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Abstract

Accurate forecasts are very important for large parts of the economy for avoiding high

costs and damages. In the last years, there is a growing belief that predictions have to

be in form of probabilistic forecasts. In many situations, we have access to the fore-

casts of several organizations and institutes. Therefore, it seems favorable to aggregate

these individual forecasts for generating calibrated and sharp forecasts. Unfortunately,

the most intuitive method, the linear opinion pool, lacks calibration if the individual

forecasts are calibrated. In this thesis, we investigate and compare two methods, iso-

tonic recursive partitioning and beta-transformed linear opinion pool, in the context

of calibration, sharpness and from a computational viewpoint, by implementing the

approaches in R. The methods are illustrated by a simulation study and a case study.

The case study uses statistical and National Weather Service temperature and prob-

ability of precipitation forecasts. We find that both methods can generate calibrated

and sharp forecasts even if the individual forecasts are not calibrated. Additionally,

we expand the theory of isotonic recursive partitioning.

Zusammenfassung
Um hohe Schäden und Kosten zu vermeiden, sind für einen großen Teil der Wirtschaft

exakte Vorhersagen von großer Wichtigkeit. In den letzten Jahren setzte sich immer

mehr die Überzeugung durch, dass Vorhersagen probabilistisch sein sollten. In vielen

Situationen haben wir Zugriff auf Vorhersagen von verschiedenen Organisationen oder

Instituten. Deshalb erscheint es vorteilhaft diese einzelnen Vorhersagen zu kombinieren,

um kalibrierte und scharfe Vorhersagen zu erhalten. Unglücklicherweise erzeugt die

naheliegendenste Methode, der linear opinion pool, unkalibrierte Vorhersagen für den

Fall, dass die einzelnen Vorhersagen kalibriert sind. In dieser Diplomarbeit unter-

suchen und vergleichen wir zwei Methoden, isotonic recursive partitioning und beta-

transformed linear opinion pool, in Hinsicht auf Kalibration, Schärfe und von einem

algorithmischen Blickpunkt aus, in dem wir die Methoden in R implementieren. Die

beiden Methoden werden mit Hilfe einer Simulations- und einer Fallstudie illustriert.

Die Fallstudie basiert auf mit Hilfe von statistischen Methoden erzeugten Temperatur-

und Regenwahrscheinlichkeitsvorhersagen und den entsprechenden Vorhersagen des

National Weather Service. Wir zeigen, dass beide Methoden kalibrierte und scharfe

Vorhersagen erzeugen können, unabhängig davon ob die Einzelvorhersagen kalibriert

sind oder nicht. Außerdem erweitern wir die Theorie des isotonic recursive partitioning.
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1 Introduction

Large parts of the economy are sensitive to random events like weather, economic

shocks, etc. Therefore, there is a critical need for forecasts for such events. Within

various scientific disciplines like meteorology, hydrology, business studies or demogra-

phy, there exists a growing belief that forecasts should be probabilistic in nature and

in form of predictive distributions (Gneiting and Raftery, 2007). Full predictive distri-

butions allow for the assessment of forecast uncertainty and optimal decision making

(Gneiting, 2008).

Probabilistic forecasting aims to provide calibrated and sharp predictive distribu-

tions for random events. ”Calibration refers to the statistical consistency between

the distributional forecasts and the observations and is thus a joint property of the

predictions and the events that materialize. Sharpness refers to the concentration of

the predictive distributions and is a property of the forecasts only” (Gneiting et al.,

2007, page 243). Following Murphy and Winkler (1987) and Gneiting et al. (2007),

probabilistic forecasts should be as sharp as possible, subject to calibration.

In many cases, several forecasts are available, where the forecasters have access to

different information sources. For example, there may be forecasts from different ex-

perts or organizations for today’s weather or the growth of the European economy. In

these cases, there is a strong empirical evidence that combining information sets results

in an improved predictive performance. However, because these experts are often in

competition, we cannot ask them to combine their information sets for getting a bet-

ter forecast. Thus, we search methods which generate calibrated and sharp predictive

distributions from the individual forecasts.

The most intuitive method for aggregating individual forecasts into a combined fore-

cast is the linear pool by Stone (1961) which has ubiquitous success in a large number

of applications. Although other methods for combining exist, see for example, Genest

and Zidek (1986) and Clemen and Winkler (1999), the linear pool is the favored one,

as the works of Winkler (1968), Zarnowitz (1969) and Hall and Mitchell (2007) indi-

cate (Gneiting and Ranjan, 2011). However, recent papers like Hora (2004) or Ranjan

and Gneiting (2010) point at potential shortcomings and limitations. For example,

following Hora (2004), any nontrivial convex combination of two calibrated density

forecasts is uncalibrated (Gneiting and Ranjan, 2011). Consequently, there is a need

for alternative methods.

Ranjan and Gneiting (2010) introduce the beta-transformed linear opinion pool
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(BLP) for combining probability forecasts, where the outcomes are binary random

variables. Gneiting and Ranjan (2011) expand the BLP approach to the class of cu-

mulative distribution functions on R. The main reference concerning our work is Luss

et al. (2012). The authors consider the problem of predictive modeling and estab-

lish isotonic recursive partitioning (IRP) for solving the isotonic regression problem

by Barlow and Brunk (1972), which is based on the squared error loss function. This

approach may also be used in the framework of Ranjan and Gneiting (2010). Thus

one question is, whether the IRP approach generates sharp and calibrated forecasts.

Secondly, we are interested in a comparison of the BLP and IRP approaches. Hence,

we implement the IRP approach in R and test it using the simulation example and the

case study of Ranjan and Gneiting (2010). The case study uses the data set of Baars

and Mass (2005).

Luss and Rosset (2011) formulate a generalization of IRP for a class of convex and

differentiable scoring functions, called general isotonic recursive partitioning (GIRP).

We further investigate the question, whether there exist scoring functions, for which

the solution of the GIRP approach is equal to the one of the IRP approach.

In the context of probabilistic forecasting, there is a high interest in a generalization

of the IRP approach to more general predictive distributions which do not only concern

the combination of point forecasts or probability forecasts for binary random variables.

General predictive distributions automatically lead to a different statistical framework.

A next question is thus, whether we can extend the IRP approach to other settings,

for example, the multinomial case.

The R implementation of the BLP approach of Ranjan and Gneiting (2010) was

kindly provided by Roopesh Ranjan and Tilmann Gneiting and the dataset of Baars

and Mass (2005) was kindly provided by Jeff Baars, Cliff Mass, Roopesh Ranjan and

Tilamm Gneiting. One subfunction of the IRP implementation is based on the Matlab

implementation by Luss et al. (2012) that the authors kindly sent to us.

The remainder of this work is organized as follows: The IRP and BLP approaches

and their generalizations are introduced in Chapter 2. In Chapter 3, we describe our

implementation of the IRP approach and its generalization, the GIRP approach, in

R and discuss the arising difficulties and corresponding solutions. We investigate the

equality of the GIRP and IRP approaches in Section 4.1 and give some connections to

Barlow and Brunk (1972) in Section 4.2. In Section 4.3, we focus on an extension of

the IRP approach for combining probability forecasts for categorical random variables.

In Chapter 5, we apply our implementation of Chapter 3 to the simulation study and

the case study of Ranjan and Gneiting (2010). As the IRP approach is not limited to

combining probability forecasts, we also apply it on the temperature forecast data of

Baars and Mass (2005). Finally, a summary is provided in Chapter 6.
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2 BLP and GIRP Approaches

In this chapter, we introduce the beta-transformed linear opinion pool (BLP) of Ran-

jan and Gneiting (2010) and the isotonic recursive partitioning (IRP) of Luss et al.

(2012). First, based on Ranjan and Gneiting (2010), we develop the statistical frame-

work which we mainly consider in the following sections. Then, we introduce the BLP

approach in Section 2.2 and the IRP and the GIRP approaches in Section 2.3. The

beta-transformed linear opinion pool is, in contrast to general isotonic recursive parti-

tioning (GIRP), non-parametric.

2.1. Statistical framework

We work within a probabilistic framework which considers the joint distribution of

(y, p1, . . . , pm), where y ∈ {0, 1} is a binary event and p1, . . . , pm ∈ [0, 1] are the prob-

ability forecasts of m forecasters for y. In this framework, a combined probability

forecast is a random variable p̂ that is measurable with respect to the σ-algebra gener-

ated by p1, . . . , pm. As already mentioned in the Introduction, probabilistic forecasting

aims to provide calibrated forecasts.

Definition (Ranjan and Gneiting, 2010)

A probability forecast p is calibrated for the binary random variable y if the probability

that y occurs conditional on p is equal to p. That is

P(y = 1|p ) = E(y|p ) = p

almost surely.

For example, the linear opinion pool

p̂ = w1p1 + · · ·+ wmpm,

w1, . . . , wm > 0, w1 + · · ·+ wm = 1,

satisfies the condition of measurability. However, Ranjan and Gneiting (2010) prove,

see Theorem 2.1, that the linear opinion pool lacks calibration in the sense that

P(E(y|p̂ ) 6= p̂ ) > 0,
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if all forecasts p1, . . . , pm are calibrated. Thus, other methods for combining forecasts

are needed.

Theorem 2.1 (Ranjan and Gneiting, 2010)

Suppose that p1, . . . pm are calibrated for the binary event y and such that pi1 6= pi2
with strictly positive probability for at least one pair i1 6= i2. Consider the linear

opinion pool

p̂ = w1p1 + · · ·+ wmpm,

where w1, . . . , wk > 0 and w1 + · · ·+ wm = 1. Let

q = P(y = 1|p̂) = E(y|p̂)

denote the recalibrated version of p̂, i.e. the conditional probability of y given p̂. Then

the following results hold.

1. The linear opinion pool lacks calibration, in that q 6= p̂ with strictly positive

probability.

2. The linear opinion pool p̂ lacks sharpness, in that

E(p̂− p0)2 < E(q − p0)2,

where p0 = E(p̂) = E(q) = E(y). In words, both p̂ and q are marginally consistent,

but on average p̂ is closer to its expectation, the naive climatological forecast p0,

than its recalibrated version q.

3. The recalibrated forecast q is calibrated, i.e. P(y = 1|q) = q almost surely, and it

outperforms p̂, in that

E {S(q, y)} < E {S(p̂, y)}

for every strictly proper scoring rule 1.

The theoretically optimal combination of p1, . . . , pm is a probability forecast p∗ such

that

E(p∗ − y)2 ≤ E(p̂− y)2,

where p̂ is any measurable forecast with respect to the σ-algebra generated by p1, . . . , pm.

The forecast p∗ is then the conditional expectation of y

p∗ = E(y|p1, . . . , pm). (2.1)

This forecast minimizes the expectation of any strictly proper scoring rule (Ranjan

and Gneiting, 2010). By Theorem 2.1, p∗ can only be a non-linear opinion pool of

p1, . . . , pm. However, the optimal combined probability forecast (2.1) is in general un-

known and has to be estimated from a training data set.

1See Gneiting and Raftery (2007) for an introduction to the theory of strictly proper scoring rule S.
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2.2. Beta-transformed linear opinion pool

The BLP approach applies a beta transform to the linear opinion pool, in order to

recalibrate it. The combined forecast p̂ is of the form

p̂ = Bα,β

(
m∑
k=1

wkpk

)
, (2.2)

where

Bα,β(z) = B(α, β)−1
∫ z

0

tα−1(1− t)β−1dt, z ∈ [0, 1]

is the cumulative distribution function of the beta density and

w1, . . . , wm ≥ 0, w1 + · · ·+ wm = 1.

For α = β = 1, we get the traditional linear opinion pool. Often it can be useful to

set further constraints on the recalibration transform Bα,β. For example, one might

require that

Bα,β(z)

≤ z for z ≤ z0

≥ z for z ≥ z0
, (2.3)

for some z0 ∈ (0, 1). ”For example, if the individual forecasts are calibrated, Theo-

rem 2.1 suggests that the linear opinion pool is underconfident,in the sense that the

calibration curve lies under the diagonal for small forecast probabilities, and above

the diagonal for high probabilities, with a fixed point at some z0 ∈ (0, 1)” (Ranjan

and Gneiting, 2010, page 78). Theorem 2 of Wallsten and Diederich (2001) supports

the choice of z0 = 1/2, under which condition (2.3) can be enforced by requiring that

α = β ≥ 1 (Ranjan and Gneiting, 2010).

We now consider the estimation of the parameters α, β, w1, . . . , wm of the BLP model.

Let (Y, P1, . . . , Pm) be the training data set, where Y = (y1, . . . , yn) ∈ {0, 1}n is the

vector of available observations of binary random variables and Pk = (Pk1, . . . , Pkn) ∈
[0, 1]n, k ∈ {1, ..,m}, are the corresponding probability forecasts for Y issued by the

k-th forecaster.

The aggregated BLP forecast has the form

P̂i = Bα,β

(
m∑
k=1

wkPki

)
for i = 1, . . . , n.

If we assume independence of the yi , i ∈ {1, . . . , n}, the log-likelihood function of

the BLP model in (2.2) is equal to
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l(Y,P1, . . . , Pm;w1, . . . , wm;α, β)

=
n∑
i=1

[yi log (P̂i) + (1− yi)(1− log (1− P̂i))] (2.4)

=
n∑
i=1

(
yi log

[
Bα,β

(
m∑
k=1

wkPki

)]
+ (1− yi) log

[
1−Bα,β

(
m∑
k=1

wkPki

)])

We get maximum likelihood estimates for the k+2 parameters w1, . . . , wk, α, β under

the constraints w1, . . . , wk ≥ 0, w1 + · · · + wk = 1 and α > 0, β > 0 by numerically

optimizing the function l(Y, P1, .., Pm, w1, .., wk, α, β). If wet set further constraints,

such as (2.3), we get stricter constraints on the parameters.

The BLP is thus a parametric method for combining probability forecasts for binary

events. The advantage of the parametric approach is that the number of parameters

is linear in the number of forecasters and not exponential, as in the non-parametric

case. This effect of an exponential growth in parameters is called the curse of high

dimensions which we avoid with this method. Nonetheless, if we want to include a

further forecast, we have to estimate all our parameters again and the previous results

will not help us.

Gneiting and Ranjan (2011) formulate a generalization of the BLP approach for the

full class of cumulative distribution functions FR. Specifically, let F1, .., Fm ∈ FR be

cumulative distribution functions on R. Then the combined cumulative distribution

function F̂ ∈ FR is of the form

F̂ (y) = Bα,β

(
m∑
k=1

wkFk(y)

)
, z ∈ R, (2.5)

where w1, .., wm are non-negative and the sum of them is equal to 1. Here, Bα,β denotes

the cumulative distribution function of the beta density with parameters α, β > 0.

If each cumulative distribution function Fk has a Lebesgue density, fk, k ∈ {1, ..,m},
the combined predictive cumulative distribution function has Lebesgue density

f̂(y) =

(
m∑
k=1

wkfk(y)

)
bα,β

(
m∑
k=1

wkFk(y)

)
,

where bα,β denotes the beta density with parameters α, β > 0. As in the case of

binary outputs, we can estimate the parameters from a training data set (Y, F 1, .., F m),

where Y = (y1, .., yn) ∈ Rn and F k = (Fk1, . . . , Fkn) are the corresponding predictive

distributions of the k-th forecaster for Y . Let each predictive distribution function Fki
be absolutely continuous and have a Lebesgue density fki. Then, we can estimate the
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parameters by maximizing the sum of the logarithmic scores:

l(Y, F 1, .., F m,w1, .., wm;α, β)

=
n∑
i=1

log f̂(yi) (2.6)

=
n∑
i=1

(
log

[
m∑
k=1

wkfki(yi)

]
+ log

[
bα,β

(
m∑
k=1

wkFki(yi)

)])
.

The logarithmic score is a proper scoring rule, in the sense that forecasting the true

density of the observation maximizes the expected score. It maps the density forecast

and the realizing observation to the logarithm of the value that the density forecast

attains at the observation. It is positively orientated, which means, the higher, the

better. Nevertheless, if we assume independence between the n training cases, the

corresponding estimated parameters can be seen as maximum likelihood estimates.

The generalization of the BLP is not of interest in our setting as the GIRP approach

cannot combine predictive distributions. However, GIRP has the ability to combine

forecasts that are not probabilistic.

2.3. Isotonic recursive partitioning

Concerning the problem of predictive modeling, we want to fit a model describing the

dependence of our observation y on the forecasts (p1, . . . , pm), where y, p1, . . . , pm ∈ R.

In the following, we work within a more general framework than that of Section 2.1,

in the sense that the forecasts and the observations are in R. Nevertheless, the results

are equally applicable.

In the context of combining forecasts, it seems favorable to set isotonic constraints

on the combined forecast p̂. For example, if each forecaster says that the probability

of precipitation for today is lower than for tomorrow, p̂ should preserve this property.

Thus, we achieve a lower combined probability of precipitation for today than for

tomorrow. Therefore, we are searching for an isotonic function

g : Rm → R,
(p1, . . . , pm) 7→ g(p1, . . . , pm) = p̂.

(2.7)

that maps the individual forecasts to an aggregated forecast p̂.

Definition

A function g : Rm → R is called isotonic if ∀ p = (p1, .., pm), p̃ = (p̃1, . . . , p̃m) ∈ Rm:

pk ≤ p̃k, ∀k ∈ {1, . . . ,m} ⇒ g(p) ≤ g(p̃).
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The isotonic function g has to be estimated from some training data. Let (Y, P1, .., Pm)

be a given set of training data, where Y = (y1, . . . , yn) ∈ Rn is the vector of observa-

tions and Pk = (Pk1, . . . , Pkn) ∈ Rn, k ∈ {1, . . . ,m} , the corresponding forecast of the

k-th forecaster for Y . In the case of probability forecasts for binary output, we get

Y ∈ {0, 1}n and Pk ∈ [0, 1]n, k ∈ {1, . . . ,m}.
Here, isotonic constraints are achieved by applying the considerations above to the

training data. In general, the set of isotonic vectors is a closed convex cone in Rn

(Barlow and Brunk, 1972). Define by I the set of isotonic constraints generated by the

training data set. This set I can be characterized as follows

(i1, i2) ∈ I ⇔ Pki1 ≤ Pki2 ∀k ∈ {1, . . . ,m} ,

that is, in the case i1 each forecaster has a lower prediction value than in the case i2.

Additionally, the function g should minimize an objective value. If we define the

objective value as the sum of the squared errors, we get the following optimization

problem

g∗ = argmin
g isotonic

n∑
i=1

(yi − g(P1i, .., Pmi))
2. (2.8)

For the probabilistic framework of Section 2.1, we use the negatively orientated Brier

score, which is equal to the squared error.

Remark

The problem (2.8) corresponds to the isotonic regression problem by Barlow and Brunk

(1972). Following their definition we have to solve

Minimize
n∑
i=1

(yi − g(P1i, .., Pmi))
2wi ,

subject to

(P1i1 , .., Pmi1) ≺ (P1i2 , .., Pmi2)⇒ g(P1i1 , .., Pmi2) ≤ g(P1i2 , .., Pmi2),

where

(P1i1 , .., Pmi1) ≺ (P1i2 , .., Pmi2)⇔ Pki1 ≤ Pki2 ∀ k ∈ {1, ..,m} , i1, i2 = 1, .., n

and

wi ≥ 0, ∀ i ∈ {1, .., n} .

Any solution to this problem is called isotonic regression. As we weight all observa-

tions and corresponding forecasts equally, we set the weights wi, i ∈ {1, .., n}, equal

to 1. Barlow and Brunk (1972) give a characterization of the solution of the isotonic

regression problem, see Barlow and Brunk (1972, Eq 2.8).
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Some properties of g∗ are well-known. ”As many authors have noted, g∗ comprises a

partitioning of the space Rm into regions with no holes satisfying isotonicity properties

defined below, with a constant fitted to g∗ in each region.” (Luss et al., 2012, page

1). In the context of probability forecasts, g∗ comprises a partitioning of [0, 1]m. If

the number of observations and the number of forecasters both grow large, two major

concerns arise: statistical difficulty in form of overfitting as well as computational

difficulty. In the worst case, it can happen that the number of forecasters is so high

that the number of restrictions is very small. As a consequence, the fit for many points

would be equal or relatively near to their corresponding observation. This might lead

to overfitting.

A computationally attractive approach to solve the optimization problem in (2.8) can

be found in the optimization and operational research literature. By repeatedly solving

’optimal cut problems’, for which efficient algorithms exist, we split our data set into

regions of decreasing size. This recursive approach generates isotonic models of increas-

ing model complexity in each iteration step, ultimately leading to g∗. This method is

called isotonic recursive partitioning (IRP). The approach is already mentioned in the

paper by Maxwell and Muckstadt (1985). However, Maxwell and Muckstadt (1985)

use a different objective value than the sum of the squared errors in (2.8)(Luss et al.,

2012). In contrast to the BLP of Gneiting and Ranjan (2011), IRP is a non-parametric

approach.

In the case of the isotonic regression problem, the solution is well-known: Obser-

vations are divided into subsets, where the fit in each set is equal to the set mean

observation value. This can be seen by the conditions of Karush-Kuhn-Tucker (KKT),

see Luss et al. (2012, Section 2.1) and Boyd and Vandenberghe (2004) for details.

If we want to generalize the optimization problem (2.8) to the class of scoring func-

tions which are convex and differentiable, we have to solve

g∗ = argmin
g isotonic

n∑
i=1

fyi(g(P1i, .., Pmi)), (2.9)

where fyi is differentiable and convex and depends on the corresponding observation

value yi, but not on the other observations. Luss and Rosset (2011) expand the IRP

approach to this framework and refer to it as generalized isotonic recursive partitioning

(GIRP). As in (2.8), we can conclude properties of the solution (2.9) by KKT. The

KKT conditions imply that as in the case of IRP, observations are divided into subsets

with a constant solution in each subset. The solution depends on the scoring functions.

Following Luss and Rosset (2011), with the KKT conditions we get a partitioning al-

gorithm for solving (2.9) as follows:

Let

V ⊆ {(yi, P1i, .., Pmi) : i = 1, . . . , n}
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be a subset of the training data set. We define

Ṽ = {i : (yi, P1i, .., Pmi) ∈ V, i = 1, . . . , n}

as the set of corresponding indices and IV ⊆ I as the set of isotonic constraints gen-

erated by V . Following the KKT conditions, the value wV that minimizes the sum of

the scoring functions in (2.9) for the subset V is given by

wV = argmin
z∈R

∑
i∈Ṽ

fyi(z). (2.10)

This leads to the condition ∑
i∈Ṽ

∂fyi(z)

∂z

∣∣∣∣
wV

= 0.

Suppose V is optimally split in the sense that a further partition is not beneficial or

contradicts the isotonic constraints represented by IV . According to the KKT condi-

tions, it should be infeasible to find two subsets

(Ṽ1, Ṽ2) ∈ CV =
{

(A,B)|A,B ⊆ Ṽ , A ∪B = Ṽ , A ∩B = ∅,@x ∈ A, y ∈ B : y ≺ x
}
,

which fulfill ∑
i∈Ṽ2

∂fyi(z)

∂z

∣∣∣∣
wV

−
∑
i∈Ṽ1

∂fyi(z)

∂z

∣∣∣∣
wV

< 0. (2.11)

The summation over Ṽ2 represents the change in the objective value of the opti-

mization problem (2.9) due to an increase in the solution wV of (2.11), whereas the

summation over Ṽ1 represents the change in the objective value due to a decrease of

wV . Thus, an increase of the solution of the set V2 and a decrease of the solution of V1
will cause an overall decrease of the objective value. Following the KKT conditions,

the optimal solutions are wV1 and wV2 . The GIRP approach is looking for two such

subsets Ṽ ∗1 ,Ṽ ∗2 that minimize the left hand term in (2.11).

Thus, we get to the optimal cut problem

(Ṽ ∗1 , Ṽ
∗
2 ) = argmin

(Ṽ1,Ṽ2)∈CV

∑
i∈Ṽ2

∂fyi(z)

∂z

∣∣∣∣
wV

−
∑
i∈Ṽ1

∂fyi(z)

∂z

∣∣∣∣
wV

 . (2.12)

This cut problem can be expressed as the binary program

x∗ = argmin
x

∑
i∈Ṽ

xi
∂fyi(z)

∂z

∣∣∣∣
wV

: xi ≤ xj ∀(i, j) ∈ IV , xi ∈ {−1, 1} ∀i ∈ Ṽ

 .

(2.13)

As we have seen in (2.11), the sum of the scoring functions with xi = 1 (xi = −1)

can be decreased by increasing (decreasing) the corresponding fits. Thus, we get

Ṽ ∗1 = {i : x∗i = −1} and Ṽ ∗2 = {i : x∗i = 1}
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and the corresponding optimal subsets V ∗1 , V ∗2 of V as the corresponding subsets of the

training data. If we set fyi(z) = (z − yi)2, we get the solution of the IRP approach.

Based on this theoretical approach, we can implement an algorithm. We start with

the entire data set in one set. After each split, we save the resulting objective cut value

cTx∗ =
∑
i∈Ṽ

xi
∗ ∂fyi(z)

∂z

∣∣∣∣
wV

(2.14)

and perform the next cut with the smallest remaining cut value. The set V is optimally

split if each entry of the solution x∗ of (2.13) is equal to 1 or −1. The algorithm stops

if there exists no further partition of the current sets.

Algorithm 1 Generalized Isotonic Recursive Partitioning by Luss and Rosset (2011)

Require: Observations y1, .., yn and set of isotonic restrictions I

Require: A = {{1, .., n}}, C = {(0, {1, .., n} , ∅)}, B = ∅
Require: k := 0, M0 = (A,wA)

1: while A 6= ∅ do
2: k := k + 1

3: Let (val, w−, w+) ∈ C be the potential partition with smallest val

4: Update A = (A\(w− ∪ w+)) ∪ {w−, w+}
5: Update C = C\(val, w−, w+)

6: Mk = (A ∪B,wA∪B)

7: for all v ∈ {w−, w+} do
8: Set ci = ∂fi(x)

∂x

∣∣∣
wV

∀i ∈ v and wV is the weight of V defined in (2.10)

9: Solve (2.13) with input c and the corresponding partial order IV and get x∗

10: if x∗1 = · · · = x∗n (set is optimally split) then

11: Update A = A\v and B = B ∪ v

12: else

13: Let v− = {i : x∗i = −1} and v+ = {i : xi = 1}
14: Update C = C ∪

{
cTx∗, v−, v+)

}
15: end if

16: end for

17: end while

18: return B, indices of observations corresponding to the optimal sets

At each iteration step, the algorithm produces a model Mk which contains the par-

tition of the data set after the k-th iteration step. Luss and Rosset (2011) prove that

this algorithm is a no-regret partition algorithm of problem (2.13) in the sense that it

does not cut through a set of the global optimal solution of (2.9), see Theorem 1 of

Luss and Rosset (2011). Further, they demonstrate that the model Mk is in the class

of isotonic models after each iteration step k, see Theorem 2 of Luss and Rosset (2011).

Thus, we get a regularization path of isotonic models.

11



Consequently, we can stop the algorithm before it is near or equal to the global

optimal solution. Further, the authors argue that the comparative improvement of the

objective value is much greater in the early steps of the GIRP algorithm than in the

later steps. Hence, it might be useful to stop the algorithm before reaching the global

optimal solution, for reducing the problem of overfitting.

Remark

The generalized isotonic regression problem of Barlow and Brunk (1972) is to

Minimize
n∑
i=1

[Φ(g(P1i, .., Pmi))− yig(P1i, .., Pmi)]wi,

subject to

(P1i1 , .., Pmi1) ≺ (P1i2 , .., Pmi2)⇒ g(P1i1 , .., Pmi2) ≤ g(P1i2 , .., Pmi2),

where

(P1i1 , .., Pmi1) ≺ (P1i2 , .., Pmi2)⇔ Pki1 ≤ Pki2 ∀ k ∈ {1, ..,m}

and

wi ≥ 0, ∀ i ∈ {1, .., n} .

Here, Φ is convex and proper, that is, it takes nowhere the value −∞ and is not

identical to +∞. Luss and Rosset (2011) prove that under the assumption of differen-

tiability on Φ, each generalized isotonic regression problem can be solved by GIRP.
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3 Implementation in R

In this chapter, we implement the IRP and GIRP algorithms described in Chapter 2

in R and give a short overview over the differences between the two functions. Further,

we describe computational difficulties and corresponding solutions. First, we introduce

the standardization of the optimization problem (2.13) in Section 3.1 and then its

implementation in Sections 3.2 and 3.3.

3.1. Standardization of the optimization problem

As already mentioned, the solution of the IRP approach is equal to the solution of the

optimization problem (2.13) that is given by

x∗ = argmin
x

∑
i∈Ṽ

xi
∂fyi(z)

∂z

∣∣∣∣
wV

: xi ≤ xj ∀(i, j) ∈ IV , xi ∈ {−1, 1} ∀i ∈ Ṽ


and we aim to rewrite it as a standard linear optimization problem

min
x

cTx, subject to Dx ≤ d, x ≥ 0. (3.1)

If we change (2.13) such that xi ∈ {0, 1} , i = 1, . . . , n, the solution x∗ does not

change. Consequently, solving (2.13) is equal to solve

x∗ = argmin
x

∑
i∈Ṽ

xi
∂fyi(z)

∂z

∣∣∣∣
wV

: xi ≤ xj ∀(i, j) ∈ IV , xi ∈ {0, 1} ∀i ∈ Ṽ

 .

From this, we may deduce the matrix D and the vector d which represent the side-

conditions in (3.1). A direct approach is the following.

Let (i1, i2) ∈ IV . We want to exclude the case that i1 = 1 and i2 = 0. Thus, we set

up an inequality

xi1 − xi2 ≤ 0.

If we apply this to all members of IV , we get #IV inequalities. Finally, we have to

set up n further inequalities, which bound the xi to be at maximum 1. Consequently,

we get the desired matrix D and the vector d = 0. Therefore, we can use existing R

packages for solving (2.13).
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3.2. Implementation of the IRP approach in R

As mentioned in Chapter 2, for both the IRP and GIRP approach, we need training

data to estimate the isotonic function g. In the implementation, we represent the

different forecasts in an m × n matrix, P , where m is the number of forecasts and

n is the number of cases in the training data set. The second input are the obser-

vations Y of the training data set contained in the vector y. The forecasts of the

test data set are represented in a m × ñ matrix P̃ , where ñ is the number of cases in

the test data set. This matrix P test is our third and last input. For generating a

forecast ỹ for the test data set out of the training data, we implement the function IRP.

## I n i t i a l i z a t i o n o f the parameters ##

P <− matrix (0 , n ,m)

P t e s t <− matrix (0 , n t e s t ,m)

y <− matrix (0 , n , 1 )

## Put in the data ##

P <− . . .

P t e s t <− . . .

y <− . . .

## App l i e s the IRP a lgor i thm on the data and re turns a vec t o r

## with the f o r e c a s t s f o r the t r a i n i n g data s e t P t e s t

y pred <− IRP(y ,P,P t e s t )

Listing 3.1: Setting and call of the function IRP

The function IRP itself combines three subfunctions which perform the IRP approach.

The first and second subfunctions execute the approaches of Section 2.2 and Section

3.1. The third one computes the corresponding forecasts for the training data set. In

the following subsections, we look at each of these functions and explain their func-

tionality. Some of the three mentioned subfunctions use further functions which set

up and solve the standardized optimization problem of Section 3.1. The code of each

subfunction can be found in the Appendix B. For solving the linear program, we use

the R libraries lpSolve and linprog. The function IRP has the following form:
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IRP<−function (y ,P,P t e s t ){

l ibrary ( lpSo lve )

l ibrary ( l i n p r o g )

## Get the number o f f o r e c a s t e r s and cases

m <− dim(P[ 1 , ] )

n <− dim(P[ , 1 ] )

## Sort the data

p temp <− order (P[ , 1 ] )

y <− y [ p temp ]

for ( i in 2 :m){
P[ , i ] <− P[ , i ] [ p temp ]

}

## 1. sub func t i on : Se t s up the i s o t o n i c c on s t r a i n t s

A <− createMatrixA (P)

## 2. sub func t i on : Executes the IRP approach

p f i t s <− IRP cut (y , A)

## 3. sub func t i on : Computes the p r o b a b i l i t y f o r e c a s t

y pred <− yPred i c t i on (P te s t , p f i t s , P, mean( y ) )

return ( y pred )

}

Listing 3.2: The IRP command

3.2.1. The createMatrixA - function

The createMatrixA function is implemented for generating the set of isotonic con-

straints I in Algorithm 1 of Chapter 2 from the training data forecasts P . Each

isotonic constraint is a further side-condition of the optimization problem (2.13). In

the end, the isotonic constraints are represented in the matrix A by

A[i1, i2] = 1 if P [i1, k] ≤ P [i2, k], ∀k ∈ {1, . . . ,m} , i1, i2 = 1, . . . , n.
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Otherwise, the entry is zero. Because we have already sorted the data set with respect

to the first forecaster, A[i, j] = 0 if i > j. Here it is important to mention that the

matrix A is not equal to the matrix D of Section 3.1. The matrix A just contains the

information about the isotonic constraints, but is not directly used for solving (3.1).

For small data sets, this procedure is fine. But for a high number of training cases,

the number of constraints grows large. Because each positive entry of A is one further

constraint, it is a further side-condition. Consequently, we may get a high number

of inequalities represented by the matrix D. For example, if we have a training data

set with about 1,000 observations, we can at maximum get about 500,000 entries of

the matrix which are equal to one and R cannot handle the resulting matrix D with

500,000 rows and 1,000 columns. Therefore, we have to reduce the number of entries

in the matrix which are equal to one to a minimum. Our approach is to interpret the

matrix A as the adjacency matrix of a graph.

Definition (Brouwer et al., 1989)

A graph is a pair Γ = (V,E) consisting of a set V, referred to as the vertex set, and a

set E of 2-subsets of V, referred to as the edge set.

If we think of our restrictions as a directed graph with n vertices, (i, j) is a edge if

A[i, j] = 1. Thus, A is the adjacency matrix of a directed graph with n vertices and

#I edges. Consequently, we have to reduce the set of edges E to a minimum Ẽ in

the sense that each edge of E can be concluded by Ẽ. Hence, we have to compute the

transitive reduction of the directed graph.

We start in the first row of the matrix A and check whether there exists a case j,

1 6= j, with A[1, j] = 1. Second, we search for a third case k with the property that

A[1, k] = 1 and A[k, j] = 1. If such a k exists, we can set A[1, j] equal to 0 because

the information about the isotonic constraint is already represented by the isotonic

constraints given by A[1, k] and A[k, j]. Because A is a upper triangular matrix, we

just have to investigate the k’s between 1 and j, because otherwise A[k, j] is 0. In the

context of the graphical model this means that the restriction generated by the edge

(1, j) is already represented by the edges (1, k) and (k, j). After we have investigated

all elements of the first row, we go on with the second, the third and so on until the

matrix A represents the minimum number of restrictions.

In this way, we compute the matrix A which contains all necessary isotonic con-

straints for solving (2.13). All in all, with this procedure, we can reduce the number of

side-conditions to a minimum and thus we need not to stop at a size of about 600 obser-

vations. Note that the createMatrixA function is the slowest of the three subfunctions

because it has to make a lot of comparisons.
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3.2.2. The IRP cut-function

This main function generates the IRP cut by executing Algorithm 1 of Chapter 2. The

IRP cut-function is based on the Matlab implementation of Luss et al. (2012) wich

was kindly provided by the authors. We start with the observation vector y and the

matrix A which was generated by the createMatrixA function. Figure 3.1 illustrates

the solution, p fits, for combining two individual probability forecasts p1, p2 for 2,000

training data points.

Figure 3.1.: Illustration of the fits in dependence on some training forecasts p1 and p2.

First, we check whether or not we can split the whole data set by calling the sub-

function IRP wrapper (the code is in the Appendix B). This subfunction puts up the

matrix D and the vector d of Section 3.1 out of the matrix A and solves the optimization

problem (2.13) with the help of the linprog and lpSolve libraries.

But this method has a limit of about 3,000 observations. If we want to apply this

implementation on 5, 000 training data points, we have to implement the IRP wrapper

in C++. The reason is that the lpSolve generates a matrix for solving the linear

programme of high dimension. Unfortunately, the dimension of this matrix is too high

for R at a level greater than 3,000. But for our applications this limit was enough.

If we get a positive feedback that we can split the whole dataset, we update two help

vectors, cutgroups1 and cutgroups2, to save the split and a vector cutvalues for cTx,

defined in (2.14). The vector cutgroups2 contains the knowledge about the subsets

we already have investigated on the possibility to split and the vector cutgroups1,

the optimal split of them. Consequently, after the first solution of the optimization

problem, each entry in cutgroups2 is equal to 1 and in cutgroups1 each entry is

1 or 2 depending on the solution vector of the optimization problem. The variables
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cutcount1 and cutcount2 are just the corresponding control variables for our help

vectors. If we compare this approach to Algorithm 1 of Chapter 2, we get that our

three help vectors span our set C, see line 3 and 14 of Algorithm 1 in Chapter 2.

After this first split, we start a while loop. At first, we update our variable maxCutValue.

If all entries of cutvalues are equal to 10, 000, we stop the loop, otherwise we go on.

From cutgroups2, we get the corresponding indices of the maxCutValue. Because we

already know how to split set the by the vector cutgroups1, we check whether we

can split the corresponding subsets further with the IRP wrapper. If not, we set each

corresponding entry of cutvalues equal to 10, 000. If yes, we update our three help

vectors with the new results. In this part, we also update the corresponding entries of

our solution vector p fits by taking the mean other the appropriate subset.

This will go on as long as we can split the data set further. Because we know that

we have a finite number of observations n and that two already separated sets cannot

merge again, we can say with certainty that our algorithm will be finished in a finite

period of time, independent of the data set. Finally, it returns the vector p fits with

the appropriate solutions of the training data set. This handling is a bit different from

Algorithm 1, where we return the set of the indices B. However, we can deduce B by

the output vector.

3.2.3. The ypred-function

The third subfunction calculates the forecasts for the test data set out of the p fits

which were calculated by the IRP cut function. It has as further input the matrices

P test, P and the value ImPred; in this case the mean of the observations of the training

data set. For each point of the test data set, we check which forecasts of the training

data set are ’below’ and which are ’above’ the corresponding forecast. In this context,

a training forecast is ’below’ a test forecast if all single predictive values in the training

forecast are smaller than the ones in the test forecast. We define ’above’ analogously.

Depending on the set of indices of points which are above or below, we calculate the

corresponding combined forecast y pred. Thus, we define a control variable compare.

If we just have either points below or above a test point, the parameter compare

is equal to 1. We set the forecast of the test data point equal to the maximum of

p fits if there are only points below and equal to the minimum of p fits if we just

have points above. Of course, this may not be optimal because there probably exist

two forecasts which are very close in the plane, but the difference of the corresponding

combined forecasts is very high. But if we want to have isotonicity of the combined

test forecasts independent of the training data set this is the only possibility.

If the value of compare is equal to 0, which means that we have neither forecasts

of the training data set which are below nor above, we set the corresponding forecast

value equal to the value incomPred, the mean of the observations of the training data
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set in this case. This handling of the training data points which have not training data

points below or above assures the isotonicity of our solution y pred. Of course, we

could set ImPred equal to any value in the interval from the smallest to the highest

value of p fits.

In most cases, we have training data points which are below and others which are

above a corresponding test data point. In this case, the value compare is equal to 2.

We set the forecast equal to the mean of the maximal solution value of the training

forecasts which are below and the minimal solution value of the ones above. After we

have calculated the combined forecast for each test data point, we return the vector

y pred with the combined forecast.

3.3. The GIRP-function

In this section, we give a description of the possibilities of the GIRP-function. Extend-

ing the IRP-function, it contains further parameters that can be useful for combining

forecasts. The core of the GIRP-function is like the one of the IRP-function.

The parameters y, P and P test are the same as in the previous case. As mentioned

in Chapter 2, the GIRP is the generalization of the IRP in the way of generalizing the

scoring function under which to minimize. Thus, the GIRP-function has a parameter

called loss func. The user can decide under which scoring function the solution of

the GIRP approach should be calculated. This parameter has to fulfill two conditions:

1. It has to be differentiable in the sense that it is computable by the R function D.

2. The mode of the scoring function has to be expression and it must have the

parameters x and a, where x is the forecast and a is the observation. For example,

if we want to minimize a probabilistic forecast under the logarithmic score for a

binary output, we set

loss func=expression(-a*log(x)-(1-a)*log(1-x)).

The output is, as in the case of the IRP-function, a vector y pred GIRP with the

forecasts for the test data set corresponding to the combined forecasts of the training

data set. In the case of probabilistic forecasts, it may be helpful to change these

forecasts a bit. If we have, for example, the logarithmic score and we have a combined

forecast which is equal to 0 or 1, the probability for getting a penalty of∞ is normally

strictly positive. For avoiding this risk, we may decrease a forecast equal to 1 to the

next lower fit and a forecasts equal to 0 to the next higher fit calculated by IRP cut.

Our second extension to the IRP-function is that we can decide whether we want to

know the number of subsets which were generated and the number of iteration steps
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which were necessary for it. In the base setting, the number of subsets is printed, but

not the number or iteration steps. By setting out iter=T, the number of iteration

steps will be printed, too.

As mentioned in Chapter 2, the problem of statistical overfitting can arise for a high

number of training data points. For this reason, we defined the parameter ch p fits.

After each update of the solution (2.10), the GIRP cut function checks, if the compar-

ative improvement of the objective value (2.9) of the previous solutions to the updated

solutions is higher than ch p fits. If not, the corresponding entries of the vector

cutvalues are set to 10,000 and there will not be a further partition of this set. Oth-

erwise, we will go on as described in Algorithm 1 of Chapter 2. At standard, this

parameter is 0 and the algorithm stops if no further splits are possible.

GIRP<−function (

y ,P,P te s t , l o s s func , out i t e r , out num, imPred , ch p f i t s ){

l ibrary ( lpSo lve )

l ibrary ( l i n p r o g )

## Variab l e d e c l a r a t i on and s o r t i n g

n <− length (P [ , 1 ] )

m <− length (P [ 1 , ] )

p temp <− order (P [ , 1 ] )

y <− y [ p temp ]

for ( i in 1 :m) P[ , i ] <− P[ , i ] [ p temp ]

## Generates a matrix r ep r e s en t i n g the i s o t o n i c c on s t r a i n t s

A GIRP <− createMatrixA (P)

## Does the GIRP cut

p f i t s GIRP <− GIRP cut (y ,A GIRP, l o s s func , out i t e r ,

out num, ch p f i t s )

## Get a f o r e c a s t f o r the t e s t data s e t

y pred GIRP <− yPred i c t i on (P te s t , p f i t s GIRP,P, imPred )

return ( y pred GIRP)

}

Listing 3.3: The GIRP command
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4 Theoretical extensions of the GIRP

approach

In Section 2.3, we introduced the IRP approach for solving

argmin
g isotonic

n∑
i=1

(yi − g(P1i, .., Pmi))
2 (4.1)

and the more general GIRP approach for solving

argmin
g isotonic

n∑
i=1

fyi(g(P1i, .., Pmi)), (4.2)

where fyi , i ∈ {1, . . . , n} is a convex and differentiable scoring function.

Further in Chapter 3, we explained our implementation of the IRP approach in R

in detail. Additionally, we gave a short overview of our general implementation of

the GIRP approach in Section 3.3. The disadvantage of the general implementation

is that we need further subfunctions for calculating the weights, see Equation 2.10, of

the different subsets and consequently the solution of the GIRP approach. Thus, the

computational cost is higher.

Hence, from a computational viewpoint, it is useful to find conditions on the scoring

functions fy1 , . . . , fyn such that the IRP implementation is applicable to solving the

optimization problem (4.2). In Section 4.1, we formulate conditions on the scoring

functions for binary and general output in R separately, for which the solution of the

GIRP approach is equal to the one of the IRP approach. If there is equality between the

solutions of the IRP and GIRP approaches, there may also exist equality within each

iteration step. However, we mainly concentrate on the conditions for equality in the

case that the algorithm signalizes that a further partition is not beneficial or contradicts

the isotonicity of the solution. In the following, we define the ’GIRP-solution’ as the

solution of the GIRP approach of (4.2). In the same way, we define the ’IRP-solution’

as the solution of the IRP approach of (4.1).

As already mentioned in Chapter 2, the GIRP approach refers to the general isotonic

regression problem by Barlow and Brunk (1972). Luss and Rosset (2011) proved that

under the assumption of differentiability, the generalized isotonic regression problem

defined by Barlow and Brunk (1972) can be solved by GIRP. In Section 4.2, we compare

the class of general isotonic regression problems by Barlow and Brunk (1972) with the

class characterized by the conditions of Section 4.1.2.
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For general output, like temperature, wind speed, etc., GIRP is applicable, but not

for combining probability forecasts for categorical variables. This leads to another

statistical framework with one additional constraint. In Section 4.3, we formulate the

statistical framework and investigate whether we can extend the GIRP approach to

this framework by characterizing the set of possible solutions.

4.1. Equivalence of the IRP and GIRP approach

As described in Chapter 2, we consider a joint distribution of a binary random variable

y and m corresponding probability forecasts. In this section, we formulate and prove

conditions on the scoring functions fy1 , .., fyn such that the GIRP-solution is equal to

the IRP-solution in the cases of binary and general output. At first, we consider the

binary case with output 0 and after that, in Section 4.1.2, the more general case with

output in R.

4.1.1. Equivalence for binary output

Theorem 4.1

Let Y = (y1, .., yn) ∈ {0, 1}n be the vector of observations of binary random variables

and Pk = (Pk1, .., Pkn) ∈ [0, 1]n, k ∈ {1, ..,m} , the corresponding vector of forecasts

for Y issued by the k-th forecaster. Further let

f0, f1 ∈ C1((0, 1)) be convex and fyi =

f1 if yi = 1

f0 otherwise

with:

1.

f ′0(z) ≥ 0, ∀z ∈ (0, 1)

2.

f ′1(z) ≤ 0 ∀z ∈ (0, 1)

3.

(−∞, 0) ⊆
{
f ′0(z)

f ′1(z)
: z ∈ (0, 1), f ′1(z) 6= 0

}
.

Then the structure of the GIRP-solution of (4.2) is equal to the structure of the IRP-

solution of(4.1).

A more general formulation of Theorem 1 is the following Lemma 1, which we prove.
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Lemma 1

Let Y = (y1, .., yn) ∈ {0, 1}n be the vector of observations of binary random variables

and Pk = (Pk1, .., Pkn) ∈ [0, 1]n, k ∈ {1, ..,m} , the corresponding vector of forecasts

for Y issued by the k-th forecaster. Define s = # {i : yi = 1, i ∈ {1, .., n}} as the

number of hits and s̃ = n− s as the number of misses. Further let

f0, f1 ∈ C1((0, 1)) be convex and fyi =

f1 if yi = 1

f0 otherwise

with:

1.

f ′0(z) ≥ 0, ∀z ∈ (0, 1)

2.

f ′1(z) ≤ 0 ∀z ∈ (0, 1)

3.

∃z1 ∈ (0, 1) such that f ′1(z1) + s̃ f ′0(z1) < 0

4.

∃z2 ∈ (0, 1) such that s f ′1(z2) + f ′0(z2) > 0.

Then the structure of the GIRP-solution is equal to the structure of the IRP-solution.

Remarks

1. In this context, the expression ”the structure of the GIRP-solution is equal to

the structure of the IRP-solution” means that two training cases have the same

combined forecast value in the GIRP-solution if and only if they have it in the

case of the IRP-solution. However, the corresponding combined forecast value

under the IRP-solution may differ from the combined forecast value under the

GIRP-solution, which depends on the scoring functions f0 and f1.

2. For example, the logarithmic score for a binary output fulfills the conditions of

Theorem 1. Consequently, solving (4.1) is equal to solving (4.2) for getting the

structure of the GIRP-solution. Further, the logarithmic score and the squared

error, on which the IRP approach is based, are both mean-consistent. Therefore,

the IRP-solution is equal to the GIRP-solution and in general under the condi-

tions of Lemma 1, thee GIRP-solution with respect to a mean-consistent scoring

function is equal to the IRP-solution.
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Proof

Idea:

1. Condition (3) and (4) of Lemma 1 guarantee that for each subset

V ⊆ {(yi, P1i, . . . , Pmi) : i ∈ {1, , .n}} ,

there exists a value

wV = argmin
z∈[0,1]

∑
i∈Ṽ

fyi(z)

for which ∑
i∈Ṽ

f ′yi(wV ) = 0,

where

Ṽ = {i : (yi, P1i, . . . , Pmi) ∈ V } .

2. We prove that the solution of the optimization problem (2.13) is independent of

the derivatives of f0 and f1 for every subset V of the observations.

3. Theorem 2 of Luss and Rosset (2011) implies that the number of iteration steps

is finite. Further, after (2), the full observation set is split equal. After Algorithm

1 of Chapter 2, the corresponding objective value of the two resulting subsets

decides which subset of these two we split first.

Consequently, the structures has not to be equal after each iteration step because

the GIRP-algorithm for (4.2) may split another subset than the IRP-algorithm

splits. However, if the two algorithms of (4.1) and (4.2) signalize that a further

partition is not beneficial, the structure of the GIRP-solution is identical to the

structure of the IRP-solution.

Proof:

Let V be a subset of the training data set, as defined in Section 2.3, with

H =
{
i ∈ Ṽ : yi = 1

}
and M =

{
i ∈ Ṽ : yi = 0

}
.

We want to split V allowing for the isotonic constraints represented by IV . The

minimization problem to solve is:

x∗ = argmin
x

∑
i∈Ṽ

xi
∂fyi(ŷi)

∂ŷi

∣∣∣∣∣∣
wV

: xi1 ≤ xi2 , ∀(i1, i2) ∈ IV , xi ∈ {−1,+1} ∀i ∈ Ṽ

 ,

where

IV =
{

(i1, i2) : Pki1 ≤ Pki2 , ∀k ∈ {1, ..,m} , i1, i2 ∈ Ṽ
}
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is the set of isotonic constraints of the subset V .

Because of the setting in Lemma 1, we can simplify the sum of the scoring functions

to ∑
i∈Ṽ

f ′yi(z) = sV f
′
1(z) + s̃V f

′
0(z),

where

sV = #H and s̃V = #M.

Now as a consequence of the assumption that f0, f1 ∈ C1((0, 1)), we know that

h(z) = sV f
′
1(z) + s̃V f

′
0(z)

is a continuous function on the interval (0,1).

With conditions (3) and (4) of Lemma 1 we get

h(z1) = sV f
′
1(z1) + s̃V f

′
0(z1)

< sV f
′
1(z1) + s̃ f ′0(z1)

= (sV − 1) f ′1(z1)︸ ︷︷ ︸
≤0

+ f ′1(z1) + s̃ f ′0(z1)︸ ︷︷ ︸
<0

< 0

(4.3)

and

h(z2) = sV f
′
1(z2) + s̃V f

′
0(z2)

> s f ′1(z2) + s̃V f
′
0(z2)

= s f ′1(z2) + f ′0(z2)︸ ︷︷ ︸
>0

+ (s̃V − 1)f ′1(z1)︸ ︷︷ ︸
≥0

> 0

(4.4)

With (4.3), (4.4) and the intermediate value theorem, there has to exist a wV ∈
[z1, z2] ⊆ [0, 1] with h(wV ) = 0.

⇒ 0 = h(wV ) = sV f
′
1(wV ) + s̃V f

′
0(wV )

⇔ f ′0(wV ) = −f ′1(wV )
sV
s̃V
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Applied to (2.13), this implies

x∗ = argmin
x

∑
i∈Ṽ

xif
′
yi

(z)
∣∣
wV

: xi1 ≤ xi2 ∀(i1, i2) ∈ IV , xi ∈ {−1,+1} ∀i ∈ Ṽ


= argmin

x

{∑
i∈H

xif
′
1(wV )−

∑
i∈M

xif
′
1(wV )

sV
s̃V

: xi1 ≤ xi2∀(i1, i2) ∈ IV , xi ∈ {−1,+1}

}

= argmin
x

{
f ′1(wv)

(∑
i∈H

xi −
∑
i∈M

xi
sV
s̃V

)
: xi1 ≤ xi2∀(i1, i2) ∈ IV , xi ∈ {−1,+1}

}
.

Because we have required that f ′1(z) ≤ 0 on (0, 1) and wV ∈ (0, 1), the solution

x∗ is independent of the derivatives f ′1(wv), f
′
0(wv) and therefore the structure of the

GIRP-solution is equal to the one of the IRP-solution.

�

4.1.2. Equivalence for general output in R

We consider the joint distribution of a random variable y in R and m corresponding

point forecasts. In Theorem 2, we formulate stronger conditions on the scoring func-

tions, as in the previous case, such that the GIRP-solution of (4.2) is equal to the

IRP-solution of (4.1).

Theorem 4.2

Let Y = (y1, .., yn) ∈ Rn be the observations and Pk = (Pk1, .., Pkn) ∈ Rn, k ∈
{1, ..,m} the corresponding forecast of the k-th forecaster for Y . Further, let fyi ∈
C1(R) be convex with the property that the solution wV , defined by (2.10) is equal to

the observation mean for all subsets of the training data set. That is,

wV = argmin
z∈R

∑
i∈Ṽ

fyi(z) =
∑
i∈Ṽ

yi
#V

, ∀ V ⊆ {yi : i ∈ {1, .., n}} . (4.5)

Then the GIRP-solution is equal to the IRP-solution.

Proof

As in the previous proof, we prove that the solutions of (4.1) and (4.2) are equal for

each subset V of the training data set. Theorem 2 then follows as before.

First, we deduce two properties of the scoring functions fy1 , . . . , fyn from the condi-

tions of Theorem 2:

1. Because fyi is convex, f ′yi is monotone non-decreasing. Additionally, f ′yi(yi) = 0
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because of the unique solution wV defined by Theorem 2. Therefore, we achieve

f ′yi(z)

< 0 if z < yi

> 0 if z > yi

2. The previous Property 1 implies that

sgn(f ′yi(z)) = sgn(z − yi).

That is, f ′yi(z) is negative for a value z if and only if z − yi is negative.

As already mentioned in Section 3.2.1., we can interpret the set of isotonic constraints

I as a directed graph Γ with vertex set {1, .., n} and edge set E defined by

(i1, i2) ∈ E ⇔ (i1, i2) ∈ I.

By applying the concept of transitive reduction, we achieve the minimal edge set Ẽ

defining I. If we apply this approach on the set of isotonic constraints IV ⊆ I of V , we

achieve a graph Γ̃V with vertex set Ṽ and edge set ẼV , which represents the minimal

set of isotonic constraints defining IV . A part of such a possible graph is illustrated in

Figure 4.1.

Figure 4.1.: Part of a graph ΓV which represents the restriction set IV .

For solving (4.1) and (4.2) by the GIRP approach, we have to solve the optimization

problem (2.13). Obviously, the set of isotonic constraints IV is equal for the corre-

sponding optimization problems. Therefore, we achieve

x∗ = argmin
x


∑
i∈Ṽ

xi f
′
yi

∑
i∈Ṽ

yi
#V


︸ ︷︷ ︸

=yV

: xi1 ≤ xi2 ∀(i1, i2) ∈ IV , xi ∈ {−1,+1} , i ∈ Ṽ


(4.6)
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as the corresponding optimization problem of the GIRP approach and

x̂ = argmin
x

{∑
i∈V

xi (yV − yi) : xi1 ≤ xi2 ∀(i1, i2) ∈ IV , xi ∈ {−1,+1} , i ∈ Ṽ

}
(4.7)

as the optimization problem of the IRP approach.

We prove x∗ = x̂ by contradiction, which implies directly that the subset V is split

equally. Therefore, we define

G =
{
i ∈ Ṽ x∗i 6= x̃i

}
as the set of indices for which the corresponding components differ and assume G 6= ∅.

• G = j, j ∈ Ṽ
At first, we consider that G only contains one indice and thus the both solutions

only differ in one component. Because IV is equal for both optimization problems

and because the isotonic constraints are not contradicted, the j-th components

of x̂ and x∗ can independently be chosen to be positive or negative.

Assume x̂ and x∗ are optimal. Therefore,∑
i∈Ṽ

x̂i(yV − yi) ≤
∑
i∈Ṽ \j

x̂i(yV − yi)− x̂j(yV − yi)

and ∑
i∈Ṽ

x∗i f
′
yi

(y) ≤
∑
i∈Ṽ \j

x∗i f
′
yi

(y) + x̂jf
′
yj

(y).

Because of Property 2, sgn(f ′yj(y)) = sgn(y − yj), we get either∑
i∈Ṽ

x∗i f
′
yi

(y) ≥
∑
i∈Ṽ \j

x∗i f
′
yi

(y)− x̂jf ′yj(y)  x∗ optimal

or ∑
i∈Ṽ

x̂i(yV − yi) ≥
∑
i∈Ṽ \j

x̂i(yV − yi)− x̂j(yV − yi)  x̂ optimal.

Thus, either x∗ or x̂ cannot be optimal and therefore x∗ = x̂.

• #G > 1

One property of the set G we can deduce, is the following:

Intuitively, if we have two components i1, i2 ∈ G of the solution vectors x∗, x̂ with

the property (i1, i2) ∈ IV , we achieve
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1.

x∗i1 = 1
(i1,i2)∈IV⇒ x∗i2 = 1

i2∈G⇒ x̂i2 = −1
(i1,i2)∈IV⇒ x̂i1 = −1

and

x∗i1 = −1
i1∈G⇒ x̂i1 = 1

(i1,i2)∈IV⇒ x̂i2 = 1
i2∈G⇒ x∗i2 = −1.

2. Each further component with the property (i1, i3) ∈ IV , (i3, i2) ∈ IV implies

that i3 ∈ G, because

(i) x∗i1 ≤ x∗i3 ≤ x∗i2 ∧ x
∗
i1

= x∗i2 ⇒ x∗i1 = x∗i3

and

(ii) x̂i1 ≤ x̂i3 ≤ x̂i2 ∧ x̂i1 = x̂i2 ⇒ x̂i1 = x̂i2

Formally, let i1, i2 ∈ G with (i1, i2) ∈ I then

i3 ∈ Ṽ : (i1, i3) ∈ IV , (i3, i2) ∈ IV ⇒ i3 ∈ G.

Graphically this means, if there exists a path from i1 to i2, i1, i2 ∈ G, then all

vertices on the path have to be in G too. Thus, we achieve a finite number

of disjunct subgraphs with the property that there exists no path between any.

Otherwise, we can combine them by the proved properties. Consequently, for

example, we get subgraphs as illustrated in Figure 4.2. We investigate each one

separately.

Figure 4.2.: Possible structure of the subgraphs representing G.

Let G1 be the corresponding indices of a subset of G which characterize an

arbitrary subgraph described by the properties above. Suppose that x∗ and x̂
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are optimal in the sense that they minimize the corresponding objective values.

Because of the identical set of isotonic constraints for (4.6) and (4.7), we can

choose for the corresponding indices G1, if the corresponding x∗i should be all

negative or positive.

Because of the optimality of x∗ and x̂, we deduce

sgn

(∑
i∈G1

x̂i (yV − yi)

)
= −sgn

(∑
i∈G1

x∗i f
′
yi

(y)

)
.

Otherwise, we would change either x∗i or x̂ for getting a smaller objective value.

However, this leads to an contradiction to the Properties 1 and 2 at the beginning

of this proof as follows:

Following the unique wV defined by Theorem 2,

∑
i∈G1

f ′yi

(∑
i∈G1

yi
#G1

)
=
∑
i∈G1

(∑
i∈G1

yi
#G1

− yi

)
= 0.

Further,
∑

i∈G1
fyi is a finite sum of convex functions and therefore also convex.

With Property 1 and 2 of the beginning of the proof, we conclude

sgn

(∑
i∈G1

x̂i (yV − yi)

)
= sgn

(∑
i∈G1

x∗i f
′
yi

(y)

)
.  Property 2

Therefore, within the corresponding indices of G1, the solution vectors of (4.6)

and (4.7) do not differ. Because we investigated an arbitrary subgraph, the cor-

responding solution vectors x∗ and x̃ are identical. Consequently, the subset V is

split equally. Because we investigated an arbitrary subset V , we have completely

proved that the structure of the both solutions is equal.

The equivalence of the solutions follows from the assumption on the solution

wV . In the case of IRP, we calculated the fit of a given training data point

by calculating the mean observation value of the corresponding subset V that

contains the training data point. From the assumption on wV we know that for

the GIRP-solution, the corresponding fit for the training data point is also equal

to the mean observation value of the corresponding subset in that it is contained.

Because we have demonstrated that the corresponding subsets are equal, the fits

are equal. Therefore, the IRP-solution and the GIRP-solution are equal and the

proof is complete.

�
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Remarks

1. A lot of commonly used scoring functions, fulfill the properties of Theorem 4.2.

Therefore, it is often possible to perform the IRP-algorithm instead of the GIRP-

algorithm.

2. There exists a more general version of Theorem 4.2 in the sense that we do not

require differentiability on R. We only use the differentiability in the optimization

problem and we restrict the weight wV to be equal to the mean of the observations

of the corresponding subset V . Therefore, we only need differentiability of the

scoring functions in the observation means of all possible subsets of the training

data set.

3. For example, suppose we have output in N0, generated by Poisson distributed

random variables and we use the negative Poisson log likelihood,

fyi(z) = z − yi ln(z),

for evaluating the forecasts. Because of the general version of Theorem 4.2, the

GIRP-solution is equal to the IRP-solution.

4.2. Relations to the paper by Barlow and Brunk

In this section, we investigate the relation between the class of scoring functions of

Section 4.1, for which the GIRP-solution is equal to the IRP-solution, and the general

isotonic regression problem by Barlow and Brunk (1972). Like Luss and Rosset (2011),

we just compare the members of Barlow and Brunk (1972) which are differentiable.

After Section 2.4 of Luss and Rosset (2011) and as mentioned in Section 2.3, each

general isotonic regression problem of the form

ẑ∗ = argmin
z

{
n∑
i=1

Φ(ẑi)− ẑiyi : ẑi1 ≤ ẑi2 ∀(i1, i2) ∈ I

}
can be solved by applying the IRP-algorithm to the dataset and using the transforma-

tion

ẑ∗i = φ−1(ŷ∗i ),

for getting the GIRP-solution. In this context, φ is the derivative of the convex function

Φ and ŷ∗i the solution of the IRP-algorithm.

At first we investigate whether we have any general isotonic regression problems for

which the GIRP-solution is equal to the IRP-solution. As we can see, the intersection

is the set of general isotonic regression problems with φ−1 = id, but we want to prove
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this formally.

Let Y = (y1, .., yn) ∈ Rn be an arbitrary vector. We look at the class of scoring

functions with

fyi(z) = Φ(z)− yiz,

where Φ(z) is a differentiable and convex function and

argmin
z∈R

∑
i∈Ṽ

fyi(z) =
∑
i∈Ṽ

yi
#V

,∀ V ⊆ {y1, . . . , yn} .

We look which conditions on Φ(z) are necessary for the property

argmin
z∈R

∑
i∈Ṽ

fyi(z) =
∑
i∈Ṽ

yi
#V

,∀ V.

It follows

argmin
z∈R

∑
i∈V

fyi(z) = argmin
z∈R

∑
i∈V

Φ(z)− yiz,

⇔ 0 =
∑
i∈Ṽ

φ(ẑ)− yi,

⇔ #V φ(ẑ) =
∑
i∈Ṽ

yi,

⇔ ẑ = φ−1

∑
i∈Ṽ

yi
#V

 !
=
∑
i∈Ṽ

yi
#V

.

Because Y = (y1, .., yn) ∈ Rn is arbitrary this implies that

φ−1(ẑ) = id(ẑ).

Consequently, the intersection between the class of general isotonic regression problems

by Barlow and Brunk (1972) and the class defined in Theorem 4.2 is a modified squared

error.

Remark

Another interesting question in this context comes up if we investigate the negative

logarithmic score for binary events:

argmin
p̂

{
n∑
i=1

−yi log(p̂i)− (1− yi) log(1− p̂i) : p̂i1 ≤ p̂i2 ∀(i1, i2) ∈ I

}
. (4.8)

In the context of IRP, we set

p̂i = g(P1i, .., Pmi).
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By substitution with

zi = log

(
g(P1i, .., Pmi)

(1− g(P1i, .., Pmi))

)
,

the solution of (4.9) is equivalent to solve

ẑ = argmin
z

n∑
i=1

log(1 + ezi)− ziyi, zi1 ≤ zi2 ∀ (i1, i2) ∈ I.

The function Φ(zi) = log(1 + ezi) is strictly convex. Hence, the related general

isotonic regression problem is a member of the class defined by Barlow and Brunk

(1972). The negative logarithmic score in (4.8) is otherwise a member of the our class

defined in Theorem 4.2.

Thus the question in this context is, if it is possible to convert each member of the

class of scoring functions defined in Theorem 4.2 to a function of the class by Barlow

and Brunk (1972) or conversely under the assumption that Φ is differentiable. Then

we would have that the intersection between the functions which can be solved by

GIRP and the isotonic regression problems solved by Barlow and Brunk (1972) could

by substitution be represented by our class defined in Theorem 2.

So we check, whether for each member of the class of general isotonic regression

problems, there exists a differentiable function γ with

z∗ = argmin
z∈R

∑
i∈Ṽ

Φ(γ(z))− yiγ(z) =
∑
i∈Ṽ

yi
n
, ∀ V ⊆ {yi : i ∈ {1, .., n}} . (4.9)

We assume that γ is differentiable.

(4.10)⇔ 0 =
n∑
i=1

Φ′(γ(z∗))γ′(z∗)− γ′(z∗)yi

⇔ 0 =
n∑
i=1

Φ′(γ(z∗))− yi

⇔
n∑
i=1

yi
n

= Φ′(γ(z∗)) = φ(γ(z∗))

Because we aim for

z∗ =
n∑
i=1

yi
n
,

we get that

γ = φ−1.

For this conclusion we have to assume that φ is differentiable. Because Φ is convex,

φ is monotonically nondecreasing. Thus Φ(φ−1(z))−φ−1(z)yi is also a convex function.

Consequently we can say, if Φ is two times differentiable we can convert by substitution

each member of the class of general isotonic regression problems to a member of the

class of scoring functions for which the IRP-solution is equal to the GIRP-solution.
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4.3. Aspects of combining probability forecasts for categorical

variables

In this section we investigate, whether the IRP approach explained in Section 2.3 can

be used for combining probability forecasts for categorical events. Thus, we reformulate

the framework of Section 2.1 and investigate resulting properties and consequences for

an implementation. At first, we want to motivate this by an example.

Suppose, we want to know, whether tomorrow’s temperature T will be below 5

degrees, between 5 and 15 degrees or above 15 degrees. Therefore, we ask m forecasters

for their prediction and get p1, .., pm. Each forecaster gives us a probability forecast of

the form

pk = (pkT<5
, pkT∈[5,15], pkT>15

), k ∈ {1, ..,m}

and we want to combine these single forecasts for getting a better forecast. In contrast

to the statistical framework in Section 2.1, we get the additional condition that the

1-norm of our combined probability forecast vector has to be equal to 1. Thus, the

statistical framework of Section 2.1 changes in the following way.

We work within a probabilistic framework which considers a joint distribution of

(y, p1, .., pm),

where y ∈ {0, 1}l is a random vector of length l which has entries zero except in one,

where it has entry 1. Further, p1, . . . , pm ∈ [0, 1]l are probability forecast vectors of

m forecasters for y with 1-norm 1. Transfered to the example, we have l = 3 and

y = (yT<5, yT∈[5,15], yT>15) and p1, . . . , pm are the corresponding forecasts of the m

forecasters.

The theoretically optimal combined forecast p∗ in the sense that

E
∥∥p∗ − y∥∥2

2
≤ E

∥∥p− y∥∥2
2
,

for any measurable p with respect to the σ-algebra generated by (p1, . . . , pm), is the con-

ditional expectation of the random vector y given the probability forecasts p1, . . . , pm,

that is,

p∗ = E(y|p1, . . . , pm) (4.10)

But as in the binary case, the optimal combined probability forecast is in general un-

known and has to be estimated from a training data set.

Like Luss and Rosset (2011), we want to fit a model describing the dependence of

the observation vectors y1, .., yn concerning the corresponding forecast vectors. As in

the binary case, it seems useful to assume that in case each forecaster gives us a higher
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probability forecast value for the output j than in another case, the corresponding

combined probability forecasts for this output should achieve this property. So we

transform the isotonicity of the one-dimensional case, to an isotonicity in each compo-

nent.

Hence, we are searching for a function

g : [0, 1]l×m → [0, 1]l(
p1, .., pm

)
7→ g

(
p1, .., pm

)
=
([
g
(
p1, .., pm

)]
1
, ..,
[
gl
(
p1, .., pm

)]
m

)
,

(4.11)

with the properties

1.

pkj ≤ p̂kj ∀ k ∈ {1, ..,m} ⇒ [g(p1, .., pm)]j ≤ [g(p̂1, .., p̂m)]j, (4.12)

where pkj is the probability forecast of the k-th forecaster for the output j. So

with [g∗(p1, .., pm)]j we refer to the j-th component of the combined probability

forecast vector and the function g should be isotonic in each component.

2.
l∑

j=1

[g(p1, .., pm)]j = 1 (4.13)

This is the condition that the sum of the single component forecasts of one fore-

caster should be equal to one.

Out of these two properties, we can already conclude an important property of the

function g, which we formulate in the following Lemma 2.

Lemma 2

If g is a function with the properties (4.12) and (4.13) which is non-constant in one

component and the number of components l is greater than 2, then the following holds:

1. g is non-constant in each component

2. If for one case, each forecaster hands in a greater prediction value for the output

j than in another case, the aggregated forecasts for the j-th component differ.

That is, following the argument of isotonicity,

pkj < p̂kj,∀k ∈ {1, ..,m} ⇒ [g(p1, .., pm)]j1 < g[(p̂1, .., p̂m)]j1

Remarks

In Chapter 2, this strict relation is not true. There it could be that each forecaster

gives us in the one case a higher forecast than in the other case, but the combined

forecast values could be the same. Now we prove that this is not true in the framework

described before and we have a strict relation.
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Because of a lot of indices, we will prove Lemma 2 for the case that we have only two

forecasters, Žm = 2. However, for higher m the proof is analogous. In the following

we refer to the forecast of the j-th component of the k-th forecaster in the i-th case by

pk
i
j
.

Proof

Without loss of generality, we may suppose that g is non-constant in the first compo-

nent. Assume, we have two forecasts p(1) = (p1
(1), p2

(1)), p(2) = (p1
(2), p2

(2)) ∈ [0, 1]2×l,

where the 1-norm of each forecast vector is equal to 1. Further, these two probability

forecast vectors have to satisfy the following properties:

1. Each forecaster in p(2) has a higher forecast value in the first component than in

p(1), that is

pk
(1)

1
< pk

(2)

1
, ∀k ∈ {1, 2} .

2. The combined probability for the first component is equal for both forecasts, that

is

[g(p(1))]1 = [g(p(2))]1.

In the second part of the proof, we will prove that this is a contradiction to the

properties (4.12) and (4.13). However, at first we define a function

~δj1,j2 : R 7→ Rl

δ 7→ ~δj1,j2(δ) = (0, · · · , 0, δ, 0 · · · 0,−δ, 0, · · · , 0)T,

that is, we increase the j1-th component of the zero vector by δ and decrease the j2-th

component of the zero vector by δ.

1. Suppose that an arbitrary component j∗ of the function g, [g(· · · )]j∗ , is constant

fulfilling property (4.13). Because we assumed that the function g is non-constant

in the first component, there exists a value δ∗ = (δ∗1, δ
∗
2) with

[g(p1
(1) − ~δ1,j∗(δ∗1), p2

(1) − ~δ1,j∗(δ∗2))]1 6= [g(p1
(1)

1
, p2

(1))]1.

However,

[g(p1
(1) − ~δ1,j∗(δ∗1), p2

(1) − ~δ1,j∗(δ∗2))]j∗ = [g(p1
(1)

1
, p2

(1))]j∗ .

This is a contradiction to property (4.13), because the other components do not

change, but the sum of the first and j∗-th component changes. Consequently, we

proved the first statement of Lemma 2.
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2. Let p(3) = (p1
(3), p2

(3)) be a third forecast with the property that each forecast for

the first component is higher than in p1
(1) but smaller than p1

(2), that is

p1
(1)

1
< p1

(3)

1
< p1

(3)

1

and

p2
(1)

1
< p2

(3)

1
< p2

(3)

1
.

Because of condition (4.13), we get

[g(p(1))]1 = [g(p(3))]1 = [g(p(2))]1. (4.14)

By conditions (4.12) and (4.13) and the property that g is non-constant in each

component by part (1) of Lemma 3, we get that there exists a value δ∗ = (δ∗1, δ
∗
2)

such that

[g(p1
(1) − ~δ1,j∗(δ∗1), p2

(1) − ~δ1,j∗(δ∗2))]1 6= [g(p1
(1)

1
, p2

(1))]1, (4.15)

but

[g(p1
(1) − ~δ1,j∗(δ∗1/2), p2

(1) − ~δ1,j∗(δ∗2/2))]1 = [g(p1
(1)

1
, p2

(1))]1. (4.16)

That means, in the neighborhood of p(1) exists a further forecast which generates

the same forecast, but in the same direction, we get to a further forecast, where

the combined forecast differs. It may happen that p1
(1) is a little bit special, in

the sense that it lies on the border between two sets of different forecast values.

Then, we search a point in the neighborhood of p1
(1) and perform the following

steps in the same way.

Further, Condition (4.14) implies that ∀j∗ ∈ {2, .., l}

[g(p1
(1) − ~δ1,j∗(δ∗1), p2

(1) − ~δ1,j∗(δ∗2))]j∗ 6= [g(p1
(1)

1
, p2

(1))]j∗ ,

but

[g(p1
(1) − ~δ1,j∗(δ∗1/2), p2

(1) − ~δ1,j∗(δ∗2/2))]j∗ = [g(p1
(1), p2

(1))]j∗ .

Consequently, we achieve

[g(p1
(1) − ~δ1,j∗(δ∗1/2), p2

(1)

2
− ~δ1,j∗(δ∗2/2))]1 − [g(p1

(1)

1
, p2

(1))]1

= [g(p1
(1)

1
, p2

(1))]j∗ − [g(p1
(1) − ~δ1,j∗(δ∗1/2), p2

(1) − ~δ1,j∗(δ∗2/2))]j∗ .
(4.17)

and

[g(p1
(1) − ~δ1,j∗(δ∗1/2), p2

(1)

2
− ~δ1,j∗(δ∗2/2))]j1 − [g(p1

(1)

1
, p2

(1)

2
)]j1 = 0. (4.18)
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Therefore, we get a very strong condition on the function g. Because we have at

least three components, we can also increase our forecast in the first and decrease

in two other components. In this case, we increase the first forecast by δ∗ and

decrease the second and third component by δ∗/2. This leads, together with

property (4.12) and (4.13), to

[g(p1
(1) − ~δ1,j∗(δ∗1/2), p2

(1)

2
− ~δ1,j∗(δ∗2/2))]1 − [g(p1

(1)

1
, p2

(1))]1

=[g(p1
(1) − ~δ1,j∗(δ∗1/2), p2

(1)

2
− ~δ1,j∗(δ∗2/2))]2 − [g(p1

(1), p2
(1))]2

+ [g(p1
(1) − ~δ1,j∗(δ∗1/2), p2

(1)

2
− ~δ1,j∗(δ∗2/2))]3 − [g(p1

(1), p2
(1))]3

=0  (4.13)

Therefore, the assumption that the combined forecast values of p(1) and p(2) are equal

is contradicted and consequently Lemma 2 is proved.

�

Based on Lemma 2, we can conclude even stronger properties of g, which we do in

two steps in the following Conclusion. As in the proof before, we set m = 2 because of

a lot of indices. Further, we set the number of categories l equal to three.

Conclusion

1. After Lemma 3, two forecasts p(1) and p(2) can only have the same combined

forecast value in the first component if

p1
(1)

1
≤ p1

(2)

1
∧ p2(1)2

≥ p2
(2)

2
,

or

p1
(1)

1
≥ p1

(2)

1
∧ p2(1)2

≤ p2
(2)

2
.

Consequently, the set of points which generate the same combined forecast for

the first component are limited to a line in [0, 1]2 constrained by the property

above.

One example is illustrated in Figure 4.3 for the first component. The x-axis

represents the probability forecasts of the first and the y-axis the probability

forecasts of the second forecaster for the first output.

2. We prove that our set of possible solutions for g under the given isotonic con-

straints and the assumption that g is non-constant in each component is limited

to the case that g is linear in each component.
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Figure 4.3.: Example of a set, for which the combined probability forecasts may be equal.

Consider the forecast p(1) = (p1
(1), p2

(1)) as above. Further, let δ = (δ1, δ2) and
~δj1,j2(δ) be defined as in the proof before. For simplicity, we define

[∆Gj1,j2(δ)]j3 = [g(p(1))]j3 − [g(p1
(1) − ~δj1,j2(δ1), p2(1) − ~δj1,j2(δ2))]j3

as the difference in the j3-th component if we change the probability forecasts for

the j1-th component by δ∗ and the probability forecasts for the j2-th component

by −δ∗. Of course, this value can only be non-zero if j3 ∈ j1, j2. Otherwise, we

would have a contradiction to condition (4.12).

Let δ, j1, j2 and j3 be arbitrary but fixed. Then we get by the condition (4.13)

that

[∆Gj1,j2(δ)]j1 = −[∆Gj1,j2(δ)]j2 = −[∆Gj1,j3(δ)]j3 = [∆Gj1,j3(δ)]j1 . (4.19)

So if we change the forecasts in the j1-th component by δ and the j2-th com-

ponent respectively the j3-th component by −δ the change has to be equal for

the j2 and j3-th component. This is the same property as (4.17). This of course

holds for the case that we increase the j2-th component by δ and decrease one of

the other two components by δ. Thus

[∆Gj2,j3(δ)]j2 = −[∆Gj2,j3(δ)]j3 = −[∆Gj2,j1(δ)]j1 = [∆Gj1,j2(δ)]j1 .

The last equality holds, because a change in the j3th component by −δ, should

be independent of the second component which is changed.

Therefore,

[∆Gj2,j3(δ)]j3 = [∆Gj1,j3(δ)]j3
(4.17)
= [∆Gj1,j2(δ)]j2 . (4.20)

We change the forecast in the j1-th and the j2-th component by δ/2 and the

j3-th component by −δ then we get by condition (4.14):

[∆Gj1,j3(δ/2)]j1 + [∆Gj2,j3(δ/2)]j2 = −[∆Gj2,j3(δ)]j3 .
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(4.17),(4.18)⇔ [∆Gj1,j3(δ/2)]j1 + [∆Gj1,j3(δ/2)]j1 = [∆Gj2,j3(δ)]j2

⇔ 2[∆Gj1,j3(δ/2)]j1 = [∆Gj1,j3(δ)]j1 .

⇒ 2[∆Gj1,j3(δ/2)]j3 = [∆Gj1,j3(δ)]j3

⇒ 2[∆Gj1,j2(δ/2)]j2 = [∆Gj1,j2(δ)]j2 .

If we go on in the same way with δ/4, δ/8, . . . we get that g is linear in the direction

δ in the point (p1, p2) in an countable number of points. If we have

4[∆Gjj ,j3(δ/4)]j1 = [∆Gj1,j3(δ)]j1

we also get

3[∆Gj1,j3(δ/4)]j1 = [∆Gj1,j3(3δ/4)]j1

because

[∆Gj1,j3(δ/2)]j1 + [∆Gj1,j2(δ/4)]j1 = [∆Gj1,j3(3δ/4)]j1 = 3[∆Gj1,j3(δ/4)]j1 .

Because δ was arbitrary, we get that g is linear in all directions in which

the function g is non-constant. Further, we have said at the beginning that the

forecast p(1) is arbitrary but fixed and so we get that it is linear in each point.

This implies that g has to be linear in each component, because j1, j2, j3 were

arbitrary but fixed too.

We just have to think about why it is enough that the g is linear in a countable

set of points. This follows by Lemma 3 we proved before. Because there exists a

direction in which we have the strict relation. We further know that we can get

as near as we want to each point, because we can choose δ/2n, n great enough.

Consequently, our solution set of isotonic functions, under the assumption that

the solution is non-constant in each component, is strongly limited to the class of

functions which are linear in each component.

Next, we consider our data set. Let

(Y , P1, . . . , Pm)

be a given training data set of size n, where

Y = (y1, . . . , yn)T ∈ {0, 1}l×n

are the observations and

Pk = (Pk 1
, . . . , Pk n)T ∈ [0, 1]l×n, k ∈ {1, . . . ,m}
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Pk i = (Pk
1
i
, .., Pk

l
i
) ∈ [0, 1]l

are the corresponding forecasts of m forecasters for Y . So we define Pk
j
i

as the proba-

bility forecast of the k-th forecaster in the i-th case for the output j, j ∈ {1, . . . , l}.

Additionally, our function g∗ defined by (4.11), (4.12) and (4.13) should minimize

an objective value. In this section, we define this objective value as the General Brier

score. Thus we get the following minimization problem:

g∗ = argmin
g with(4.12),(4.13)

n∑
i=1

∥∥yi − g(P1 i
, .., Pm i

)
∥∥2
2

(4.21)

After Lemma 2 and the following Conclusion, we have to calculate a isotonic function

which is linear or constant in each component or linear in two components and in the

remaining components constant. An approach for calculating such a isotonic function

g which minimizes (4.21) is unknown to us.
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5 Applications

In this chapter, we test our implementation, described in Chapter 3, on two examples.

First, we use the setting of the simulation study in Ranjan and Gneiting (2010) and

investigate the calibration and sharpness of the IRP forecast and the convergence of the

IRP-solution. In the second application, we use the data set by Baars and Mass (2005)

for combining model output statistics (MOS) and National Weather Service forecasts

(NWS). At the end of each application, we compare to the BLP approach.

5.1. Simulation study of Ranjan and Gneiting (2010)

5.1.1. Setting

Based on Luss and Rosset (2011) and following the statistical framework of Section

2.1, we describe a model that gives rise to a joint distribution of

(y, p1, p2),

where y is a binary random variable and p1, p2 are probability forecasts of two fore-

casters, which have access to potentially distinct sources of information.

Specifically, let

p = Φ(a1 + a2),

where

a1 ∼ N (0, 1), a2 ∼ N (0, 2)

are independent variables. Here, Φ denotes the standard normal cumulative distribu-

tion function. Let y be a Bernoulli random variable with conditional success probability

P(y = 1|p) = E(y|p) = p.

The first forecaster has only notice of a1 whereas the second forecaster has only notice

of a2. The corresponding forecasts are the conditional event probabilities:

p1 = P(y = 1|a1) = E(y|a1) = E(p|a1) = E(Φ(a1 + a2)|a1) = Φ(a1/
√

3) (5.1)

and

p2 = P(y = 1|a2) = E(y|a2) = E(p|a2) = E(Φ(a1 + a2)|a2) = Φ(a2/
√

2). (5.2)

42



Obviously, p, p1 and p2 are calibrated forecasts for the random variable y. In the

following, we want to combine p1 and p2 by BLP and IRP. We generate a training data

set consisting of 2,000 pairs of observations and corresponding forecasts. Similarly, we

generate a test data set consisting of 1,500 such pairs.

5.1.2. Results

Table 5.1 shows the resulting Brier scores for four repetitions of generating data sets and

combing them by IRP. The last column are the results of Ranjan and Gneiting (2010)

together with the corresponding score for IRP. The forecast ”CP” is the conditional

event probability if someone has notice of a1 and a2. It is the optimum that we can

reach.

Table 5.1.: Comparison of the IRP and BLP approaches for the simulation study by Ranjan

and Gneiting (2010)

Forecast Repetition 1 Repetition 2 Repetition 3 Repetition 4 RG (2010)

p1 0.2006 0.2025 0.2054 0.2043 0.2094

p2 0.1744 0.1616 0.1740 0.1646 0.1657

BLP 0.1160 0.1079 0.1203 0.1094 0.1137

IRP 0.1190 0.1083 0.1237 0.1147 0.1186

CP 0.1141 0.1056 0.1182 0.1081 0.1126

Obviously, combining the two single forecasts p1, p2 by IRP leads to an improvement.

In all four cases, the Brier score of the combined forecast is strictly smaller than the

Brier scores of the single forecasts. By comparing the Brier score of BLP and IRP, we

can see that BLP is a little bit better than the IRP. However, they are both near to

the optimal solution CP. Figure 5.1 shows the empirical distributions of the forecasts

p1, p2 and the combined IRP forecast for a training data set of 1,500 forecasts.

Figure 5.1.: Empirical distributions of the single forecasts and the combined IRP-forecast.

Further we investigate whether the combined IRP-forecast is calibrated or not. We
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check this by the reliability diagram and the 95% bootstrap interval by Broecker and

Smith (2007). A reliability diagramm is a graph of the observed frequency plotted

against the forecast probability of an event. For our statistical framework this leads

to:

Let (P̃ , Ỹ ) with Ỹ = (Ỹ1, . . . , Ỹñ) ∈ {0, 1}ñ the observations and P̃ = (P̃1, . . . , P̃ñ) ∈
[0, 1]ñ the corresponding forecasts of the test data set, where ñ is the size of our test

data set. We now split the unit interval with the help of a partition

0 = q0 < q1 < · · · < qJ = 1

into subintervals [qj−1, qj), j ∈ {1, . . . , J} and plot

# {pi ∈ [qj−1, qj), Yi = 1)}
# {pi ∈ [qj−1, qj)}

against
qj−1 + qj

2
.

Figure 5.2.: Calibration curves and 95% bootstrap intervals under the null hypothesis of

calibration for the two single forecasts p1, p2, our combined IRP forecast and the

calibration curve of the optimal forecaster CP.

We have taken a training data set of 2,000 and a test data set of 10,000 observa-

tions and corresponding forecasts. The 95% bootstrap technique by Bröker and Smith
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(2007), illustrated in the plots of Figure 5.2 by the broken lines, gives pointwise lower

and upper critical values under the null hypothesis of calibration. If our forecast is

calibrated, the plotted graph should be within the 95% bootstrap interval with prob-

ability 95%. As we can see in Figure 5.2, this property is fulfilled and we can say that

our forecast is calibrated.

As already mentioned in the introduction, following Gneiting et al. (2007), proba-

bilistic forecasts should be as sharp as possible, subject to calibration. Sharpness in the

context of a binary random variable is the measure of the difference from a probability

forecast to the climatological forecast, in our case p = 1/2. A forecaster who does not

have any information would choose the climatological forecast. From the histograms

in Figures 5.1 and 5.2, we conclude that the IRP is sharper than the single forecasts

p1 and p2, because it differs stronger from the climatological forecast than p1 or p2.

Hence, we get a calibrated forecast which is sharper than the single forecasts. Con-

sequently, we are consistent with the statistical principle that we want to generate a

sharp forecast under the condition of calibration.

Ranjan and Gneiting (2010) also investigates the performance of the BLP in the case

of an uncalibrated forecast. We change the setting of Section (5.1) in the way that we

set

p∗2 = Φ

(
1

5
+
a2
2

)
.

In Figure 5.3, we can see that this new forecast p∗2 is uncalibrated. As in the case

before, we generate a training data set of 2,000 and a test data set of 1,500 observations

and corresponding forecasts.

Figure 5.3.: Calibration curves and 95% bootstrap intervals under the null hypothesis of

calibration for the two single forecasts p1 and p∗2.

Using the IRP approach we combine the two single forecasts p1 and p∗2. The results

together with the results of Ranjan and Gneiting with the added result of the IRP
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approach are shown in Table 5.2.

Table 5.2.: Comparison of the IRP and BLP approach for the simulation study by Ranjan

and Gneiting (2010)

Forecast Repetition 1 Repetition 2 Ranjan and Gneiting (2010)

p1 0.2110 0.2102 0.2094

p2 0.1735 0.1765 0.1740

BLP (symmetric) 0.1186 0.1272 0.1215

BLP (asymmetric) 0.1105 0.1197 0.1132

IRP 0.1112 0.1223 0.1204

CP 0.1088 0.1182 0.1126

The symmetric BLP, which means that α = β in the cumulative beta distribution,

is worse than the IRP. But the IRP is worse than the general BLP. The solution of the

IRP and the BLP is still very close to the optimal solution CP. If we investigate the

calibration again, we get that the IRP is still calibrated, as we can see in Figure 5.4.

Figure 5.4.: Calibration curves and 95% bootstrap intervals under the null hypothesis of

calibration for IRP and CP for combining the calibrated forecast p1 and the

uncalibrated forecast p∗2.

At last, we investigate the convergence of the Brier score of the IRP solution under

the condition of an increasing size of the training data set. For this reason, we have

taken a test data set with 1,500 observations and started with 10 observations in the

training data set. Until 100 our training data set grows in steps of size 10, afterwards

in steps of size 50 until it reaches a limit of 400. We repeat this 15 times and plot the

mean of the Brier score. For comparison we also plotted the results for training sets of

size 500, 1,000, 1,500 and 2,000.
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Figure 5.5.: Plot of the Brier score in dependence on the size of the data set. The Brier score

of the forecast p2 is illustrated by the constant line.

We can see in Figure 5.5 that just having a small training data set of about 20 data

points is enough for getting a better result than just taking the forecast p2. The reason

for the non constant decreasing graph in the interval from 20 to 100 is the randomness

of our procedure for generating the training data set. Because we just have made

15 repetitions, an IRP forecast generated from a training data set of size 70 can be

surpassed by a IRP-forecast generated with 60 data points.

Further, we can see that the function is decreasing in the second part. This shows

that we do not have the problem of overfitting in this situation. As mentioned in

Chapter 3, the size of the training data set is restricted to 3,000 if we want to calculate

it by R. Therefore, it seems that overfitting is not a problem in the context of the

simulation study by Ranjan and Gneiting (2010).

5.2. Data set by Baars and Mass (2005)

5.2.1. Data and setting

Daily model output statistics (MOS) and National Weather Service (NWS) forecasts

of maximum temperature (MAX-T), minimum temperature (MIN-T) and probability

of precipitation (POP) were collected for 29 stations from July 1st, 2003 to March

3rd, 2008. All these stations were spread across the USA to represent a wide range of
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geographical areas. The exact positions are illustrated in Figure 5.6. As we can see,

there is a high concentration of stations to the northern East Coast and in the south of

the Great Lakes. Further, each of them was near to a weather forecast office (WFO).

Four forecasts were taken for each station; the local NWS forecast and three model

output statistics forecasts, Global Forecast System (GMOS), Eta (EMOS) and NGM

(NMOS).

Figure 5.6.: NWS locations used in the study.

Source: journals.ametsoc.org/doi/full/10.1175/WAF896.1

As in the work by Baars and Mass (2005), the reported times for all meteorological

reports are given according to UTC (Universal Coordinated Time). In contrast to the

MOS forecasts, which were taken from the 0000 UTC cycle model, for example 6 pm

Central Standard time, the NWS forecasts were gathered from the early morning, at

about 1000 UTC or 0400 Pacific standard time (Baars and Mass, 2005). This implies

an advantage to the NWS forecasts, because they not only have access to the MOS

forecasts, but also to consider the 6-9 h further development of the weather. Each cycle

contains the forecasts and verifications for 48 hours, two maximum temperature (MAX-

T), two minimum temperature (MIN-T) and four 12h probability of precipitation (12h-

POP) forecasts.

The definitions of observed maximum temperatures follow the NWS definitions with

MAX-T (MIN-T) equal to the maximum (minimum) temperature between 0700 and

1900 (1900 and 0700) local time. The data set considers two forecasts per day for

POP, between 0000-1200 UTC and 1200-0000 UTC. Because the forecast period is 48

h, precipitation data for four periods were examined (day 1: 1200-0000, day 2: 0000-

1200 , 1200-0000, day 3: 0000-1200). It was found that each station has all forecasts

and corresponding observations for about 85%-90% of the days (Baars and Mass, 2005).

In the case of missing forecasts or observations, the whole data of the station for the

date was left out.

Baars and Mass (2005) compared the performance of the individual and linearly
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combined MOS forecasts for POP. The authors concluded that a linear opinion pool of

the MOS forecasts is equal or even better than the NWS forecast at almost all stations.

In the following, we consider the three MOS forecasts and the NWS forecast for POP

as individual forecasts which we aggregate by IRP and BLP.

At first, we combine the POP forecasts of the MOS and NWS forecasts by splitting

the data set in a training set, from July 1st, 2003 to June 30th 2005, and a test data set,

from July 1st, 2005 to March 3rd, 2008. Additionally, we investigate the performance

in the case that we use the last two months for generating a forecast for the following

two months. Finally, the same procedure is done with MIN-T and MAX-T forecasts

in Section 5.3. In contrast to the paper by Ranjan and Gneiting (2010), we give the

results of each station separately.

We consider two different sets of individual forecasts. At first, we only consider the

three MOS forecasts as individual forecasts and aggregate them by IRP and BLP. In

the second, we use the MOS forecasts and the NWS forecast to generate the IRP and

BLP forecasts. With this approach, we investigate whether we get a better performance

if we use a further forecast, the NWS forecast. On the other hand, we could deduce

overfitting of the data set if the results are worse in the case that we use all individual

forecasts.

5.2.2. Results for POP

As we have seen in Section 4.1, the GIRP-solution of the logarithmic score and the

IRP-solution are equivalent. Consequently, we only evaluate the performance of the

IRP-solution with the help of the Brier score. Tables 5.3 and 5.4 show the results for

9 of the 29 stations for the two cases we consider. The complete results of the data set

can be found in the Appendix Table A.1 and Table A.2.

Tables 5.3 and 5.4 show that the BLP is often better than the IRP, but not always.

A reason is that the single forecasts themselves are already quite good and combining

them does not lead to an improvement as high as in Section 5.1, where we get a high

reduction of the Brier score. The first station in Albuquerque (ABQ) is removed from

the tables because the test data set only has a size of 19 observations. All of these

observations recognize precipitation and thus this station is not good for evaluating

the performance of the different forecasts. The nine stations above show that in some,

but not in all cases, BLP and IRP lead to an improvement of the forecast in the sense

that they reduce the Brier score.

By comparing the results in Table 5.3 and Table 5.4, we recognize that they often do

not differ a lot. An exception is the station in Las Vegas (”LAS”), where we achieve

an improvement of about 0.03 (compare Table Table 1 and Table 2 of the Appendix).

Consequently, if we use all four individual forecasts, this may lead to a better perfor-

mance. Further, we can say that the additional use of the NWS forecast does not incur

overfitting. The reason is that the NWS forecast depends on the MOS forecasts, be-
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cause we designed the setting in the way, that the National Weather Service knows the

MOS forecasts. Therefore a high MOS forecast for precipitation will probably imply a

high one of the NWS.

Table 5.3.: Brier scores for combining the three MOS forecasts for POP by IRP and BLP.

Station ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 0.077 0.084 0.079 0.076 0.084 0.077 0.113 0.064 0.068

EMOS 0.089 0.092 0.086 0.071 0.089 0.084 0.115 0.074 0.071

NMOS 0.125 0.095 0.092 0.088 0.097 0.082 0.110 0.077 0.074

NWS 0.079 0.081 0.075 0.069 0.116 0.082 0.109 0.064 0.074

BLP 0.077 0.087 0.076 0.069 0.082 0.071 0.105 0.065 0.063

IRP 0.084 0.083 0.080 0.068 0.079 0.071 0.107 0.070 0.062

Table 5.4.: Brier scores for combining the three MOS forecasts and the NWS forecast for

POP by IRP and BLP.

Station ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 0.077 0.084 0.079 0.076 0.084 0.077 0.113 0.064 0.068

EMOS 0.089 0.092 0.086 0.071 0.089 0.084 0.115 0.074 0.071

NMOS 0.125 0.095 0.092 0.088 0.097 0.082 0.109 0.077 0.074

NWS 0.079 0.081 0.075 0.068 0.116 0.082 0.109 0.064 0.074

BLP 0.077 0.087 0.073 0.067 0.083 0.069 0.101 0.064 0.063

IRP 0.082 0.083 0.077 0.067 0.097 0.071 0.105 0.070 0.061

In the context of Section 5.1, Figure 5.5 suggests that we only need a small training

data set for getting a good performance of IRP. However, the results in Table 5.3 and

5.4 suggest that just combining a small size of training dates by IRP leads to a bad

performance. Therefore, we investigate this fact by taking the observations of the last

two months, for forecasting the next two months. We start with July and August 2003

and generate the BLP and IRP forecasts for September and October. Then we take

August and September for forecasting October and November and so on. We evaluate

the performance of by taking the mean over the single Brier scores. As before, we

consider two cases with just combining the MOS forecasts in the one and combining

all individual forecasts in the other case. Tables 5.5 and 5.6 show the results for the

same nine stations as before. The complete results of the data set can be found in the

Appendix Table A.3 and Table A.4.

As we can see, the BLP and IRP forecast are sometimes even worse than each

individual forecast and the IRP is usually the worst one. But what is the reason? Even

if we just combine the MOS forecasts, the results do not change a lot and sometimes

they are even a bit worse. There are three important differences to our simulation

study in Section 5.1, which lead to these results.
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Table 5.5.: Brier scores for forecasting the following two months by using the previous two

months by combing the corresponding MOS forecasts by IRP and BLP.

Station ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 0.069 0.099 0.087 0.080 0.092 0.083 0.121 0.065 0.071

EMOS 0.070 0.103 0.091 0.079 0.091 0.083 0.121 0.071 0.074

NMOS 0.078 0.112 0.096 0.093 0.102 0.086 0.118 0.075 0.078

NWS 0.072 0.100 0.083 0.076 0.110 0.086 0.116 0.064 0.076

BLP 0.090 0.104 0.088 0.086 0.091 0.082 0.117 0.069 0.078

IRP 0.094 0.119 0.107 0.114 0.102 0.096 0.132 0.087 0.087

Table 5.6.: Brier scores for forecasting the following two months by using the previous two

months by combing the corresponding MOS and NWS forecasts by BLP and IRP.

Station ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 0.078 0.099 0.087 0.080 0.092 0.083 0.121 0.065 0.071

EMOS 0.090 0.103 0.091 0.079 0.091 0.083 0.121 0.071 0.074

NMOS 0.114 0.112 0.096 0.093 0.102 0.086 0.118 0.075 0.078

NWS 0.084 0.100 0.083 0.076 0.110 0.086 0.116 0.064 0.076

BLP 0.094 0.110 0.093 0.095 0.100 0.087 0.116 0.068 0.079

IRP 0.116 0.119 0.106 0.114 0.109 0.094 0.132 0.086 0.089

1. As we have already seen, the MOS and NWS forecasts are very good forecasts,

whereas p1 and p2 in the simulation study are not.

2. There exists a temporal dependence. It is more probably to get a day without

precipitation, if the previous day has none too. The same property holds for the

case of precipitation.

3. p1 and p2 are independent, but the MOS and NWS forecasts are not. Especially

in this study, the National Weather Service has information on the MOS forecasts

of the corresponding day. Even the MOS forecasts are not independent, because

they all use the previous observation to get their forecast.

As already mentioned, point 3 implies that there are many members in the set I of

isotonic constraints and that the combination of three and four single forecasts do not

differ so much. Further this implies that the optimization problem of Chapter 2 has

many side-conditions. Thus the number of partitions is lower. In combination with

the small size of the training data set this leads to worse results than in Section 5.1.
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Table 5.7.: MSE for combining the MAX-T MOS forecasts by IRP. The temperatures are in

degrees Fahrenheit.

Station ABQ ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 12.84 12.52 13.38 14.79 15.23 16.78 13.63 12.68 16.97 29.40

EMOS 15.82 14.81 17.84 17.67 15.37 17.53 16.70 14.12 19.67 25.63

NMOS 22.54 451.48 19.22 20.18 17.60 23.09 20.15 16.80 27.07 34.82

NWS 12.49 11.87 12.22 12.82 12.41 14.20 14.25 12.60 13.82 20.10

IRP 12.59 54.53 15.79 14.78 13.46 15.87 14.76 12.59 20.50 32.77

Table 5.8.: MSE for combining the MAX-T MOS and NWS forecasts by IRP. The tempera-

tures are in degrees Fahrenheit.

station ABQ ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 12.84 12.52 13.38 14.79 15.23 16.78 13.63 12.68 16.97 29.40

EMOS 15.82 14.81 17.84 17.67 15.37 17.53 16.70 14.12 19.67 25.63

NMOS 22.54 451.48 19.22 20.18 17.60 23.09 20.15 16.80 27.07 34.82

NWS 12.49 11.87 12.22 12.82 12.41 14.20 14.25 12.60 13.82 20.10

IRP 12.32 52.06 15.08 14.21 12.82 15.04 14.48 12.31 18.78 28.89

5.2.3. Results for Temperature

In this section, we test the performance of the IRP approach for combining temperature

forecasts. Here, we cannot compare the IRP to the BLP because, as already mentioned

in Chapter 2, the BLP cannot handle this. We use the MIN-T and MAX-T MOS and

NWS forecasts by Baars and Mass (2005). Here, we can use the station in Albuquerque

for evaluating IRP because we have, in contrast to the previous Section 5.2.2 where

only 19 observations were available, many observations. In this context, we have to use

the squared error to evaluate the forecasts. As in the case of combining predictions for

precipitation, we set the training period from July, 1st 2003 to June, 30th 2005 and

the rest as the test period.

Because the results for the maximum temperature and the minimum temperature

imply the same conclusion, we only discuss the solutions of combining the maximum

temperature in this section. All the temperatures are given in degrees Fahrenheit. The

results for the minimum temperature as well as for the maximum temperature can be

found in the Appendix. We get the following mean squared errors (MSE) illustrated in

Tables 5.7 and 5.8 for combining MOS forecasts for the maximum temperature of the

first ten stations. The complete results of the 20 stations be found in the Appendix

Table A.5 and Table A.6.
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Table 5.9.: MSE for combining the MOS and NWS forecasts for one season by using the data

of the last season.

Station ABQ ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 11.40 12.25 13.17 14.09 16.07 16.60 13.62 12.84 16.51 27.62

EMOS 14.11 15.58 17.36 17.66 15.57 17.08 16.61 14.23 17.50 23.09

NMOS 22.38 267.67 18.92 19.94 18.67 24.03 19.65 16.18 22.70 33.39

NWS 11.26 12.47 12.23 12.85 12.67 14.10 14.83 12.50 13.44 21.14

IRP 13.43 35.20 16.32 15.67 15.74 17.96 14.75 14.05 19.33 26.67

Table 5.10.: MSE for combining the MOS and NWS forecasts for one season by using the

data of the last season.

Station ABQ ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 11.40 12.25 13.17 14.09 16.07 16.60 13.62 12.84 16.51 27.62

EMOS 14.11 15.58 17.36 17.66 15.57 17.08 16.61 14.23 17.50 23.09

NMOS 22.38 267.67 18.92 19.94 18.67 24.03 19.65 16.18 22.70 33.39

NWS 11.26 12.47 12.23 12.85 12.67 14.10 14.83 12.50 13.44 21.14

IRP 13.24 35.12 16.33 15.42 14.90 17.00 14.76 14.24 18.17 25.92

We see that the IRP forecast in Atlanta (”ATL”) is very bad. This is implied by

the NMOS forecast. The other stations show that sometimes the IRP is better than

each and sometimes there are one or two forecasts, which are better. But IRP is never

the worst forecast. This conclusion is comparable to the one of section 5.2.2. The

additional input of the NWS forecast improves the performance of the IRP in every

of the stations above, as we can see in Table 5.7. and Table 5.8. Like in the previous

section, we test the IRP approach on small training data sets. This is done as follows:

We want to improve the forecast of the temperatures for a season, by using the data

of the same season of the previous year. For example, we use the data from the summer

2005 to predict the temperatures of the summer 2006. We split the months as follows:

• Winter: December, January, February, March

• Spring: March, April, May, June

• Summer: June, July, August,September

• Autumn: September, October, November, December

We perform the IRP implementation of Chapter 3 and get the results. In Table 5.9

and Table 5.10, we can see the results for the well-known 10 stations. The complete
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results of the data set can be found in the Appendix Table A.7 and Table A.8. We

take the mean over all seasons and do not look at each season separately.

The results show that a combination of the four forecasts does not lead to an improve-

ment of the forecast. Further we don’t see any evidence for that overfitting because

the results don’t differ in Table 5.9 and Table 5.10. This conclusion is equivalent to

the one of the previous Section 5.2.2. The reasons for this are the same as in the case

of combining the probabilities of precipitation.

However, we see that the question, if we should use IRP and BLP for combining

probability forecasts cannot be answered directly. It depends on the quality of the

forecasts as well as the dependence structure of the single forecasts. The simulation

study in Section 5.1 shows that there is the possibility to achieve a high improvement

of the MSE, the calibration and the sharpness. But as the case study shows, this is

not guaranteed neither in the case of probability forecasts nor in the case of point

forecasts.
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6 Summary and Discussion

Based on the work by Ranjan and Gneiting (2010) and Luss et al. (2012), we have

analyzed the two corresponding methods for aggregating individual forecasts in the

framework of a binary random variable, formulated by Ranjan and Gneiting (2010).

The aim was to generate a better forecast in in the sense that it is sharper, subject

to calibration. The BLP and the IRP, discussed in Chapter 2, show that there exist

parametric as well as non-parametric approaches for combining individual forecasts.

The BLP uses the linear opinion pool by Stone (1961) and recalibrate it whereas the

IRP approach provides a solution of the isotonic regression problem by Barlow and

Brunk (1972). We further discussed the generalization of the BLP by Gneiting and

Ranjan (2011) that provides the possibility for aggregating cumulative distribution

functions. In contrast, the GIRP by Luss and Rosset (2011) generalizes the IRP

approach to the class of convex and differentiable scoring functions on R.

In Chapter 3, we standardized the linear optimization problem of the GIRP approach.

In the following, we used existing R-packages for implementing the IRP and GIRP

approaches separately. We have seen that our implementation is limited by the size of

the training data set and the set of scoring functions whose derivative is computable

by R. However, under this conditions, the implementation is quite fast and applicable

for any output in R.

Next, in Chapter 4, we investigated several theoretical aspects of the GIRP ap-

proach. First, in Section 4.1, we formulated conditions such that the IRP generates

the same solution as the GIRP. In the framework of Ranjan and Gneiting (2010), we

got conditions such that the structure of the solutions is equal, see Section 4.1.1. Next,

we considered output in R and formulated conditions such that the two solutions are

equal, see Section 4.1.2. This was motivated by the fact that the running time of the

GIRP-implementation was significantly higher than that of the IRP-implementation.

Consequently, using the IRP-algorithm instead of the GIRP-algorithm reduces the

computational effort.

In Section 4.2 we gave further connections between the general isotonic regression

problem by Barlow and Brunk (1972) and the class of scoring functions, for which the

IRP-solution and the GIRP-solution are identical. Because Luss et al. (2012) do not

investigate a generalization of the IRP approach to the class of categorical events, we

focused on expanding the IRP approach to this class. At first, we deduced several

strong properties from the statistical framework and got very strong restrictions on
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the class of solution functions.

The simulation study conducted in Section 5.1, which is based on Luss and Rosset

(2011), empirically confirms that the BLP as well as the IRP approach generates cali-

brated and sharp forecasts. We verified this by reliability diagrams and 95% bootstrap

intervals established by Bröcker and Smith (2007). The property of calibration is ful-

filled independently of the calibration of the individual forecasts. Further, we directly

compared the IRP and BLP approach by using the Brier score. In the context of the

simulation study, IRP is a bit worse than BLP but both are near to the theoretical

optimum. IRP outperforms each individual forecast even if the training set is very

small.

Finally in Section 5.2, we considered the data set by Baars and Mass (2005) and

applied our implementation of Chapter 3 to the MOS and NWS forecasts for probability

of precipitation as well as for the minimum and maximum temperature. We have got

that the BLP often is better than the IRP(compare the results in the Appendix).

Further, the aggregated forecasts do not outperform the individual forecasts in the

simulation study by Ranjan and Gneiting (2010). In the case where we used a small

training data set, the combined forecasts were often even worse than the individual

forecasts.

The work discussed in this thesis expands the results of Luss et al. (2012) in several

ways. The most important expansion is that we investigated the IRP in the framework

of statistical forecasting. By applying the IRP to the simulation study by Ranjan and

Gneiting (2010), we empirically confirm that the IRP approach generates calibrated

and sharp forecasts. Further, we compared the IRP to another existing aggregating

method, the BLP, and get that the BLP empirically generates better forecasts.

We also expanded the results of Luss et al. (2012) and Luss and Rosset (2011) by

formulating conditions such that IRP and GIRP are equal which is desirable from a

computational viewpoint. Further, we focused on a possible extension to the class

of categorical events without getting a final result. However, the deduced properties

are a good basis for further investigation. The third and last expansion is that we

implemented the IRP and GIRP in R and investigated arising difficulties and explain

corresponding solutions.

We now turn to connections to work from other scientists. Giang (2011) formulates an

approach comparable to the IRP approach. The author verifies his aggregating method

with the help of the simulation study by Ranjan and Gneiting (2010). However, we

also investigate the GIRP approach and therefore achieve more general results.

The thesis at hand suggests several starting points for further research. At first, a

final result for the problem in Section 4.3 seems desirable. Further, one may investigate

whether IRP can be used for evaluating two forecasters. Think of the case in which

we have one forecaster and we want to know if we should combine his forecasts with

predictions of a second forecaster. Then it would be useful if the IRP approach signal-
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Table 6.1.: Comparison of the Brier score for combining CP p1 and just applying IRP on CP

forecast Brier score

p1 0.207

CP 0.116

p1 and CP combined by IRP 0.122

CP and CP combined by IRP 0.118

izes that the information of one forecaster is already covered by the information of the

second forecaster. In this context, we assume that the single forecasts are calibrated.

We tested this in the setting of Section 5.1 with

p1 = Φ(a1/
√

2)

and

p = Φ(a1 + a2).

So we set the second forecaster equal to the CP forecast. We performed the imple-

mentation of Chapter 3 one time with the forecasts p1, p and the other time just with p.

The results illustrated in Table 6.1 show that just applying the IRP algorithm with the

CP forecast is better than combining it with the forecast p1. We have generated 1,000

training and 1,000 test data points. This setting is quite special because the second

forecast is equal to the best theoretical forecast. Thus the question remains whether

we can in general use IRP to check whether one information source is covered by the

information source of the second forecaster, subject to the case that the corresponding

forecasts are calibrated.
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A. Results

Table A.1.: Brier scores for the complete data set of Baars and Mass (2005) for combining

the three MOS forecasts for POP by IRP and BLP. The first nine stations are

also presented in Table 5.3.

station ATL BHM BNA BOI BOS BWI CLE DAL DEN DTW

GMOS 0.077 0.084 0.079 0.076 0.084 0.077 0.113 0.064 0.068 0.083

EMOS 0.089 0.092 0.086 0.071 0.089 0.084 0.115 0.074 0.071 0.086

NMOS 0.125 0.095 0.092 0.088 0.097 0.082 0.110 0.077 0.074 0.103

NWS 0.079 0.081 0.075 0.069 0.116 0.082 0.109 0.064 0.074 0.099

BLP 0.077 0.087 0.076 0.069 0.082 0.071 0.105 0.065 0.063 0.073

IRP 0.084 0.083 0.080 0.068 0.079 0.071 0.107 0.070 0.062 0.077

station IAH IND JAN LAS LGA MIA MSO MSP MSY

GMOS 0.081 0.088 0.079 0.148 0.076 0.125 0.103 0.081 0.079

EMOS 0.090 0.089 0.084 0.119 0.085 0.136 0.107 0.084 0.086

NMOS 0.093 0.102 0.085 0.180 0.082 0.134 0.115 0.102 0.084

NWS 0.085 0.084 0.077 0.163 0.079 0.127 0.105 0.086 0.076

BLP 0.082 0.082 0.075 0.133 0.072 0.125 0.099 0.079 0.080

IRP 0.087 0.083 0.079 0.120 0.075 0.130 0.104 0.079 0.081

station OKC ORD PDX PHL PHX SEA SFO SLC STL

GMOS 0.062 0.097 0.089 0.078 0.037 0.104 0.038 0.128 0.076

EMOS 0.073 0.093 0.095 0.083 0.041 0.118 0.046 0.090 0.081

NMOS 0.081 0.109 0.098 0.084 0.042 0.112 0.055 0.124 0.090

NWS 0.065 0.096 0.091 0.080 0.040 0.101 0.045 0.080 0.079

BLP 0.063 0.088 0.084 0.071 0.035 0.109 0.036 0.078 0.072

IRP 0.066 0.095 0.088 0.074 0.040 0.101 0.036 0.078 0.077



Table A.2.: Brier scores for the complete data set of Baars and Mass (2005) for combining

the three MOS forecasts and the NWS forecast for POP by IRP and BLP. The

first nine stations are also presented in Table 5.4.

station ATL BHM BNA BOI BOS BWI CLE DAL DEN DTW

GMOS 0.077 0.084 0.079 0.076 0.084 0.077 0.113 0.064 0.068 0.083

EMOS 0.089 0.092 0.086 0.071 0.089 0.084 0.115 0.074 0.071 0.086

NMOS 0.125 0.095 0.092 0.088 0.097 0.082 0.109 0.077 0.074 0.103

NWS 0.079 0.081 0.075 0.068 0.116 0.082 0.109 0.064 0.074 0.099

BLP 0.077 0.087 0.073 0.067 0.083 0.069 0.101 0.064 0.063 0.072

IRP 0.082 0.083 0.077 0.067 0.097 0.071 0.105 0.070 0.061 0.077

station IAH IND JAN LAS LGA MIA MSO MSP MSY

GMOS 0.081 0.088 0.078 0.148 0.076 0.125 0.103 0.081 0.079

EMOS 0.089 0.089 0.084 0.119 0.085 0.136 0.107 0.084 0.086

NMOS 0.094 0.102 0.085 0.180 0.082 0.134 0.114 0.102 0.085

NWS 0.085 0.085 0.077 0.163 0.079 0.127 0.105 0.086 0.076

BLP 0.081 0.080 0.074 0.136 0.071 0.128 0.098 0.078 0.080

IRP 0.085 0.083 0.079 0.091 0.074 0.133 0.103 0.078 0.079

station OKC ORD PDX PHL PHX SEA SFO SLC STL

GMOS 0.062 0.097 0.089 0.078 0.037 0.104 0.038 0.128 0.076

EMOS 0.073 0.093 0.095 0.082 0.041 0.118 0.046 0.090 0.081

NMOS 0.081 0.109 0.098 0.084 0.042 0.112 0.055 0.124 0.090

NWS 0.065 0.096 0.091 0.080 0.040 0.101 0.045 0.080 0.079

BLP 0.061 0.088 0.084 0.070 0.035 0.101 0.036 0.078 0.072

IRP 0.064 0.091 0.087 0.075 0.041 0.100 0.035 0.072 0.076



Table A.3.: Brier scores for the complete data set of Baars and Mass (2005) for combining

the three MOS forecasts of two months for predicting POP by IRP and BLP. The

first nine stations are also presented in Table 5.5.

station ATL BHM BNA BOI BOS BWI CLE DAL DEN DTW

GMOS 0.078 0.099 0.087 0.080 0.092 0.083 0.121 0.065 0.071 0.091

EMOS 0.090 0.103 0.091 0.079 0.091 0.083 0.121 0.071 0.074 0.092

NMOS 0.114 0.112 0.096 0.093 0.102 0.086 0.118 0.075 0.078 0.109

NWS 0.084 0.100 0.083 0.076 0.110 0.086 0.116 0.064 0.076 0.103

BLP 0.091 0.104 0.088 0.086 0.091 0.082 0.117 0.069 0.078 0.095

IRP 0.119 0.119 0.107 0.114 0.102 0.096 0.132 0.087 0.087 0.104

station IAH IND JAN LAS LGA MIA MSO MSP MSY

GMOS 0.084 0.092 0.077 0.036 0.078 0.125 0.108 0.084 0.083

EMOS 0.088 0.090 0.082 0.037 0.085 0.133 0.113 0.085 0.088

NMOS 0.094 0.104 0.086 0.040 0.084 0.132 0.120 0.098 0.093

NWS 0.087 0.090 0.076 0.037 0.078 0.126 0.113 0.087 0.083

BLP 0.089 0.092 0.082 0.063 0.076 0.133 0.113 0.086 0.085

IRP 0.119 0.105 0.099 0.052 0.094 0.171 0.139 0.102 0.121

station OKC ORD PDX PHL PHX SEA SFO SLC STL

GMOS 0.074 0.098 0.095 0.082 0.038 0.120 0.040 0.109 0.083

EMOS 0.083 0.095 0.098 0.083 0.043 0.124 0.051 0.086 0.084

NMOS 0.089 0.108 0.105 0.088 0.045 0.121 0.059 0.106 0.093

NWS 0.076 0.098 0.100 0.083 0.041 0.117 0.048 0.086 0.088

BLP 0.080 0.103 0.097 0.082 0.054 0.122 0.053 0.090 0.085

IRP 0.095 0.115 0.123 0.086 0.055 0.134 0.067 0.102 0.098



Table A.4.: Brier scores for the complete data set of Baars and Mass (2005) for combining

the three MOS forecasts and the NWS forecast of two months for predicting POP

by IRP and BLP. The first nine stations are also presented in Table 5.6.

station ATL BHM BNA BOI BOS BWI CLE DAL DEN DTW

GMOS 0.078 0.099 0.087 0.080 0.092 0.083 0.121 0.065 0.071 0.091

EMOS 0.090 0.103 0.091 0.079 0.091 0.083 0.121 0.071 0.074 0.092

NMOS 0.114 0.112 0.096 0.093 0.102 0.086 0.118 0.075 0.078 0.109

NWS 0.084 0.100 0.083 0.076 0.110 0.086 0.116 0.064 0.076 0.103

BLP 0.094 0.110 0.093 0.095 0.100 0.087 0.116 0.068 0.079 0.099

IRP 0.116 0.119 0.106 0.114 0.109 0.094 0.132 0.086 0.089 0.105

station IAH IND JAN LAS LGA MIA MSO MSP MSY

GMOS 0.084 0.092 0.077 0.036 0.078 0.125 0.108 0.084 0.083

EMOS 0.088 0.090 0.082 0.037 0.085 0.133 0.113 0.085 0.088

NMOS 0.094 0.104 0.086 0.040 0.084 0.132 0.120 0.098 0.093

NWS 0.087 0.090 0.076 0.037 0.078 0.126 0.113 0.087 0.083

BLP 0.092 0.093 0.087 0.064 0.076 0.137 0.119 0.091 0.088

IRP 0.117 0.099 0.100 0.051 0.093 0.174 0.141 0.099 0.122

station OKC ORD PDX PHL PHX SEA SFO SLC STL

GMOS 0.074 0.098 0.095 0.082 0.038 0.120 0.040 0.109 0.083

EMOS 0.083 0.095 0.098 0.083 0.043 0.124 0.051 0.086 0.084

NMOS 0.089 0.108 0.105 0.088 0.045 0.121 0.059 0.106 0.093

NWS 0.076 0.098 0.100 0.083 0.041 0.117 0.048 0.086 0.088

BLP 0.094 0.101 0.104 0.086 0.063 0.135 0.071 0.097 0.086

IRP 0.095 0.114 0.124 0.088 0.056 0.134 0.071 0.102 0.097



Table A.5.: MSE for the complete data set of Baars and Mass (2005) for combining the three

MOS forecasts for predicting MAX-T by IRP. The first ten stations are also

presented in Table 5.7. The scores are in degree Fahrenheit.

station ABQ ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 12.84 12.52 13.38 14.79 15.23 16.78 13.63 12.68 16.97 29.40

EMOS 15.82 14.81 17.84 17.67 15.37 17.53 16.70 14.12 19.67 25.63

NMOS 22.54 451.48 19.22 20.18 17.60 23.09 20.15 16.80 27.07 34.82

NWS 12.49 11.87 12.22 12.82 12.41 14.20 14.25 12.60 13.82 20.10

IRP 12.59 54.53 15.79 14.78 13.46 15.87 14.76 12.59 20.50 32.77

station DTW IAH IND JAN LAS LGA MIA MSO MSP MSY

GMOS 23.07 9.793 16.74 12.08 9.56 13.34 4.25 25.43 18.62 7.90

EMOS 23.85 14.99 16.63 17.07 9.30 16.16 5.59 34.71 24.45 10.18

NMOS 28.13 15.19 22.41 17.94 12.83 17.75 6.46 26.59 23.05 12.18

NWS 22.32 10.53 13.55 11.33 8.23 12.25 4.21 20.46 16.99 8.76

IRP 22.03 12.88 14.76 15.18 9.17 13.69 5.04 33.84 17.99 8.15

station OKC ORD PDX PHL PHX SEA SFO SLC STL

GMOS 21.66 16.33 13.60 14.03 10.21 12.49 15.09 17.49 18.70

EMOS 23.35 16.43 19.18 15.43 10.85 17.39 15.66 17.63 19.26

NMOS 31.28 22.21 16.68 18.73 13.82 14.64 16.79 23.14 25.64

NWS 15.03 15.79 13.72 11.81 8.28 11.53 14.07 14.69 17.29

IRP 28.46 14.76 13.17 12.74 8.69 12.53 14.08 21.37 17.76



Table A.6.: MSE for the complete data set of Baars and Mass (2005) for combining the three

MOS forecasts and the NWS forecast for predicting MAX-T by IRP. The first

ten stations are also presented in Table 5.8. The scores are in degree Fahrenheit.

station ABQ ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 12.84 12.52 13.38 14.79 15.23 16.78 13.63 12.68 16.97 29.40

EMOS 15.82 14.81 17.84 17.67 15.37 17.53 16.70 14.12 19.67 25.63

NMOS 22.54 451.48 19.22 20.18 17.60 23.09 20.15 16.80 27.07 34.82

NWS 12.49 11.87 12.22 12.82 12.41 14.20 14.25 12.60 13.82 20.10

IRP 12.32 52.06 15.08 14.21 12.82 15.04 14.48 12.31 18.78 28.89

station DTW IAH IND JAN LAS LGA MIA MSO MSP MSY

GMOS 23.07 9.793 16.74 12.08 9.56 13.34 4.25 25.43 18.62 7.90

EMOS 23.85 14.99 16.63 17.07 9.30 16.16 5.59 34.71 24.45 10.18

NMOS 28.13 15.19 22.41 17.94 12.83 17.75 6.46 26.59 23.05 12.18

NWS 22.32 10.53 13.55 11.33 8.23 12.25 4.21 20.46 16.99 8.76

IRP 21.74 12.88 14.07 14.12 8.97 13.67 5.00 28.97 17.18 8.04

station OKC ORD PDX PHL PHX SEA SFO SLC STL

GMOS 21.66 16.33 13.60 14.03 10.21 12.49 15.09 17.49 18.70

EMOS 23.35 16.43 19.18 15.43 10.85 17.39 15.66 17.63 19.26

NMOS 31.28 22.21 16.68 18.73 13.82 14.64 16.79 23.14 25.64

NWS 15.03 15.79 13.72 11.81 8.28 11.53 14.07 14.69 17.29

IRP 23.48 14.06 12.57 12.72 8.37 12.22 13.75 19.17 17.43



Table A.7.: Brier scores for the complete data set of Baars and Mass (2005) for combining

the three MOS forecast of a season for predicting MAX-T by IRP. The first ten

stations are also presented in Table 5.9. The scores are in degree Fahrenheit.

station ABQ ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 11.40 12.25 13.17 14.09 16.07 16.60 13.62 12.84 16.51 27.62

EMOS 14.11 15.58 17.36 17.66 15.57 17.08 16.61 14.23 17.50 23.09

NMOS 22.38 267.67 18.92 19.94 18.67 24.03 19.65 16.18 22.70 33.39

NWS 11.26 12.47 12.23 12.85 12.67 14.10 14.83 12.50 13.44 21.14

IRP 13.43 35.20 16.32 15.67 15.74 17.96 14.75 14.05 19.33 26.67

station DTW IAH IND JAN LAS LGA MIA MSO MSP MSY

GMOS 20.69 10.08 16.45 13.15 8.69 13.20 4.35 24.90 18.49 7.78

EMOS 21.09 14.39 19.09 16.31 8.52 16.06 5.60 29.85 24.05 9.34

NMOS 25.72 14.68 21.95 16.61 12.29 17.77 6.11 26.73 23.65 11.17

NWS 20.14 10.16 14.55 12.12 7.49 12.42 4.32 20.47 17.78 8.05

IRP 22.67 13.46 18.43 14.16 10.46 14.06 5.63 28.98 22.32 10.22

station OKC ORD PDX PHL PHX SEA SFO SLC STL

GMOS 21.72 16.22 13.96 13.95 10.20 12.87 14.84 18.09 17.73

EMOS 22.10 16.07 18.95 15.10 10.63 17.01 16.39 17.48 20.01

NMOS 27.03 21.35 17.33 19.69 14.19 15.26 16.19 23.43 24.00

NWS 15.56 15.25 14.04 12.31 8.14 11.87 13.99 14.34 16.61

IRP 21.62 16.78 15.32 14.71 11.69 15.40 16.24 19.65 21.11



Table A.8.: Brier scores for the complete data set of Baars and Mass (2005) for combining

the three MOS forecast and the NWS forecast of a season for predicting MAX-T

by IRP. The first ten stations are also presented in Table 5.10. The scores are in

degree Fahrenheit.

station ABQ ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 11.40 12.25 13.17 14.09 16.07 16.60 13.62 12.84 16.51 27.62

EMOS 14.11 15.58 17.36 17.66 15.57 17.08 16.61 14.23 17.50 23.09

NMOS 22.38 267.67 18.92 19.94 18.67 24.03 19.65 16.18 22.70 33.39

NWS 11.26 12.47 12.23 12.85 12.67 14.10 14.83 12.50 13.44 21.14

IRP 13.24 35.12 16.33 15.42 14.90 17.00 14.76 14.24 18.17 25.92

station DTW IAH IND JAN LAS LGA MIA MSO MSP MSY

GMOS 20.69 10.08 16.45 13.15 8.69 13.20 4.35 24.90 18.49 7.78

EMOS 21.09 14.39 19.09 16.31 8.52 16.06 5.60 29.85 24.05 9.34

NMOS 25.72 14.68 21.95 16.61 12.29 17.77 6.11 26.73 23.65 11.17

NWS 20.14 10.16 14.55 12.12 7.49 12.42 4.32 20.47 17.78 8.05

IRP 22.18 13.46 17.70 14.13 10.45 13.88 5.46 24.87 22.62 10.12

station OKC ORD PDX PHL PHX SEA SFO SLC STL

GMOS 21.72 16.22 13.96 13.95 10.20 12.87 14.84 18.09 17.73

EMOS 22.10 16.07 18.95 15.10 10.63 17.01 16.39 17.48 20.01

NMOS 27.03 21.35 17.33 19.69 14.19 15.26 16.19 23.43 24.00

NWS 15.56 15.25 14.04 12.31 8.14 11.87 13.99 14.34 16.61

IRP 19.65 16.48 14.75 14.44 11.56 14.93 17.64 17.88 20.34



Table A.9.: MSE for the complete data set of Baars and Mass (2005) for combining the three

MOS forecasts for predicting MIN-T by IRP. The scores are in degree Fahrenheit.

station ABQ ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 11.68 8.05 11.77 13.20 11.53 6.81 12.40 11.76 11.78 17.65

EMOS 12.97 7.93 11.07 12.34 11.85 8.55 11.49 12.72 11.57 15.97

NMOS 11.67 328.11 15.84 15.94 16.22 10.14 14.26 14.24 16.66 22.75

NWS 10.54 7.08 9.73 10.99 10.05 7.61 12.42 11.64 9.20 17.18

IRP 11.85 48.53 10.27 11.50 14.93 7.21 10.99 11.20 11.06 21.94

station DTW IAH IND JAN LAS LGA MIA MSO MSP MSY

GMOS 9.74 10.30 11.96 10.34 9.24 7.18 4.62 18.55 14.01 7.86

EMOS 10.71 12.56 12.62 10.98 11.75 7.55 5.80 17.70 14.82 9.70

NMOS 13.26 14.45 16.83 13.69 18.09 11.21 7.82 19.16 19.01 15.75

NWS 9.62 10.31 10.97 9.11 9.20 8.44 5.05 17.80 13.22 7.56

IRP 9.28 10.90 11.59 9.96 9.50 7.56 5.51 19.52 13.30 8.11

station OKC ORD PDX PHL PHX SEA SFO SLC STL

GMOS 14.74 14.96 8.58 7.40 9.92 6.47 6.33 18.59 9.93

EMOS 14.94 14.54 9.26 9.24 9.38 6.61 7.97 19.45 11.61

NMOS 20.06 19.96 9.83 10.18 9.71 6.99 7.57 20.79 13.75

NWS 12.93 13.67 9.13 7.60 7.76 6.28 7.43 15.65 8.79

IRP 15.71 14.93 8.29 7.70 9.42 6.06 6.83 21.87 10.88



Table A.10.: MSE for the complete data set of Baars and Mass (2005) for combining the three

MOS forecasts and the NWS forecast for predicting MIN-T by IRP. The scores

are in degree Fahrenheit.

station ABQ ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 11.68 8.05 11.77 13.20 11.53 6.81 12.40 11.76 11.78 17.65

EMOS 12.97 7.93 11.07 12.34 11.85 8.55 11.49 12.72 11.57 15.97

NMOS 11.67 328.11 15.84 15.94 16.22 10.14 14.26 14.24 16.66 22.75

NWS 10.54 7.08 9.73 10.99 10.05 7.61 12.42 11.64 9.20 17.18

IRP 11.80 47.94 10.18 11.25 14.73 7.43 11.42 11.19 10.13 22.33

station DTW IAH IND JAN LAS LGA MIA MSO MSP MSY

GMOS 9.74 10.30 11.96 10.34 9.24 7.18 4.62 18.55 14.01 7.86

EMOS 10.71 12.56 12.62 10.98 11.75 7.55 5.80 17.70 14.82 9.70

NMOS 13.26 14.45 16.83 13.69 18.09 11.21 7.82 19.16 19.01 15.75

NWS 9.62 10.31 10.97 9.11 9.20 8.44 5.05 17.80 13.22 7.56

IRP 8.87 10.35, 11.15 9.58 9.27 7.35 5.45 19.19 13.22 7.82

station OKC ORD PDX PHL PHX SEA SFO SLC STL

GMOS 14.74 14.96 8.58 7.40 9.92 6.47 6.33 18.59 9.93

EMOS 14.94 14.54 9.26 9.24 9.38 6.61 7.97 19.45 11.61

NMOS 20.06 19.96 9.83 10.18 9.71 6.99 7.57 20.79 13.75

NWS 12.93 13.67 9.13 7.60 7.76 6.28 7.43 15.65 8.79

IRP 15.09 14.10 8.08 7.44 9.09 6.04 6.99 20.17 9.90



Table A.11.: Brier scores for the complete data set of Baars and Mass (2005) for combining

the three MOS forecast of a season for predicting MIN-T by IRP. The scores

are in degree Fahrenheit.

station ABQ ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 10.39 7.42 10.75 12.57 11.19 7.26 11.99 11.54 9.80 16.58

EMOS 11.44 7.73 10.44 11.43 11.57 8.80 11.70 12.33 10.91 16.14

NMOS 11.27 200.76 14.08 14.61 15.68 10.63 14.48 13.51 13.88 22.14

NWS 9.75 7.21 9.13 10.28 10.25 7.40 12.27 11.66 9.51 16.49

IRP 12.19 29.70 10.75 12.39 12.78 8.85 12.10 12.11 12.13 19.30

station DTW IAH IND JAN LAS LGA MIA MSO MSP MSY

GMOS 9.72 10.02 11.50 10.12 8.81 7.21 4.79 17.80 13.34 7.74

EMOS 10.22 12.03 11.97 10.15 10.96 8.04 5.69 18.08 13.80 9.00

NMOS 12.21 14.02 15.03 12.59 17.18 11.89 7.34 19.18 17.52 15.57

NWS 9.38 9.76 10.73 9.36 8.98 8.49 5.23 17.40 12.77 7.77

IRP 10.23 11.26 13.00 10.08 9.48 8.35 5.68 20.16 14.29 8.70

station OKC ORD PDX PHL PHX SEA SFO SLC STL

GMOS 13.36 14.19 8.60 7.57 8.86 6.83 6.49 16.87 9.26

EMOS 13.65 13.69 9.74 8.70 8.71 6.90 7.99 17.18 10.50

NMOS 18.91 18.48 9.87 10.20 9.01 6.85 7.57 18.79 12.41

NWS 12.68 12.72 8.97 7.69 7.11 6.50 7.76 14.72 8.82

IRP 16.24 14.47 9.69 8.27 9.92 7.26 7.95 20.22 10.87



Table A.12.: Brier scores for the complete data set of Baars and Mass (2005) for combining

the three MOS forecast and the NWS forecast of a season for predicting MIN-T

by IRP. The scores are in degree Fahrenheit.

station ABQ ATL BHM BNA BOI BOS BWI CLE DAL DEN

GMOS 10.39 7.42 10.75 12.57 11.19 7.26 11.99 11.54 9.80 16.58

EMOS 11.44 7.73 10.44 11.43 11.57 8.80 11.70 12.33 10.91 16.14

NMOS 11.27 200.76 14.08 14.61 15.68 10.63 14.48 13.51 13.88 22.14

NWS 9.75 7.21 9.13 10.28 10.25 7.40 12.27 11.66 9.51 16.49

IRP 12.20 29.64 10.38 12.21 12.69 8.93 12.56 12.09 11.66 19.20

station DTW IAH IND JAN LAS LGA MIA MSO MSP MSY

GMOS 9.72 10.02 11.50 10.12 8.81 7.21 4.79 17.80 13.34 7.74

EMOS 10.22 12.03 11.97 10.15 10.96 8.04 5.69 18.08 13.80 9.00

NMOS 12.21 14.02 15.03 12.59 17.18 11.89 7.34 19.18 17.52 15.57

NWS 9.38 9.76 10.73 9.36 8.98 8.49 5.23 17.40 12.77 7.77

IRP 10.14 11.07 12.74 10.04 9.55 8.32 5.65 20.04 13.61 8.73

station OKC ORD PDX PHL PHX SEA SFO SLC STL

GMOS 13.36 14.19 8.60 7.57 8.86 6.83 6.49 16.87 9.26

EMOS 13.65 13.69 9.74 8.70 8.71 6.90 7.99 17.18 10.50

NMOS 18.91 18.48 9.87 10.20 9.01 6.85 7.57 18.79 12.41

NWS 12.68 12.72 8.97 7.69 7.11 6.50 7.76 14.72 8.82

IRP 15.78 14.33 9.47 8.37 9.34 7.28 8.10 18.81 10.40



B. Code

############################################################

## Function IRP which f i n d s a f o r e c a s t f o r t r a i n i n g datas y

## with the he l p o f the t r a i n i n g datas y ,P

#############################################################

#Input :

# P t e s t : n t e s t x m matrix o f the t e s t po in t s

# P : n x m matrix o f the t r a i n i n g po in t s

# y : n x 1 matrix o f the o b s e r va t i on s o f the t r a i n i n g data s e t

#

#Output :

# y pred : n t e s t x 1 matrix wi th p r e d i c t i o n s f o r P t e s t

#############################################################

IRP<−function (y ,P,P t e s t ){

l ibrary ( lpSo lve )

l ibrary ( l i n p r o g )

## Parameter s s e t t i n g and s o r t i n g

n<−length (P [ , 1 ] )

m<−length (P [ 1 , ] )

p temp <− order (P [ , 1 ] )

y <− y [ p temp ]

for ( i in 1 :m){
P[ , i ]<−P[ , i ] [ p temp ]

}

## Sets up matrix A fo r the op t im i za t i on problem

A<−createMatrixA (P)

## Performs the IRP a lgor i thm of Chapter 2

p f i t s <− IRP cut (y ,A)

## Ca lcu l a t e p r e d i c t i o n s out o f the p f i t s

y pred <− yPred i c t i on (P te s t , p f i t s ,P,mean( y ) )

return ( y pred )

}



#####################################################################

## Creates a Matrix A with a l l the necessary i s o t o n i c i t y c on s t r a i n t s

#####################################################################

#Input :

# P: Matrix o f dimension m x n with the n f o r e c a s t s o f the m f o r e c a s t e r s

#

#Output :

# Matrix A of dimension n x n

# A: A[ i , j ] == 1 i f p 1 [ i ]< p 2 [ j ] and p 2 [ i ]< p 2 [ j ]

# but : i f A[ i , j ]==1 and A[ j , k ]==1, A[ i , k]==0 because o f numerical reasons

######################################################################

createMatrixA<−function (P){

n<−length (P [ , 1 ] )

m<−length (P [ 1 , ] )

A<−matrix (0 ,nrow=n , ncol=n)

## Set A[ i , j ]==1 i f P[ i , k ] < P[ j , k ] f o r each component k in 1 :m

for ( i in 1 : ( n−1)){
for ( j in ( i +1):n){
i f (sum(P[ i , ] <= P[ j ,])== m){
A[ i , j ]<−1

}
}

}

## Set A[ i , j ]==0 i f A[ i , k]==1 and A[ k , j ]==1

for ( i in 1 : ( n−2)){
for ( j in ( i +2):n){
k<−i+1

while (A[ i , j ]==1 && k<( j −1)){
k<−k+1

i f (sum(P[ i , ]<P[ k ,])==m && sum(P[ k ,]<P[ j ,])==m) A[ i , j ]<−0

}
}

}

return (A)

}



#############################################################

## Cuts the da t a s e t in sma l l e r data s e t s and re turns

## the opt imal f i t s f o r the t r a i n i n g data

#############################################################

#Input :

# y : n x 1 vec t o r o f the o b s e r va t i on s

# A: n xn matrix which r ep r e s en t s the i s o t o n i c i t y c on s t r a i n t s

#

#Output :

# p f i t s : n x 1 vec t o r o f opt imal f i t s f o r the t r a i n i n g data

#############################################################

IRP cut<−function (y ,A){

#### Parameters f o r the a l gor i thm ####

cutva lue s <− matrix (0 ,nrow=1,ncol=n)

cutgroups1 <− matrix (0 ,nrow=1,ncol=n)

cutgroups2 <− matrix (0 ,nrow=1,ncol=n)

cutcount1 <− 0

cutcount2 <− 0

p f i t s <− matrix (mean( y ) , ncol=1,nrow=n)

## f i r s t i t e r a t i o n s t ep ###

x <− IRP cutproblem wrapper (y ,A)

x 1 <− which(x<0.5)

x 2 <− which(x>0.5)

i f ( length ( x 2)<n && (n−length ( x 2))<n){

cutva lue s help <− sum( y [ x 2]−mean( y))−sum( y [ x 1]−mean( y ) )

for ( j in 1 : n ) cutva lue s [ j ] <− cutva lue s help

for ( j in x 2) cutgroups1 [ j ] <− cutcount1+1

for ( j in x 1) cutgroups1 [ j ] <− cutcount1+2

for ( j in 1 : n ) cutgroups2 [ j ] <− cutcount2+1

cutcount1 <− cutcount1 + 2

cutcount2 <− cutcount2 + 1

maxCutValue <− 0

}

i f ( length ( x 1)==n | | length ( x 1)==0) maxCutValue = 10000

## the f o l l ow i n g i t e r a t i o n s t e p s ##

while ( maxCutValue !=10000){

maxCutValue <− min( cutva lue s )



indCutValue <− which .min( cutva lue s )

indsToCut <− which( cutgroups2==cutgroups2 [ indCutValue ] )

temp <− sort (unique ( cutgroups1 [ indsToCut ] ) )

i f (10000 !=maxCutValue ){
for ( k in 1 : length ( temp )){

indsToCut <− which( cutgroups1==temp [ k ] )

p f i t s [ indsToCut ] <− mean( y [ indsToCut ] )

x <− IRP cutproblem wrapper ( y [ indsToCut ] ,A[ indsToCut , indsToCut ] )

x 1 <− which(x<0.5)

x 2 <− which(x>0.5)

L <− length ( indsToCut )

i f ( length ( x 1)<L && length ( x 2)<L){
cutva lue s help <− sum( y [ indsToCut [ x 2]]−mean( y [ indsToCut ] ) )

−sum( y [ indsToCut [ x 1]]−mean( y [ indsToCut ] ) )

for ( j in indsToCut ) cutva lue s [ j ] <− cutva lue s help

for ( j in indsToCut [ x 1 ] ) cutgroups1 [ j ] <− cutcount1+1

for ( j in indsToCut [ x 2 ] ) cutgroups1 [ j ] <− cutcount1+2

for ( j in indsToCut ) cutgroups2 [ j ] <− cutcount2+1

cutcount1 <− cutcount1 + 2

cutcount2 <− cutcount2 + 1

maxCutValue <− 0

}
i f ( length ( x 1)==L | | length ( x 1)==0){
cutva lue s [ indsToCut ] = 10000

}
}
}
}

return (p f i t s )

}



###################################################################

## So l ve s the l i n e a r op t im i za t i on problem fo r the opt imal cut

###################################################################

#Input :

# y temp : n temp x 1 vec to r o f the o b s e r va t i on s

# A temp : n temp x n temp matrix wi th the i s o t o n i c t y c on s t r a i n t s

#

#Output :

# x : n x 1 vec t o r wi th x [ i ] i s 0 or 1 r ep r e s en t i n g the two sub−groups
####################################################################

IRP cutproblem wrapper <− function ( y temp , A temp )

{
z<−0

row<−1

n temp<−length ( y temp )

## count the number o f i s o t o n i c i t y c on s t r a i n t s

for ( i in 1 : ( n temp−1)){
for ( j in ( i +1):n temp ){
i f (A temp [ i , j ]==1) z<−z+1

}
}

A input<−matrix (0 , z+n temp , n temp )

b<−matrix (0 , z+n temp , 1 )

## genera te a z x n temp Matrix A input wi th x i − x j <= 0 i f A[ i , j ]==1

## and a z x 1 vec to r b wi th ze ros

for ( i in 1 : ( n temp−1)){
for ( j in ( i +1):n temp ){
i f (A temp [ i , j ]==1){

A input [ row , i ] <− 1

A input [ row , j ] <− −1

b [row ] <− 0

row <− row + 1

}
}
}

## add the c on s t r a i n t s t h a t x i<=1 fo r a l l i in 1 to n to A input and s e t

## b [ ( z+1): ( z+n)]=1

for ( i in 1 : n temp ){
A input [ row , i ] <− 1



b [row ] <− 1

row <− row + 1

}

## so l v e the problem max(( p−mean(p ))∗x ) wi th Ax<=b with l i n p r o g l i b r a r y

c<− mean( y temp)−y temp

s o l u t i o n<−solveLP (c , b ,A input , maximum=FALSE, ,

const . dir = rep ( ”<=” , length ( b) ) , l pSo lve=TRUE)\$ s o l u t i o n

return ( s o l u t i o n )

}



#############################################################

## Finds the b e s t f o r e c a s t f o r a t e s t data s e t y

####################################################################

#Input :

# P t e s t : n t e s t x m matrix o f the f o r e c a s t s o f the t e s t data s e t

# p f i t s : f o r e c a s t s o f the t r a i n i n g data s e t generated by IRP

# P : n x m matrix o f the f o r e c a s t s o f the t r a i n i n g data s e t

# imPred : p r e d i c t i on va lue f o r a po in t i f t h e r e aren ’ t any below or above

#

#Output :

# y pred : n t e s t x 1 vec t o r wi th f o r e c a s t s f o r the t e s t data s e t

##############################################################

yPred i c t i on<−function (P te s t , p f i t s ,P, imPred ){

y pred <− matrix (0 , length (P t e s t [ , 1 ] ) , 1 )

number t r a i n i n g <− length (p f i t s )

m <− length (P [ 1 , ] )

## Ca l cu l a t e s the f o r c a s t s f o r each t e s t po in t s epera t ed

for ( i in 1 : length (P t e s t [ , 1 ] ) ) {

indsL <− 0

indsU <− 0

compare <− 1

## Finds a l l the po in t s o f the t r a i n i n g data s e t

## which are be low the t e s t po in t

for ( j in 1 : number t r a i n i n g ){
i f (sum(P[ j , ] < P t e s t [ i ,])==m) indsL<−c ( indsL , j )

}

## Finds a l l the po in t s o f the t r a i n i n g data s e t

## which are above the t e s t po in t

for ( j in 1 : number t r a i n i n g ){
i f (sum(P[ j , ]>P t e s t [ i ,])==m) indsU<−c ( indsU , j )

}

## i f t he r e aren ’ t any po in t s above or be low the

## fo r e c a s t va lue i s incompPred

i f ( length ( indsL)+length ( indsL)==0){
compare <− 0

y pred [ i ] <− imPred



}

## i f t he r e are on ly po in t s above chooses the minimum va lue o f p f i t s

i f ( length ( indsL)==1){
compare <− 2

y pred [ i ] <− min(p f i t s )

}

## i f t he r e are on ly po in t s be low chooses the maximum va lue o f p f i t s

i f ( length ( indsU)==1){
compare <− 2

y pred [ i ] <− max(p f i t s )

}

## i f t he r e are po in t s be low or above chooses the mean

## of the maximum va lue o f the po in t s be low the po in t

## and the minimum va lue o f the po in t s above the po in t

i f ( compare==1){
indsL <− indsL [ 2 : length ( indsL ) ]

indsU <− indsU [ 2 : length ( indsU ) ]

##f ind comparables ( y [ i , ] , p 1 , p 2)

p L f i t s <− max(p f i t s [ indsL ] )

p U f i t s <− min(p f i t s [ indsU ] )

y pred [ i ] <− (p L f i t s+p U f i t s )/2

}

}
return ( y pred )

}
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