the training period for temperature forecasts of the local
model at 20 randomly chosen stations: (a) Mean Absolute Error; (b) Con-
tinuous Ranked Probability Score; (◦) BEMOS (n0 = 0.01), (•) BEMOS
(n0 = 200), (�) EMOS, (�) EMOS+.

A similar procedure is performed for the local methods. The training set is here

composed of data from a single station and in this setting, the length of the training

period has a greater impact on the predictive performance. We consider 30, . . . , 100

days, but due to computational reasons we use only 20 of the 50 stations which are

chosen randomly. Figure 2 shows that the MAE and mean CRPS of the BEMOS model

with parameter n0 = 0.01 decreases with longer periods and that there is now a great

difference between the EMOS and EMOS+ method. Like BEMOS, EMOS improves

as the training period increases, whereas in comparison, EMOS+ yields overall better

results which do not vary very much. We observed that there were some days where

the EMOS+ method dropped every ensemble member, so the estimate was just the

intercept. And yet, this estimation leads to smaller values of the MAE and the CRPS.

In comparison to the BEMOS model with parameter n0 = 0.01, if we set n0 = 200, we
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see that increased size of the training set has an opposite effect and the values vary less

strongly. As for the regional method, the length of the training period is here 30 days.

4.4 Suitable parameters

For the parameters of the weakly informative prior, we set σ2
0 = 1 and ν0 = 1. The prior

distribution for the coefficients β has a mean of

β0 = (0, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8), so that each ensemble member is a priori

equally likely. We consider several values for n0, where a small number indicates a large

variability of β around β0. Table 3 lists the resulting MAE and mean CRPS values for

the regional and the local BEMOS methods over the test set for different choices of n0.

The scores are better for large values of n0, especially for the local method. Hence, our

model is very sensitive to the choice of the parameter n0.

Table 3: MAE and mean CRPS over the test set for the BEMOS model with changing
parameter n0.

Regional model Local model

n0 MAE CRPS MAE CRPS

0.01 2.02 1.46 1.90 1.38
0.1 2.01 1.46 – –

1 2.00 1.45 1.88 1.37
100 1.99 1.45 1.66 1.20
200 1.99 1.44 1.66 1.20
500 1.98 1.44 1.66 1.20

1000 1.98 1.44 – –

4.5 Temperature forecasts

Finally, we compare the Bayesian BEMOS approach to the performance of both EMOS

and EMOS+.

First, we examine the estimated regional regression coefficients of BEMOS and EMOS+

shown in Figure 3, where the parameters are fitted using training data of all 50 stations

in a 30-day training period, resulting in one common parameter set for all stations. All

along, the BEMOS intercept represented in plot (a) is about zero, whereas the EMOS+

technique yields values that range from about -20 to 45. The regression coefficients of

the ensemble members shown in plots (b)-(f) vary over the course of time and are quite
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Figure 3: Regional EMOS+ and BEMOS coefficients for temperature forecasts over the
Pacific Northwest for the 291 available days in the year 2008: (a) intercept,
(b)-(i) ensemble member weights; (−−) BEMOS (n0 = 500), (- - -) EMOS+.

similar except for the cases when the BEMOS coefficients are negative. In this period

of time, EMOS+ drops the ensemble member from the model.

In the local technique each station has a different set of parameter estimates. In Figure

4, the estimated intercept and coefficients at the station Sea-Tac Airport are reported.

Again, the intercept of the BEMOS method is close to zero, while the EMOS+ intercept

varies strongly over time. In fact, there are periods at some stations where EMOS+
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Figure 4: Local EMOS+ and BEMOS coefficients for temperature forecasts at the sta-
tion Sea-Tac Airport for the 291 available days in the year 2008: (a) intercept,
(b)-(i) ensemble member weights; (−−) BEMOS (n0 = 200), (- - -) EMOS+.

drops every ensemble member and estimates the forecast using only the fitted intercept.

Furthermore, its coefficients fluctuate strongly over the period, and it often drops several

members on a given day. On the other hand, all BEMOS coefficients vary around the

value 1/8 (represented by the horizontal line) for the most part, so that this method

shrinks the forecast to be close to the ensemble mean.

Table 4 summarizes the results of the measures of predictive performance of the com-
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Table 4: Prediction performance of the regional models: Scores, coverage and the average
width of the 50%, 77.8% and 90% prediction intervals for the raw and bias-
corrected ensemble, and the EMOS and BEMOS methods, the last being the
model, where every possible combination of the ensemble members are included.

Scores Prediction Interval

77.8% 50% 90%

Forecasts MAE CRPS Cov. Width Cov. Width Cov. Width

Ens.raw 2.08 1.69 0.39 2.83 – – – –
Ens.bc 2.03 1.67 0.39 2.63 – – – –
EMOS 2.01 1.45 0.74 5.56 0.49 3.07 0.86 7.49
EMOS+ 2.00 1.45 0.74 5.61 0.49 3.10 0.86 7.57
BEMOSsel(n0 = 0.01) 2.02 1.51 0.61 4.25 0.39 2.35 0.73 5.73
BEMOS (n0 = 0.01) 2.02 1.46 0.77 6.01 0.52 3.32 0.88 8.11
BEMOS (n0 = 1) 2.00 1.45 0.78 6.05 0.52 3.34 0.88 8.15
BEMOS (n0 = 500) 1.98 1.44 0.78 6.09 0.53 3.37 0.89 8.21
BEMOSref(n0 = 500) 1.99 1.44 0.79 6.27 0.54 3.46 0.89 8.45

peting regional models, where we compare values of the MAE and the mean CRPS,

and examine the coverage and mean width of the prediction intervals. The forecasts of

the bias-corrected ensemble are estimated using linear least squares regression on the

ensemble members. The prediction intervals of the raw and bias-corrected ensemble are

very sharp but have a poor coverage and have by far the worst scores. The method

BEMOSsel, where each possible model is considered, also performs badly, while being

computationally intensive. We continue to work with the full Bayesian model including

all eight ensemble members. As we have already seen above, BEMOS improves with

higher values of n0, and since the choice of n0 = 100, 200, 500, 1000 result in nearly the

same scores, we select the method with parameter n0 = 500. Moreover, we settle for

the reference model with n0 = 500, where the parameters are estimated considering

the ensemble mean only. The predictive PDFs of EMOS and EMOS+ are underdisper-

sive, whereas the predictive distributions of the BEMOS methods showed an accurate

coverage but, in comparison, sligthly wider intervals.

Figure 5 shows the verification rank histograms for the full raw and bias-corrected

data set, and PIT histograms for the methods EMOS, EMOS+ and BEMOS. The his-

tograms of the raw and the bias-corrected ensemble are U-shaped, which indicates un-

derdispersion, so that the observations incline to be smaller (greater) than the minimum

(maximum) of the ensemble range. As the histograms (c)-(h) for the other techniques
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show, EMOS and BEMOS are better calibrated with close to uniform PIT histograms.
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Figure 5: Verification rank histograms for the (a) raw and (b) bias-corrected ensemble,
and (c)-(h) PIT histograms for the competing temperature forecasts of the
regional models over all available data in 2008.
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The probabilistic forecasts of the local models are assessed similarly, as summarized in

Table 5. The technique EMOS+ have a much better MAE and mean CRPS than EMOS.

However, both methods are uncalibrated. The performance of the BEMOS methods with

small n0-values is also insufficient. Meanwhile, BEMOS (n0 = 200) exhibits the best

scores and a decent coverage of the considered prediction intervals (similar results are

obtained with n0 = 100, 500 and these are thus omitted). A summary of the predictive

performance at the Sea-Tac station is furthermore given in Table 6.

Table 5: Prediction Performance of the local models over all stations and all available
days in 2008: Scores, coverage and the average width of the 50%, 77.8% and 90%
prediction intervals for the raw and bias-corrected ensemble, and the EMOS and
BEMOS methods.

Scores Prediction Interval

77.8% 50% 90%

Forecasts MAE CRPS Cov. Width Cov. Width Cov. Width

Ens.raw 2.08 1.69 0.39 2.83 – – – –
Ens.bc 1.69 1.36 0.47 2.66 – – – –
EMOS 1.93 1.47 0.53 3.33 0.32 1.84 0.67 4.49
EMOS+ 1.68 1.25 0.63 3.75 0.40 2.07 0.77 5.06
BEMOS (n0 = 0.01) 1.90 1.38 0.69 4.67 0.43 2.56 0.82 6.34
BEMOS (n0 = 1) 1.88 1.37 0.69 4.70 0.44 2.58 0.82 6.40
BEMOS (n0 = 200) 1.66 1.20 0.76 4.85 0.51 2.65 0.87 6.60
BEMOSref(n0 = 0.01) 1.66 1.21 0.77 4.90 0.51 2.68 0.88 6.66
BEMOSref(n0 = 200) 1.98 1.40 0.78 6.03 0.49 3.31 0.90 8.21

Table 6: Prediction Performance of the local methods at Sea-Tac Airport in 2008: Scores,
coverage and the average width of the 50%, 77.8% and 90% prediction intervals
for the raw and bias-corrected ensemble, and the EMOS and BEMOS methods.

Scores Prediction Interval

77.8% 50% 90%

Forecasts MAE CRPS Cov. Width Cov. Width Cov. Width

Ens.raw 1.64 1.27 0.47 3.04 – – – –
Ens.bc 1.49 1.15 0.43 2.71 – – – –
EMOS 1.82 1.39 0.51 3.13 0.34 1.73 0.64 4.22
EMOS+ 1.50 1.11 0.62 3.45 0.43 1.90 0.78 4.64
BEMOS (n0 = 200) 1.50 1.07 0.76 4.38 0.46 2.40 0.89 5.96
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Figure 6 displays the histograms of the local methods. However, the histograms for

the EMOS, EMOS+ and BEMOS (n0 = 0.01, 1) forecasts are also slightly U-shaped,

whereas the histogram for the BEMOS (n0 = 200) forcasts are close to being uniformly

distributed.
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(h) BEMOSref(n0 = 0.01)
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(i) BEMOSref(n0 = 200)

Figure 6: Verification rank histograms for the (a) raw and (b) bias-corrected ensemble,
and (c)-(i) PIT histograms for the competing temperature forecasts of the local
models over all stations and available data in 2008.
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5 Conclusion

We propose a fully Bayesian method to produce probabilistic forecasts for temperature

that is based on the EMOS method of Gneiting et al. (2005). The model consists of

Gaussian predictive distributions with a mean that is a weighted average of deterministic

ensemble forecasts, corrected for bias. Several choices of the multivariate normal prior

distribution for the regression coefficients are considered, where a weakly informative

prior performs best. The variance of this prior depends on a parameter n0 which regulates

the spread of the prior with a small value indicating a flat prior distribution. The

variance of our predictive distribution is assigned an inverse-gamma distribution. After

observations of a training data set are included in the model, the parameters are updated

and posterior distributions are formed. Both priors are conjugate resulting in likewise

multivariate normal distribution and an inverse-gamma distribution, respectively. To

assess the model skill, predictions for a test data set are obtained.

The year 2008 is used as a test period to produce 48-h-ahead forecasts of surface

temperature over the North American Pacific Northwest. Our data set consists of the

University of Washington Mesoscale Ensemble (UWME) with eight ensemble members.

When applying our model over the test period in the year 2008, we see that it strongly

depends on the choice of the parameter n0, and assigning large values to n0 results

in the lowest values of the MAE and the mean CRPS. Moreover, in comparison to

the competing EMOS and EMOS+ methods, we get a significantly better calibration.

While the EMOS+ model drops some ensemble members, BEMOS develops a shrinkage

towards the ensemble mean with some alterations. Our reference model in the global

approach, where only the ensemble mean is used as a covariate, behaves similarly well.

In contrast to this result, the reference model in the local case performs better with a

flat prior (when n0 is small). There might be room for improvement if an automatic way

of determining the parameter n0 can be found, for instance in form of an appropriate

prior distribution.

On the whole, our prediction model leads to an improvement when assessing predictive

perfomance, where we get an accurate coverage, i. e. calibrated forecasts, and good values

in terms of the scoring rules MAE and CRPS.
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